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Abstract: The technical capabilities of modern Industry 4.0 and Industry 5.0 are rather vast
and growing exponentially daily. The present-day Industrial Internet of Things (IloT) combines
manifold underlying technologies that require real-time interconnections and communications among
heterogeneous devices. Smart cities are established with sophisticated designs and control for
seamless Machine-to-Machine (M2M) communication to optimize resources, costs, performances,
and energy distribution. All the sensory devices within a building interact to maintain a sustainable
climate for residents and intuitively optimize the energy distribution to optimize energy production.
However, it encompasses quite a few challenges for devices that lack compatible and interoperable
designs. Conventional solutions are restricted to limited domains or rely on engineers to design and
deploy translators for each pair of ontologies. This is a costly process in terms of engineering efforts
and computational resources. The issue persists that a new device with a different ontology must be
integrated into an existing IoT network. We propose a self-learning model that can determine the
taxonomy of devices given their ontology meta-data and structural information. The model finds
matches between two distinct ontologies using the Natural Language Processing (NLP) approach for
learning linguistic contexts. Then, by visualizing the ontology network as a knowledge graph, it is
possible to learn the structure of the meta-data and understand the device’s message formulation.
Finally, it can align entities of both ontology graphs similar in context and structure. Furthermore, the
model performs dynamic M2M translation without requiring extra engineering or hardware efforts.

Keywords: Ontology Alignment; M2M Translation; Self-Attention, Deep Learning; Industry 4.0;
Industry 5.0 IloT; Knowledge Graph; Industrial Internet of Things; Smart City

1. Introduction

The speed of technology development is changing with automation and digitization efforts,
bringing forward several challenges [1]. The backbone of Industry 4.0 and 5.0 was industrial
automation systems that enabled sustainable development [1] and innovative functionalities access to
the cyber world [2] known as Cyber-Physical Systems (CPS). CPS is a conjunction between physical
systems and digital microsystems that feature a tight integration for modeling, computation, and
communication. Both Cyber-physical systems and the IoT have been merging in the industrial
digitization process, further known as the Industrial Internet of Things (IloT). The focus of such merges
has been reshaping society [2] by bridging the physical divides via digital connectivity through IloT
and digitization applications. The applications such as automation of manufacturing processes [3,4],
agriculture for precision fertilization programs [5], smart farming, condition monitoring of wind
turbines [6] and farms, smart factories [7], and smart building and cities [8], and many others. By
digitizing physical processes, these applications have lowered overheads associated with human
dependency, cost, time, and computations. While these solutions aim to achieve connectivity across
their respective Service-Oriented Architectures (SOA) when it comes to developing a dynamically
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scalable and enhanced Software-as-a-Service (SaaS) architecture that can incorporate machine learning
models as a service (MLaaS) [9], such systems are still in their infancy. Additionally, this problem
becomes more challenging and crucial in the environmental settings of Industry 5.0. This application
domain is the hub of devices with different responsibilities working together for the same business
objective. Despite these devices having homogeneous or heterogeneous underlying structures,
these devices need to comprehend, translate, and interact with each other to converge toward the
business goal. Thus, IloT automation cannot be confined to the digitization of connections, and
this development is subject to interoperability challenges. In particular, Machine Learning (ML)
approaches are considered to automate costly engineering processes. For example, challenges related
to the automatic translation of messages transmitted between heterogeneous devices are investigated
using supervised and unsupervised machine learning approaches [10].

We conceive the IloT device ontology as the device’s language, corresponding to the language
encoder component. The schema of the ontology graph contains all the information about classes
and sub-classes hierarchy and their connection, which we convert into the structural encoder. Then,
the names of classes and relations are considered labels mapped as side information in the ontology
graph and as sentence tokens in the NLP paradigm. Finally, the relations indicate which classes are
interconnected, and these constitute the structural question set. To the best of our knowledge, no other
work in literature has proposed this mapping, and so there is a knowledge vacuum about the efficient
use of such synergies. Existing techniques of entity alignment are based on different approaches for
integrating structural information, which overlook that even if a node pair has similar entity labels,
they may not belong to the same ontological context, and vice versa. To address these challenges, a
model based on modifying the BERT-INTeraction model on graph triples is developed. The developed
model is an iterative model for the alignment of heterogeneous IloT ontologies, enabling alignments
within nodes and relations. When compared to the state-of-the-art BERT INT, on the DBPK15 language
dataset, the developed model exceeds the baseline model by an error rate of 2.1%. This work can be
considered as a step towards enabling translation between heterogeneous IoT sensor devices; therefore,
the proposed model can be extended to a translation module in which, based on the ontology graphs
of any device, the model can interpret the messages transmitted from that device.

We focus on designing an ontology alignment model as a first step toward developing automatic
dynamic translation between IIoT heterogeneous devices. The following summarizes our main
contributions:

¢ Thoroughly investigate how to enable automatic alignment across heterogeneous IloT sensor
devices using NLP NLP-based learning model in conjunction with entity alignment for the
ontology graph.

¢ Explore the use of an ontology graph as the main metric in a representation learning problem for
interpreting the metadata of sensory devices.

¢ The first significant novelty herein is highlighting three knowledge gaps: 1) lack of research
attention on modeling ontology alignment approaches for IloT heterogeneous devices, 2) scarcity
of literature on fusing NLP methodologies with IloT domain, and limitations of datasets for IloT
ontology alignment.

* The second prime novelty of this work is synthesizing a model as a solution for the IloT ontology
alignment task. The model significantly exceeds the state-of-the-art results on the DBP15K
languages dataset by a wide margin. This work is the first of many to conceptualize a mapping
between NLP and IIoT domains by utilizing knowledge graph modeling for the device’s ontology.

