Submitted:
15 September 2023
Posted:
19 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study area
2.2. Historical pollution
2.3. Coring, sampling and Holocene palaeoenvironmental evolution
2.4. Chemical analysis
2.5. Background and geoaccumulation index
2.6. Dating
3. Results and discussion
3.1. Facies, geochemistry and dating
3.3. Geoaccumulation index and pollution episodes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chagué-Goff, C.; Szczucinski, W.; Shinozaki, T. Applications of geochemistry in tsunami research: A review. Earth-Sci. Rev. 2017, 165, 203–244. [Google Scholar] [CrossRef]
- Silva, H.F.; Silva, N.F.; Oliveira, C.M.; Matos, M.J. Heavy Metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal. Soil Syst. 2021, 5, 27. [Google Scholar] [CrossRef]
- Chebykina, E.; Abakumov, E.; Shamilishvilly, G.; Kouzov, S. Soil Diversity of the Island of Gogland in the Gulf of Finland: History of Land Development and Current Status. Soil Syst. 2022, 6, 85. [Google Scholar] [CrossRef]
- Mangas-Suarez, M.; Garcia-Ordiales, E.; Pérez, J.A.; Álvarez, R.; Villa, A.; Ordoñez, A.; Roqueñí, N. Enrichment of Metals in the Sediments of an Industrially Impacted Estuary: Geochemistry, Dispersion and Environmental Considerations. Appl. Sci. 2022, 12, 10998. [Google Scholar] [CrossRef]
- Papadimou, S.G.; Kantzou, O.-D.; Chartodiplomenou, M.-A.; Golia, E.E. Urban Soil Pollution by Heavy Metals: Effect of the Lockdown during the Period of COVID-19 on Pollutant Levels over a Five-Year Study. Soil Syst. 2023, 7, 28. [Google Scholar] [CrossRef]
- Nassiri, O.; Rhoujjati, A.; Moreno-Jimenez, E. , Hachimi, M.L.E.L. Environmental and Geochemical Characteristics of Heavy Metals in Soils Around the Former Mining Area of Zeïda (High Moulouya, Morocco). Water Air Soil Pollut. 2023, 234, 110. [Google Scholar] [CrossRef]
- Niu, S.; Xia, Y., Yang, C., Liu, C. Impacts of the steel industry on sediment pollution by heavy metals in urban water system. Environ. Pollut. 2023, 335, 122364. [CrossRef]
- Hossain, M.B.; Sultana, J.; Pingki, F.H.; Nur, A.; Mia, M.S.; Bakar, M.A.; Yu, J.; Paray, B.A.; Arai, T. Accumulation and contamination assessment of heavy metals in sediments of commercial aquaculture farms from a coastal area along the northern Bay of Bengal. Front. Environ. Sci. 2023, 11, 1148360. [Google Scholar] [CrossRef]
- Hamarashid, R.A.; Fiket, Ž.; Mohialdeen, I.M.J. Environmental Impact of Sulaimani Steel Plant (Kurdistan Region, Iraq) on Soil Geochemistry. Soil Syst. 2022, 6, 86. [Google Scholar] [CrossRef]
- Kroeksakul, P.; Ngamniyom, A.; Silprasit, K.; Singhaboot, P. Relationship between Potential Trace Elements Contamination in Sediment and Macrofauna in the Upper Gulf of Thailand. J. Environ. Public Health 2023, 4231930. [Google Scholar] [CrossRef]
- Kumar, V.; Bhatti, R.C.; Kaur, R.; Singh, S.; Nirmala, C.; Singh, A.N. Comparative Geo-Accumulation Index Of Heavy Metal Concentration In The Urban Soils Of Chandigarh And Baddi Areas Under Industrial Activities In A Lower Shiwalik Region, India. Eur. Chem. Bull. 2023, 12, 937–953. [Google Scholar] [CrossRef]
- Fadlillah, L.N. Utami, S., Rachmawati, A.A.; Jayanto, G.D.; Widyastuti, M. Ecological risk and source identifications of heavy metals contamination in the water and surface sediments from anthropogenic impacts of urban river, Indonesia. Heliyon 2023, 9, e15485. [Google Scholar] [CrossRef] [PubMed]
- Hamarashid, R.A.; Fiket, Ž.; Mohialdeen, I.M.J. Environmental Impact of Sulaimani Steel Plant (Kurdistan Region, Iraq) on Soil Geochemistry. Soil Syst. 2022, 6, 86. [Google Scholar] [CrossRef]