The paper is outlined into eight sections, first, a brief background is given in Section 2 of the various
domains used in constituting the proposed solution. Section 3 presents the important state-of-the-art
of each domain. Then, a detailed discussion on highlighted knowledge gaps is given in Sections
3.4. Section 4 elaborates on the problem formulation followed up by Section 5 with the complete
architecture of the proposed solution followed by a use case explanation for the proposed system
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discussed in section 6. Then, Section 7 states the used experimental setup and a proof of concept with
results is presented in Section 8. Lastly, all the reflections and concluding remarks are discussed in
Section 9.

2. Background

Numerous models with varying strengths and weaknesses have been established for
cross-language translation, but none have been designed for the IIoT automatic ontology paradigm.
This section outlines the different dimensions that go into synthesizing the proposed solution. The first
dimension is about the IIoT ontology’s constitution and role from an industrial perspective. The next
dimension addresses the importance of interoperability in the context of ontologies and the popularity
of ML for modernizing Industry 4.0 applications and leading to Industry 5.0 smart society applications.

2.1. Interoperability in Context of IloT Ontologies

With the development of embedded CPSs and vast computational resources, IloT has grown
significantly, resulting in a massive increase in the number of IoT devices. According to recent figures,
the number of linked IoT devices globally has reached 15.14 billion in 2023. This forecast is expected
to quadruple to around 50 billion IoT devices by 2030 [11]. IIoT is a hub for heterogeneous and
homogeneous devices that needs seamless integration and connectivity. The interoperability issue
is the challenge of enabling communication to occur despite varying assumptions about the data
model, message format, and device ontology [12]. Figure 1 presents an example scenario of ontology
interoperability. In the past decade, researchers have shown keen interest in developing ML-based
automatic translation models for solving interoperability problems, but the lack of datasets and
complexity constraints of real-world applications have been hindering this synergy so far.

PHYSICAL

Ontology Outdoor m Indoor
Sensor ( Sensor )
Device A | Device C

Sensor Sensor /|
DeviceB ™ >\ DeviceD |

DIGITAL

Sensor < Sensor
Devicew /= — — — — 7 — — — — — — ™{ peviceY

[ Sensor . Sensor
Device X >\ Device z

L

Figure 1. Explanation of heterogeneity in device ontology. The figure illustrates an example
scenario of a smart building with multiple interconnected sensors installed outside and
inside. Few devices follow the Semantic Sensor Network (SSN) ontology; the rest follow the
Sensor-Observation-Sampling-Actuator (SOSA) ontology. All the devices that follow SSN ontology
can intercommunication, and similarly, devices that follow SOSA ontology can successfully
intercommunicate. However, a device following SSN ontology can not communicate with the device
following SOSA [13].
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2.2. Representation Learning for Sensor Devices

The performance of ML algorithms is highly dependent on the type of data representation used.
As a result, a major percentage of the effort is spent on feature engineering to execute ML algorithms
and build data transformations that result in a representation of the data suited for effective learning.
[14]. Data of sensor devices is conceptualized in several technical layers of SOAs. It includes the
device’s ontology and protocol, data format, message payload schema, message transmission protocol,
and more. However, this work emphasizes the importance of device ontology for identifying and
disentangling the messages received from a heterogeneous device. Given any device’s messages and its
ontology, the representation learning model can map vector representation of low-dimensional space
for each entity in the ontology. The vectors of every unique entity are also unique, called embedding
vectors. There are three major methods in which the model can perform representation learning: 1)
supervised in which input labels and mapping of input X to output Y are given; 2) semi-supervised
in which a mix of labeled data and unlabelled data is used; and 3) unsupervised in which no prior
information of labels or mapping onto output is given. The present IoT sensor ontology domain
literature has examples of supervised and semi-supervised approaches as discussed in Section 3 but
lacks unsupervised learning-based methods.

3. Related Work

The work presented herein is primarily in the context of the industrial Internet of things
paradigm. We address the translation problem amongst heterogeneous sensory devices with respect
to the ontology followed for installing the network in a smart building. Here, all the devices are
interconnected for regulating and optimizing energy consumption such as temperature control (heating
or cooling), humidity, or climate. Each subsection presents the important state-of-the-art of various
domains that contribute to hypothesizing the research question and its solution.

3.1. Sensor Ontologies

Sensors are a major source of data available on the Web today. While sensor data may be published
as mere values, searching, reusing, integrating, and interpreting these data requires more than just
the observation results. The captured information with its context is equally important for properly
interpreting these values as information about the studied feature of interest, such as for a heater, the
observed property, the specific locations and times at which the temperature was measured, and a
variety of other information. This work takes into account only the ontology that is standardized,
integrated by, and aligned with W3C semantic web technologies [15] and Linked Data [16], which are
key drivers for creating and maintaining a global and densely interconnected graph of data. Intelligent
sensors should be seamlessly, securely, and trustworthy interconnected to enable automated high-level
smart applications. Smart interconnection of sensors, actuators, and devices enables the development
of solutions required for smart city- and CPS industrial solutions [17].

Ontologies can enrich sensory data and ensure interoperability by providing an abstraction layer
[18]. The ontology defines the semantic model and contextual information of the devices [19]. Figure
2 shows the essential components of an ontology design. W3C has developed several benchmark
ontologies based on IoT standards, such as Smart Onto Sensor, SSN, SAN, IoT-Lite, SOSA, and others,
adopted by industrial manufacturers globally. The authors present [18] a timeline of the evolution of all
base-level ontologies developed from 2002 till 2018. The authors divide the timeline into before and after
SSN ontology as it was the first ontology with complete design patterns for sensory devices network.
Ontologies are continually evolving, compiling ever more space for reasoning and simplification.
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Figure 2. Basic Components of an Ontology. There are three types of nodes here: 1) subject node, 2)
object node, and 3) literal node. Both subject and object nodes belong to a class of the knowledge
domain for which the ontology is being developed. The edges between nodes represent the relations,
and the third literal node has a data fact in them.

SOSA provides a lightweight core for SSN as shown in Figure 3, and aims at broadening the
target audience and application areas that can make use of Semantic Web ontologies. At the same time,
SOSA [20] acts as a minimal interoperability fall-back level, i.e., it defines those common classes and
properties for which data can be safely exchanged across all uses of SSN [21], its modules, and SOSA.
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Figure 3. SSN and SOSA Ontology Core structure.
3.2. M2M Translation Problem in IIoT Domain

Devices often use different communication protocols, standards, and data representation
languages, which create interoperability and M2M translation challenges. Existing literature contains
different perspectives to address the M2M translation problem. Application protocol-level solutions
focus on pre-defined functions or annotations as proxies and XML schemes to enable translation
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between sender and receiver devices [22,23]. However, such solutions fail regarding automated CPSs
that cannot rely on hand-crafted predefined schemes for every possible pair of devices. Moreover,
protocol-level proxies exclude the possibility of utilizing data in the messages to draw intuitive
interpretations about the device’s protocol. Data-driven methods [24] exploit the data augmentation
approach to analyze patterns and features in device data messages and infer important knowledge that
can generate interpretations between heterogeneous devices. However, to the best of our knowledge, a
successful automatic translation model based specifically on industrial IoT ontologies has not been
developed. The major challenge in developing such learning-dependent solutions is the unavailability
of large datasets, which is a massive hindrance.

3.3. Knowledge Graph Alignment

Knowledge graph alignment aims to link equivalent entities across different knowledge graphs.
ML models in conjunction with data-driven methods for automatic semantic translations, have recently
been trending among researchers [25]. Deep learning (DL) models such as deep alignment for ontology
[26] design solutions among parallel ontologies by aligning entities of different ontologies have been
developed independently but for the same domain. [26] introduced word vector-driven descriptions
for defining the entities (nodes) and matching tasks on DBpedia dataset of ontologies and Schema.org.
Recently, a large number of Knowledge Graphs (KGs) have been established for supporting Al
applications, such as Freebase [27] and YAGO [28]. Entity alignment seeks to discover identical entities
in different KGs, such as the English entity Thailand and its French counterpart Thailande. To tackle
this important problem, literature has attempted with the embedding-based entity alignment methods
[29-31]. These methods jointly embed different KGs and put similar entities at close positions in a
vector space, as shown in Figure 4, where the nearest neighbor search can retrieve entity alignment.

K61 ENTITIES

0O O O O K62 ENTITIES

|
i
o O |
|
|
|

Figure 4. Illustration of entity alignment between two heterogeneous KGs. Each KG has its embedding
vector space for its entities, i.e., circles represent nodes, and squares represent relations. The entities
from both graphs that have similar embedding in the vector space overlap in the figure.

Due to its effectiveness, embedding-based entity alignment has drawn extensive attention recently.
KGs have evolved to be the building blocks of many intelligent systems. They provide fundamental
tools for NLP tasks [32] of language representation through BERT, knowledge reasoning [33],
recommend systems using Knowledge Graph Convolutional Networks (KGCN) [34], Corss-lingual
entity alignment (CEA) based on generative adversarial network (GAN) [29] with semi-supervised
learning. Despite the importance, KGs are usually costly to construct and naturally suffer from
incompleteness [35]. Table 1 summarizes a brief survey of recent renowned graph alignment methods
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on the account for whether they are scalable for IIoT domain or not. The analysis is focused on the
utilization of both language and structure information. It is evident that most of the models heavily
rely on pre-aligned entities to be used during the training stage.

Table 1. Summarizing herein recent and renowned state-of-the-art methods for Graph Alignment task.

Learnin, Entit Structure
Ref. & Y Domain Datasets Used | Information | Scaleable for IloT Domain?
Approach Matching Used?
[36] | supervised MTransE based Languages | WK31-15k v yes, but only if benchmark datasets is present
alignment
. GCN based yes, but only if all pre-aligned entities are
1371 | supervised entity embeddings Languages | DBPISK v included in training data
. Topic entity graph no, as each entity in ontology graph represents
[38] | supervised using GCN Languages | DBPISK X a topic and topic grouping will fail here
(391 | unsupervised Zf?nflfrisﬁizifs];f:: Locations DBP, GEO, v no, as structure information is used only to learn
P sn . YAGO the relations labels and not the interconnections
character embeddings
[40] | supervised BERT based Interaction Languages | DBP15K X yes, but on}y with unsuperylsed lea?rmng approach
Model and inclusion of structure information
. . o no, as ontology graphs can not be realized as
[41] semi-supervised | BERT for Triadic KG Languages | DBP15K b 4 triadic KG with all independent entities

3.4. Challenges to Adaptation and Integration

For the foreseeable future, ML models will play a prime role in automating the current industrial
applications into intelligent solutions. However, as the previous sections highlight, research in
translation among IoT devices and automatic language translation is so far working as isolated areas,
whereas their synergy can bring bigger benefits to both. The following sub-section presents the
important gaps this work is based on and crisp indications for plausible merges to bridge those gaps.

3.4.1. State-of-The-Art Limitations

We conducted a query search in three renowned search engines, i.e., Google Scholar, SCOPUS,
and Web of Science, to investigate all the existing research publications for the given problem. The
main metric of this analysis is the number of publications per year.

The search queries are designed sequentially, in which the first search query is on publications for
M2M translation but only within the Industry 4.0 paradigm. The second query is narrowed down to the
same problem but specifically addressed by ML approaches. And, lastly, the third query investigates
the number of publications that have focused on ML models for solving ontology alignment problems.
Table 2 presents all the statistics of search results, and the numbers indicate the lack of attention
towards ML approaches for solving M2M translation problems, specifically using alignment tasks.

Table 2. Details of the search queries in different search engines and search results in the number of
publications in every year. Search in Google Scholar is on "Entire Article", and SCOPUS is on "Title,
Abstract, Keywords" and Web of Science is only on "Abstract".