- Zaakour, F.; Kholaiq, M.; Khouchlaa, A.; El Mjiri, I.; Rahimi, A.; Saber, N. Assessment of Heavy Metal Contamination Using Pollution Index, Geo-Accumulation Index, and Potential Ecological Risk Index in Agricultural Soil – A Case Study in the Coastal Area of Doukkala (Morocco). Ecol. Eng. Environ. Technol. 2023, 24, 38–44. [Google Scholar] [CrossRef]
- Kahangwa, C.A. Application of Principal Component Analysis, Cluster Analysis, Pollution Index and Geoaccumulation Index in Pollution Assessment with Heavy Metals from Gold Mining Operations, Tanzania. J. Geosc. Environ. Protect. 2022, 10, 303–317. [Google Scholar] [CrossRef]
- Ruiz, F. Trace metals in estuarine sedirnents from the southwestern Spanish coast. Mar. Poll. Bull. 2001, 42, 481–489. [Google Scholar] [CrossRef]
- Li, H. Gu, Y., Liang, R., Wang, Y., Jordan, R.W., Wang, L., Jiang, S. Heavy metals in riverine/estuarine sediments from an aquaculture wetland in metropolitan areas, China: Characterization, bioavailability and probabilistic ecological risk. Environ. Poll. 2023, 324, 121370. [Google Scholar] [CrossRef] [PubMed]
- Chahouri, A. , Lamine, I., Ouchene, H., Yacoubi, B., Moukrim, A., Banaoui, A. Assessment of heavy metal contamination and ecological risk in Morocco’s marine and estuarine ecosystems through a combined analysis of surface sediment and bioindicator species: Donax trunculus and Scrobicularia plana. Mar. Poll. Bull. 2023, 192, 115076. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, X.; Zhang, Y. Heavy Metals and Their Ecological Risk Assessment in Surface Sediments of the Changjiang River Estuary and Contiguous East China Sea. Sustainability 2023, 15, 4323. [Google Scholar] [CrossRef]
- Babasaheb, R.; Thorat, P.; Prasad, A.R. Heavy metal accumulation in a moderately polluted Ulhas estuary, Western India. Reg. Stud. Mar. Sci. 2023, 60, 102818. [Google Scholar] [CrossRef]
- Fan, J. Fan, D., Wu, Y. Spatiotemporal variations of heavy metal historical accumulation records and their influencing mechanisms in the Yangtze River Estuary. Sci. Tot. Environ. 2023, 854, 158733. [Google Scholar] [CrossRef]
- Filippi, G.; Dassenakis, M.; Paraskevopoulou, V.; Lazogiannis, K. Sediment quality assessment in an industrialized Greek coastal marine area (western Saronikos Gulf). Biosgeosciences 2023, 20, 163–189. [Google Scholar] [CrossRef]
- Ubonyaem, T.; Bureekul, S.; Charoenpong, C.; Luadnakrob, P.; Sompongchaiyakul, P. Preindustrial levels and temporal enrichment trends of mercury in sediment cores from the Gulf of Thailand. Environ. Geochem. Health 2023, 45, 4243–4256. [Google Scholar] [CrossRef]
- Nishitha, D.; Amrish, V.N.; Arun, K.; Warrier, A.K.; Udayashankar, H.N.; Balakrishn, K. Study of trace metal contamination and ecological risk assessment in the sediments of a tropical river estuary, Southwestern India. Environ. Monit. Assess. 2022, 194, 94. [Google Scholar] [CrossRef] [PubMed]
- Davis Jr., R.; Welty, A.; Borrego, J.; Morales, J.A.; Pendon, J.G.; Ryan, J.G. Rio Tinto estuary (Spain): 5000 years of pollution. Environ. Geol. 2000, 39, 1107–1116. [Google Scholar] [CrossRef]
- Borrego, J.; Morales, J.A.; Pendón, J.G. Holocene flling of an estuarine lagoon along the mesotidal coast of Huelva: The Piedras River mouth, southwestern Spain. J. Coast. Res. 1993, 9, 242–254. [Google Scholar]
- Borrego, J. Sedimentología del estuario del río Odiel (Huelva, S.O. España). Ph. D. Thesis, Universidad de Huelva, Huelva, Spain, 1992 (unpublished).
- CEDEX (Centro de estudios y experimentación de Obras Públicas). Dinámica litoral de la flecha de El Rompido (Huelva). Ministerio de Obras Públicas, Madrid, 1991; 100 p.
- CEEPYC (Centro de Estudios y Experimentacion de Puertos y Costas ‘Ramon Iribarren’). Plan de estudio de la dinámica litoral de la Provincia de Huelva. Informe Direccion General de Puertos y Costas, Madrid, 1979; 37 p.
- Cuena, G.J. Proyecto de regeneración de las playas de Isla Cristina. Informe del Servicio de Costas. Ministerio de Obras Publicas y Turismo, Madrid, 1991, 100 p.
- Olías, M.; Cánovas, C.R.; Macías, F.; Basallote, M.D.; Nieto, J.M. The evolution of pollutant concentrations in a river severely affected by acid mine drainage: Río Tinto (SW Spain). Minerals 2020, 10, 598. [Google Scholar] [CrossRef]
- Nelson, C.H.; Lamothe, P.J. Heavy metal anomalies in the Tinto and Odiel River and estuary system, Spain. Estuaries 1993, 16, 496–511. [Google Scholar] [CrossRef]
- Arroyo, M.; Ruiz, F.; González-Regalado, M.L.; Rodríguez Vidal, J.; Cáceres, L.M.; Olías, M.; Campos, J.M.; Fernández, L.; Abad, M.; Izquierdo, T.; Gómez, P.; Toscano, A.; Romero, V.; Gómez, G. Natural and anthropic pollution episodes during the Late Holocene evolution of the Tinto River estuary (SW Spain). Sci. Mar. 2021, 85, 113-123.
- Ruiz, F.; González-Regalado, M.; Borrego, J.; Morales, J.A.; Pendón, J.G. , Muñoz, J.M. Stratigraphic sequence, elemental concentrations and heavy metal pollution in Holocene sediments from the Tinto-Odiel Estuary, southwestern Spain. Environ. Geol. 1998, 34, 270–278. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. J. Geol. 1979, 2, 108–118. [Google Scholar]
- Nocete, F. (2006). The first specialised copper industry in the Iberian peninsula: Cabezo Juré (2900-2200 BC). Antiquity 2006, 80, 646-657. [CrossRef]
- Essalhi, M.; Sizaret, S.; Barbanson, L.; Chen, Y.; Lagroix, F.; Demory, F.; Nieto, J.M.; Sáez, R.; Capitán, M.A. A case study of the internal structures of gossans and weathering processes in the Iberian Pyrite Belt using magnetic fabrics and paleomagnetic dating. Mineralium Deposita 2011, 46, 981–999. [Google Scholar] [CrossRef]
- Lario, J.; Zazo, C.; Goy, J.L.; Dabrio, C.J.; Borja, F.; Silva, P.G.; Sierro, F.; González, A.; Soler, V.; Yll, E. Changes in sedimentation trends in SW Iberia Holocene estuaries (Spain). Quat. Int. 2002, 93-94, 171–176. [Google Scholar] [CrossRef]