Query 1: M2M Translation Query 2: M2M Translation & Query 3: M2M Translation & Industry 4.0
Year & Industry 4.0 Industry 4.0 & ML & ML & Ontology Alignment
Google Scholar | SCOPUS Google Scholar | SCOPUS Google Scholarr | SCOPUS

2010 10200 95 76 9180 0 0 232 0 0
2011 11600 89 85 10900 0 0 229 0 0
2012 12900 101 94 12800 0 0 231 0 0
2013 13400 116 93 14500 0 0 233 0 0
2014 15000 220 140 16100 0 2 202 0 1
2015 16000 344 306 17100 2 3 196 0 1
2016 18500 751 500 17500 21 8 211 0 0
2017 16600 1432 957 16600 49 24 201 1 0
2018 22900 2495 1501 19600 146 77 206 1 1
2019 16800 4886 2242 16700 329 128 210 1 1
2020 29700 5577 2514 22900 496 148 236 1 1
2021 37300 6706 3118 26700 791 225 143 1 0
2022 45120 8954 3118 22950 977 225 298 2 0
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3.4.2. Lack of NLP fusion into IIoT Domain

Dynamic translation between machines has stressed the need to establish automated systems
that enable effective real-time communication across heterogeneous devices. The literature is
unquestionably packed with NLP solutions for various industrial applications, including language
translation (chatbots); most focus on a pre or post-process analysis of processes and datasets. On the
other hand, IIoT network activities are ongoing and greatly diverse, and there is a crucial need to
deploy automatic translators for dynamic, seamless communication between heterogeneous devices.
Using NLP models for that purpose is a considerable gap in the study. As seen in Table 2, researchers
place premium attention on language datasets, even regarding graph alignment approaches. This
work is the first of many efforts to conceptualize the mapping and validate the proposed solution as a
proof of concept. To understand how mapping is implemented in this study, let us dissect the NLP
domain into its main components: a language encoder, a structural encoder, language sentences and
tokens, and a structural question set.

3.4.3. Limitations of Dataset for IloT Ontology Alignment

Considerable efforts have been made, and will continue for the foreseeable future, to develop a
variety of datasets for computer-based linguistic technology applications [42]. The research community
recognizes that only data can pave the way for linguistic technology. Hence, the number of publicly
accessible NLP datasets has grown significantly as researchers experiment on new tasks, larger models,
and novel benchmarks [43]. Datasets are essential in empirical NLP studies since they are utilized to
evaluate proposed models and their bench-marking. Supervised datasets with predefined annotations
are required to train and fine-tune the models, and large unsupervised datasets are required for
pre-training and language modeling. DBP15K [44], YAGO [45] and DWY100K [46] are the widely used
massive benchmark datasets of knowledge bases for alignment tasks, with high alignment accuracy
of existing embedding-based methods. Each consists of approximately millions of KG triplets with
thousands of entities and relations.

Whereas there is plenty of research attention and datasets for cross-linguistic alignment tasks,
both are increasingly scarce for industrial IoT ontology alignment. The IoT ontology graphs are concise
since they are curated for specific industrial use cases and devices. As seen in Table 3, fewer nodes and
graph triples than the language datasets” knowledge bases.

Table 3. Statistics of the empirical NLP datasets used for entity alignment for two domains: a)
contemporary language-based b) IIoT domain utilizing both structure and language-based alignments

Dataset [ Entities [ Relations [ Triples
Domain: Language-based
Chinese 66,469 2,830 153,929
DBPISKzp-eN English 98.125 2317 | 237,674
Japenese 65,744 2,043 164,373
DBPISK 4-EN English 95,680 2,096 | 233,319
English 66,858 1,379 192,191
DBPISKER-EN ey 105,889 2209 | 278590
Domain: IloT Language + Structure-based
Smart Appliance REFerence (SAREF) 37 20 1097
Semantic Actuator Network (SAN) 17 17 271
Semantic Sensor Network (SSN) 105 40 767
Sensor, Observation, Sample, & Actuator (SOSA) 70 23 487

4. Problem Formulation

This section contains two key definitions designed for the address problem domain. Then, we
present the problem definition targeted in this work.
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4.1. Definition 1: Knowledge Graph and Structure Encoding

We generate KGs of two forerunner ontologies by W3C regulations: SSN and SOSA as KG; and
KG;. A graph is denoted as KG = (H, T, R) where R is a set of all relations entities, H is a set of all head
entities, and T is a set of all tail entities. Each edge represents a relation r € R, a subject node represents
h e H, and an object node represents t € T. In the structural encoder of the proposed model, there are
four representation vectors: D3}, D3, D3, and D°. Vector D3, represents the path length from a head
entity, D3, represents the path length from the relation, D} represents the path length from a tail entity,
and D® which encodes the structural information of the underlying KG. Entity pairs between KG; and
KG; are denoted as:

e for pair of head entities g(h, ') where h e H e KG; and h’ ¢ H € KGy
e for pair of relation entities g(, ¥’) where r € R e KG; and r’ € R” € KGy
e for pair of tail entities g(t, t') where t e T € KGj and t' € T € KG,

4.2. Definition 2: Mapping to BERT Language Model

The metadata, labels of nodes, and relations are conceived as the language of the IoT ontology.
The language encoder of our proposed model is similar to the original BERT encoder [47]. Sets of
H, R, and T along with DS vectors are encoded into BL encoder on which we apply concatenation to
generate a final language representation vector as Ct. KG; will have a matching node in KG; if a node
e; has a similar embedding vector ¢} in the common latent space of both KGs.

4.3. Problem Definition: Ontology Graph Alignment

The problem herein is manifold. Given two ontology graphs KG; and KG; provided they both
are designed for IloT sensor devices, the prime task is to learn alignment across the heterogeneous
ontology graphs. For which, we first use language BERT encoder (BL) on the ontology dataset and
further process it by a two-layer Multi-layer Perceptron (MLP) network that learns the final language
representation vector as CL. Next, we use the structural encoder to transform the language vectors
into a binary vector D to capture the triplets and in-graph information with respect to neighboring
nodes. Then, the interaction model is used to learn the alignment across the graphs with two baseline
assumptions:

1. An entity from a KG; can only match with only one entity in KG,. The term C?jmquem”x ensures
this property in two different KGs.

2. If an entity ¢; form KG; aligned with entity e¢; of KG; then their neighbour will also have similar
topsum
i

properties. The term S ensures this property in the neighbor of ¢; and ;.

Lastly, a LosS;pteraction function is defined to learn the maximal similarity based on the side and
structural information of different entities from both KGs.

5. Proposed Conceptual Design

5.1. Overview of the proposed system

There are two forms of information available in a KG. The first is language information, and the
second is structural information. The BERT-based encoders have already proved their effectiveness
for language models [47]. Recently, the BERT-INT, a BERT encoder, has also been used for the entity
alignment task in KGs [40]. But BERT-INT [40] only used language information with a BERT encoder
to generate an encoded vector, which is further encoded by a multi-layered-perceptron (MLP) network
to yield the final representative vector for a given query.

Indeed, the structural information is used in its interaction model at the last stage, but considerably,
structural information is not covered effectively by BERT-INT. In this work, we present a model-based
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solution for Ontology Alignment using a modified BERT-INT model on graph Triplets that encodes the
available information in KGs with or without language pieces of information. Figure 5 illustrates the
overview of the model starting from two heterogeneous sensor devices that have different ontologies.
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Figure 5. Complete overview of the proposed model with abstract components.
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5.2. Improvements on BERT_INT Model

The following sections present in detail every component of the proposed model. However, here
is a summary of proposed improvements to the state-of-the-art model:

* Modified input arrangement is used in this work to utilize the full potential of a pre-trained
BERT model.

¢ The improved input arrangement can be used for experiments of aggregation models that are
designed using both language and structural encoders.

¢ For integrating the structural encoder and incorporating side information with an improved
BERT-INT model, the structural question-set reasoning block is designed and implemented with
an in-graph approach.

¢ Interaction model is changed by proposing an iterative method of calculating similarities between
entities over each iteration.

¢ Interaction model is designed for an unsupervised learning approach as in the case study used
for the work, where no alignment pairs are available for KG1 and KG2.

6. Ontology Dataset Construction for System Use Case

We select two ontologies SOSA and SSN as discussed in subsection:3.1 as these are the forerunner
ontology curated by W3C on the account of IoT sensor devices. For generating ontology instances
strictly on SOSA and SSN ontology graphs we follow the W3C standardized examples of Appartment
134 [48] and utilize the RDF (Resource Description Framework) files containing graphs with SOSA
and SSN core terms. The example is designed for temperature sensor devices and an actuator in which
the devices log their temperature values for corresponding time stamps. Although this gives us a
complete graph of both ontology for sensor devices for the training of machine learning model we
require a much bigger number of ontology instances.

Therefore, we refer to Kaggle’s dataset of Smart Building Data [49] synthesized by Hong et.al [50].
This dataset was collected from 255 sensor time series, instrumented in 51 rooms on four floors of the
Sutardja Dai Hall(SDH) at UC Berkeley. The dataset can be utilized for experiments relating to IoT,
sensor fusion networks, or time-series tasks. It is also suitable for both supervised and unsupervised
learning tasks. The building infrastructure is that each room includes five types of measurement sensor
data as shown in Figure 6. In the following sections, we discuss the complete workflow the proposed
system for the language encoding and ontologies structure construction.

Sensor 1 Sensor 2 Sensor 3
€02 Ce i Room Air Humidity Room T
51 Rooms Total
= - -
Room#776 Every Room ' LN W
Luminosity PIR Motion
Room#621A s
S @
\ h
) Yot
-

Room#413

Figure 6. Smart Building System Dataset collected over a period of one week from Friday, August 23,
2013 to Saturday, August 31, 2013. The PIR motion sensor is sampled once every 10 seconds and the
remaining sensors are sampled once every 5 seconds. Each file contains the timestamps (in Unix Epoch
Time) and actual readings from the sensor.
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6.1. Language Encoder

The language encoder of the proposed work is similar to the BERT-INT with modification as
discussed in section 5.2 and generates the language representative vector for each entity and relation
in the graph represented in Figure 7. Then, the language vectors of the head, relation, and tail of the
triplet are concatenated to form the input vectors for the structural BERT encoder shown in Figure
7b. The corresponding embeddings generated by the structural BERT are further diverged into three
separate vectors by another MLP network to yield the final representative vector for the respective
triplet’s head, relation, and tail.

CL
T
MLP o
BLTTT..'TTTTTT........T C$SI$TS
MLP
BERT Encoder (Language) BS4 4 e o o o o o 4

T T T. o o T PT T Tl£ L d;. P e T BERT Encoder (Structure)
ositional Embedding e e e e
T T T T TInLutT Entberding T | i | i i

T T- o T T T T T o0 0000 00 Get Language Vector OR Direct Input Embedding
Tokenizer Tokenizer HeadT RelT TailT HeadT RelT TailT Head| Rel| Tail
[CLS] Name [SEP] Description Triplet Triplet e o o o o o  Triplet
(a) Encoding Structure (A) (b) Encoding Structure (B)

Figure 7. Different BERT Encoders used in the proposed model.

The original BERT encoder [47] uses sentence-1, and sentence-2 input arrangement as shown in
Figure 8a. The same input arrangement is utilized by most of the methods that utilize the pre-trained
BERT model [47]. But the BERT-INT [40] does not use this input organization and uses a very different
arrangement shown in Figure 8b. Therefore the utilization of the full potential of a pre-trained BERT
model is questionable. In contrast, the input arrangement of the proposed language encoder as
represented in Figure 8c is very similar to the original BERT encoder. Here only the input arrangement
is updated and everything else remains the same as BERT-INT. The representation generated by the
language BERT encoder (BL) is further processed by a two-layered MLP network which yields the final
language representation vector as ct.