- Cabrera, F.; Conde, B.; Flores, V. Heavy metals in the surface sediments of the tidal river Tinto (SW Spain). Fresen. Environ. Bull. 1992, 1, 400–405. [Google Scholar]
- López-González, N.; Borrego, J.; Carro, B.; Soria-Lozano, O. Biodisponibilidad de Fe y metales pesados en los sedimentos de la ría de Huelva. Geogaceta 2005, 37, 219–222. [Google Scholar]
- Ruiz, F.; Borrego, J.; González-Regalado, M.L.; López González, N.; Carro, B.; Abad, M. Impact of millennial mining activities on sediments and microfauna of the Tinto River estuary (SW Spain). Mar. Poll. Bull. 2008, 56, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Abad, M.; Arroyo, M.; Ruiz, F.; González-Regalado, M.L. , Rodríguez Vidal, J.; Cáceres, L.M.; Toscano, A.; Gómez, P.; Gomez, G.; Romero, V. Miocene-Holocene paleoenvironmental changes in the Tinto River estuary (SW Spain) evidenced by sedimentology, geochemistry and fauna. Carnets Geol. 2022, 22, 825–845. [Google Scholar] [CrossRef]


| Sample | Depth (m) | Sediment | Facies | Interpretation | As | Co | Cu | Pb | Zn |
|---|---|---|---|---|---|---|---|---|---|
| A-1 | 0.9 | Sand | Filling | Recent filling | 7 | 3.7 | 21 | 14.7 | 30 |
| A-2 | 1.4 | Mud | F4 | Marsh | 43.8 | 13.1 | 284.4 | 98 | 539 |
| A-3 | 1.6 | Mud | F4 | Marsh | 39.3 | 12.7 | 27.5 | 37.9 | 88 |
| A-4 | 1.9 | Mud | F4 | Marsh | 36.7 | 14.1 | 23.8 | 23.2 | 85 |
| A-5 | 2.3 | Mud | F4 | Marsh | 18.3 | 12 | 20.3 | 22.1 | 87 |
| A-6 | 2.8 | Mud | F4 | Marsh | 19.2 | 12.1 | 22.7 | 27.9 | 89 |
| A-7 | 3.3 | Mud | F4 | Marsh | 17.2 | 10.3 | 15.7 | 40.6 | 68 |
| A-8 | 3.6 | Mud | F4 | Marsh | 22.2 | 11.5 | 22.8 | 18.6 | 87 |
| A-9 | 4.2 | Mud | F4 | Marsh | 30.1 | 12.4 | 51.8 | 46.9 | 107 |
| A-10 | 4.5 | Mud | F4 | Marsh | 18.2 | 9.7 | 18.5 | 17.8 | 69 |
| A-11 | 5 | Sand | F2 | MIS-1 transgression | 12.3 | 5.9 | 11.7 | 12.4 | 44 |
| A-12 | 5.7 | Gravel | F2 | MIS-1 transgression | 8.5 | 3.9 | 8.4 | 10 | 28 |
| A-13 | 6 | Mud | F2 | MIS-1 transgression | 27.3 | 10.6 | 39 | 74.1 | 93 |
| A-14 | 6.4 | Sand | F1 | Alluvial | 4.8 | 4.4 | 9.5 | 11.1 | 25 |
| A-15 | 7 | Mud | F1 | Alluvial | 6.7 | 6.4 | 10.9 | 14.9 | 33 |
| A-16 | 7.4 | Sand | F1 | Alluvial | 7.2 | 5.8 | 21.3 | 10.6 | 34 |
| Sample | Laboratory number | Material | δ13C (%) | Uncalibratedage BP | Calibratedage BP | Mean Calibratedage (kyr BP) |
| A-12 | CNA-4272 | Organic matter | -22.6 | 6467±32 | 5483–5368 | 5.4 |
| A-13 | CNA-4274 | Shell | -1.3 | 5428±33 | 5892–5711 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