Fpeet 1appgeeeeee. Frpeet prppp et fppet ppppp e,

t t
BERT Encoder BERT Encoder BERT Encoder
(RRRR I I KIS M & § CLL I B IR PHfeeet Aegg eceeceeny
Positional Embedding Positional Embedding Positional Embedding
TTT...TTTTTT........T 111“’111?11.......'1 TTT"OTTTTTT'OOOOOOOIT
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TTTT 'll'll.'.T TTTT ...'.....1 T T T T LI . e o 0o o 0 T T TTTT .ll-l..C.T TTTT .Il-lllIIT
Tokenizer Tokenizer Tokenizer Tokenizer Tokenizer
[CLS] Sentencel [SEP] Sentence2 [CLS] Description or Name [CLS] Name [SEP] Description
(a) BERT (b) BERT-INT (c) Proposed

Figure 8. Different Input Arrangements for BERT Encoder.
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6.2. Structural Encoder

Structural encoder yields output for a given KG as input such that the generated output can
answer all questions related to the structure of the KG as shown in Figure 9. However, there are two
issues with this structural encoder:

1. How to represent the complete KG as input?
2. What should be the questions set that capture all structural information of KG?

KG— Encoder —— Structural Questions —> Answers

Figure 9. structural Encoder Block

Processing the complete KG as input for very large KGs is not computationally feasible, so initial
work tries to generate the embedding vectors for the different components of KG (such as head
[subject], relations, and tail [object]). Generating an embedding vector for a component of KG requires
contextual information, but acquiring all the contextual information of a node or a relation is complex.
Therefore, most existing works treat all neighbors within a specific path length as the context of the
targeted node. Besides this, these embeddings should provide answers to structural questions. The
most famous approaches are 1) continuous bag of words (CBOW) and 2) Skip-gram for encoding
structural information.

6.2.1. Graph Representation for Structural Encoder

In this work, we represent a graph by its set of triplets. These triplets are passed to the structural
encoder to incorporate the structural information. These triplets do not have any specific order, so we
are not integrated with the positional encoder. Besides this, the set of triplets passed as input at a time
is considered as the in-graph. The components of the original graph that are not part of the in-graph
are considered as care for structural encoder processing. Therefore only the elements of the in-graph
(nodes and relations) will participate, differentiating the entity from having different neighbors and
weakening the issue of aggregating neighbors.

We require a cost function to train the structural encoder such that the generated representation
vectors should incorporate the structural information of the underlying knowledge graph. We can
ensure specific information is encoded into the representation vectors by getting the desired results
from a linear transformation of the vector. The linear transformations shown in Figure 10 convert the
representation vectors into vectors as D3, D%, D%, and D° which represent the structural information
from the knowledge graph.

The vectors generated by the structural encoder should incorporate the structural information.
Therefore a fully connected layer extracts these pieces of information from them. The Figure 10
and equation 1 explain the structural Question-set used in the proposed work. Here the vector C
is transformed into binary vector D} where its i element represents the connectivity of i entity
with this relationship element. The vectors C3;, C3. are transformed into probability vector D, D5
respectively where its i element represents the connectivity score of i entity with this entity. The €D
is the reference labeled ground truth for the corresponding vector as shown in Equation 1).
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Figure 10. The Structural Question-set for encoding the structural information

e~*P!, splis shortest path length
§p3; = between i*"entity and this head

0, no connectivity

1, if i"entity is connected with this relation
8 DS

0, otherwise

¢!, splis shortest path length
iDp = between i*"entity and this tail

0, no connectivity
€DS = one hot vector for corresponding entity

The cost function for the learning of the parameter of the structural encoder is based on the mean
square error (MRR) function. As we have multiple questions set to encode the structural information,
their corresponding losses are weighted to form the final cost (loss) of the encoder. The cost of
the structural encoder (L°) is given by Equation:1. Here the weight s1,s2, 53 are empirically set as
s1 =10.3,s2=0.5,s3 =0.3.

i—o(f D — iD};)°

LDH o n
| EL(D§ - iDy)?
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Log — i=o(; D7 —iD7) (1)
Dy n
DS - Doy
e .

L% =81 x Lps +52 % Lps +53 X Lps + Lps
@)

6.3. Interaction model

The proposed work utilizes the two interaction model learning schemes 1) supervised, and 2)
unsupervised. The supervised interaction model learning scheme is used when we have labeled
data available for training. Whereas the unsupervised interaction model learning does not have any
label data. These two different learning approaches used different interaction models with some

modifications.
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6.3.1. Supervised learning of interaction model

The interaction model used in the proposed work is similar to the BERT-INT (refer Figure 11).

Pairs of entities from
Graph 1 and Graph 2

Interaction Models (BERT-INT)

CFT Ct
MLP MLP

t t

Cs cs
Graph 1 Graph 2

Figure 11. The interaction model for alignment of the entities of different graphs

All operations are the same except the calculation of the S}"** (r BERT-INT). The original BERT-INT
discarded the other similarities except the maximal one. The maximal similarity is given by Equation 3.
Discarding other similarities is a waste of information, and we propose that they should be discarded

after applying a softmax activation (refer Equation 4) across the row similarities. If we have similar

softmax
f and then use

entity pairs from graph 1 and graph 2 then we can maximize the corresponding S

g% ftmax
ij

have the proper pairing between the entities) then the 5"** should be replaced by §;

as the S§"** for interaction model. But if the pair information is not avallable (i.e. we don’t

topsum . .
PSUT which is

calculated by Equation:4. Here N is the number of top elements (having high Sfjof M%) The value of N
is dynamic in nature and decreases as the learning proceeds. We are decreasing the value of N by one
after each epoch of learning till it becomes one.

Chi-Chy
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TICEILICE] ||C A
2
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ij - n ea2sij
o @

Tt
Sl opN _ {Ssoftmax | S?f)ftmax

€ top N elements of S; row}

topsum softmax
glopsum _ (gSoftmaxy
i i

softmax _ TopN

Sij €S;

LosSinteraction = same as BERT-INT

6.3.2. Unsupervised learning of interaction model

The interaction model used for this scheme is different than the BERT-INT. Here we do not
have the pair alignment information for the entities of KG 1 and KG 2. Therefore we need to reduce
the trainable parameter of the interaction model as there is no validated gradient (corresponding to
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the ground truth label) for parameter learning. The proposed work also does not utilize the dual
aggregation technique for unsupervised learning as we don’t want to use a trainable MLP for final
classification. This new interaction model is defined by the Equation 5. Here as we do not have any
alignment information available so we need to utilize only the implicit information of the different
entities from different KGs. The two properties (assumption) we are exploiting for the learning are
mentioned in 4.3.

Dist;j = Cf — Cf

2 Dist::
uniquemax __ ef Distiy
1 :n:O e:BZDiStij + 2720 e,BzDiStij o eﬁZDiSti]‘
 __ (~uniquemax
Sij = Coigj )
Tt
S; PN — {Sij | Sij € top N elements of S; row }

Sfopsum _ 2 (51])

Si]'GSiTGpN
topsum
LosSinteraction = Z(LO — Si )
All

7. Experimental Setup

7.1. Training Procedure

In this section, we elaborate on the training procedure used for experiments. We utilize Adam
optimizer to train the proposed system with dynamic learning (exponentially and linear decreasing)
rate setting. The learning rate is initialized to 0.001 and reduced to 10™4 in 25 thousand iterations with
an exponentially decaying rate. After 25 thousand iterations, we operated a linearly decaying learning
rate as equation 6. A total of one million iterations with 16 batch sizes is used to train the proposed
system.

The learning stage also includes the L2 regularisation with a scale of 104 to limit the overfitting
in the trained system.

iterationCount

_1n—4 _
Ir=10"* x (1.01 5200000

) (6)

7.2. Evaluation Metric

Consistent with the previous works in literature, Hits@k (k=1, and 10) and mean reciprocal rank
(MRR) are selected as the evaluation metrics in this paper. Hits@k calculates the proportion of correctly
aligned entities ranked in the top-k list. Here, we focus on Hits@1 and Hits@10. MRR measures the
average of the reciprocal ranks of the results. Outstanding methods should have higher Hits@k and
MRR. Furthermore, during training 30-70% split of dataset is applied by consciously taking out the
data of floor#4 to be used during validation.

7.3. Experiments Breakout

The empirical study for this work is designed on three different experiments shown in Figure 12.
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Figure 12. Layout of all experiments and the components used in them.

Experiments are designed from a systematically logical perspective. First, we conduct a
comparative analysis of the baseline model with our proposed model. Next, we evaluate the
performance of the proposed model in contrast to all state-of-the-art methods. Lastly, we conducted an
ablation study on the proposed model to study its architecture’s effectiveness. The selection of data set
in each set of experiments is also mentioned in Figure 12.

8. Proof of Concept and Results

8.1. Improvement on SoTA (BERT_INT vs Proposed)

As discussed earlier, the proposed model is designed on a similar model of BERT-INT but
with modifications explained in subsections 5.2, and 6.3. We extended the experiments of language
encoder-based graph alignment conducted by Tang et al. [40] by using the same DBP15K dataset and
similar BERT embedding setting and evaluate the results using the same parameters of HitRatio@K
(K=1,10) and MRR. The modification of the language encoder is in updating the input arrangement
shown in Figure 8b. The effectiveness of this input arrangement is also verified by incorporating
it within BERT-INT as shown in Table 4). The table’s first row exemplifies the BERT-INT model’s
performance improved when the proposed input arrangement is used. The second row states the
results of the proposed model using only the proposed language encoder with the modified input
arrangement. The results clearly show that even minor improvements beat the BERT-INT model.
Moreover, we compare the complete proposed model (language + structural encoder) with all the
state-of-the-art results presented in [40] in Table 5, and it is seen that the performance of the proposed
model is highest among all by approximately 1.2-2.7%.

Table 4. Experiment A results of the performance of supervised entity alignment by BERT_INT method
and its variant with proposed input arrangement on DBP15K dataset.

Method DBP15KZH7EN DBPlSK}A,EN DBP15KFR7EN
HR1 |HR10 [MRR| HR1 |HR10|MRR |HR1 |HR10 | MRR
BERT-INT| 96.8 | 99.0 | 97.7 | 96.4 | 99.1 | 97.5 |99.2| 99.8 | 99.5
Proposed | 97.1 | 99.1 | 97.9 | 96.9 | 99.1 | 97.9 |99.3 | 99.8 | 99.6
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Table 5. Experiment B results on the overall performance of graph alignment on DBP15K dataset by all
SoTA and proposed models.

Method DBPlSKZH_EN DBPlSK]A_EN DBPlSKFR_EN
HR1|HR10|MRR| HR1 |[HR10|MRR| HR1 [HR10| MRR
Only use graph structures by variant TransE

MTransE  |30.8| 61.4 | 364|279 | 57.5 | 349 | 244 | 55.6 | 33.5
IPTransE  |40.6| 73.5 | 51.6 | 36.7 | 69.3 | 47.4 | 33.3 | 68.5 | 45.1
BootEA 629|848 | 70.3 | 622 | 854 | 70.1 | 653 | 87.4 | 73.1
RSNs 50.8| 74.5 | 59.1 | 50.7 | 73.7 | 59.0 | 51.6 | 76.8 | 60.5
TransEdge |73.5| 919 [80.1 719|932 | 795|710 | 941 | 79.6
MRPEA 68.1| 86.7 | 748 | 65.5 | 859 | 72.7 | 67.7 | 89.0 | 75.5

Only use graph structures by variant TransE plus GCN
MuGNN 494 | 84.4 | 61.1 | 50.1 | 85.7 | 62.1 | 495 | 87.0 | 62.1
NAEA 65.0| 86.7 | 720 | 64.1 | 873 | 71.8 | 67.3 | 89.4 | 75.2
KECG 47.8| 835 |59.8 49.0 | 84.4 | 61.0|48.6| 851 | 61.0
AliNet 53.9| 82.6 | 62.8 | 549 | 83.1 | 64.5|55.2 | 852 | 65.7

Only use graph structures by variant TransE plus adversarial learning
AKE 325(703 | 449|259 | 663 | 39.0 | 28.7 | 68.1 | 41.6
SEA 4241 79.6 | 54.8 | 385 | 783 | 51.8 | 40.0 | 79.7 | 53.3

Combine graph structures and side information by variant GCN
GCN-Align 413 | 744 | 549 | 399 | 745 | 54.6 | 37.3 | 745 | 53.2
GM-Align [67.9| 78.5 - | 740 87.2 - 1894952 -
RDGCN 70.8 | 84.6 | 74.6 | 76.7 | 89.5 | 81.2 | 88.6 | 95.7 | 91.1
HGCN 72.0| 857 | 76.8 | 76.6 | 89.7 | 81.3|89.2 | 96.1 | 917

DGMC 772|897 | - |774190.7 | - |89.1]| 967 -
Combine graph structures and side information by multi-view learning
JAPE 412|745 | 49.0 | 363 | 685 | 47.6 | 324 | 66.7 | 43.0
MultiKE 50.9| 57.6 | 53.2 1393 | 489 | 42.6 | 639 | 71.2 | 66.5
JarKA 70.6| 87.8 | 76.6 | 64.6 | 85.5 | 70.8 | 70.4 | 88.8 | 76.8
HMAN 8711987 | - 935|994 | - |973|99.8 -

CEAFF 795| - - | 8.0 - - 1964 | -
BERT_INT |96.8| 99.0 | 97.7 | 96.4 | 99.1 | 97.599.2 | 99.8 | 99.5

graph structural encoder in conjunction with language encoder
Proposed [98.1] 99.2]98.3[97.2]99.2 [98.1[99.4] 99.8 [ 99.6

8.2. Quantitative Analysis with Ablation Study

To thoroughly investigate the effectiveness of proposed encoders, we conduct an ablation study
on the proposed model. The dataset used for these experiments is the synthesized ontology dataset
created from the Smart Building dataset of Kaggle as discussed in subsection 6 using SOSA and SSN
ontology graphs. In Table 6, the first set of experiments are on Synthetic SOSA - KG SSN in which
MMR score is highest when both encoders are used. For experiments of Only KG Structure, the
Interaction Model is pre-trained on known ontology and uses the direct input embedding vector
for the corresponding entity.However, the MRR score is lowest when only the structural encoder is
used, which indicates that enforcing the graph structural information might have excluded all those
alignment matches that were correct with respect to the language encoder but incorrect as per the
ontology. A similar pattern is observed in other experiment sets as well. The last key observation
is that the highest HRs” and MRR scores are achieved when KG SOSA - Synthetic SSN dataset was
used. Our reflection from this is that SSN is a superset of SOSA so the model might have found all the
correct alignments for every token of SOSA. Additionally, all alignment results had to be validated
by annotations hand-picked by a human expert, as no bench-marking ontology alignment dataset
is present. Although these results are subjective to the alignment annotations, they are significantly
important because of their novelty.


https://doi.org/10.20944/preprints202309.1413.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 September 2023 doi:10.20944/preprints202309.1413.v1

20 of 27

8.3. Qualitative Analysis of proposed model

To visualize the alignments, we generate tsne plots of all the entities from both ontologies. First,
we do indexing of all nodes and relations for both SOSA and SSN ontology. Then, lookup tables of
entities are created. Next, we reduce the embedding vectors of all entities onto two-dimensional tsne
plots as shown in Figure 14. Figure 13 demonstrates an alignment pair. Here, we magnify a pair of
adjacent nodes from the alignment plot and follow their index in the lookup tables. We could see
that both nodes were similar across the ontology; hence, they are aligned in the plot with the least
Euclidean distance. Additionally, for further analysis of all the entities, the tsne plots are used to
curate heat-maps by calculating the Euclidean distance map shown in Figures 15 and 16. These figures
also show the learning of the model throughout iterations from 1000 to 62000th iteration. The heat
maps show one-to-one mapping between pairs of SOSA and SSN nodes and relations, respectively.
In the beginning, the model has almost learned no mapping, but the processing of loss functions
continues; it starts identifying similar entities and those with lesser Euclidean distances between them
are highlighted with lighter colors on the map.
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Figure 13. Ontology graph alignment pair demonstration. Entities in color blue represent SOSA graph
nodes, and green represents SSN graph nodes. For clarity and ease in visualization, all SSN nodes in
the alignment plot are shifted three spaces to the left.
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Figure 14. tsne plots generated from vectors of SOSA and SSN entities. An entity can be a node (subject

or object) or a relation.


https://doi.org/10.20944/preprints202309.1413.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 September 2023 doi:10.20944/preprints202309.1413.v1

22 of 27

(a) Sub-Sub DistMap at 1000 iteration (b) Sub-Sub DistMap at 18000 iteration

(c) Sub-Sub DistMap at 35000 iteration (d) Sub-Sub DistMap at 62000 iteration

Figure 15. DistMap between Different Nodes of SOSA and SSN KGs
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(a) Rel-Rel DistMap at 1000 iteration (b) Rel-Rel DistMap at 18000 iteration

(c) Rel-Rel DistMap at 35000 iteration (d) Rel-Rel DistMap at 62000 iteration
Figure 16. DistMap between Different Relations of SOSA and SSN KGs

9. Conclusion and Future Work

This paper is the first work to conceptualize ontology alignment for the Industrial Internet of
Things (IloT) domain based on a natural language processing (NLP) model for alignment among
heterogeneous devices. The proposed model characterizes the ontology meta-data as side information
and structure as the schema and learns vector embeddings for all entities and relations. Extensive
experiments on both cross-lingual and cross-ontology tasks consistently outperform the baseline model
BERT_INT model by 1.2-2.7% in HR and MRR scores. However, these results have few pertinent
limitations. First, the ontology dataset had to be synthesized due to the lack of publicly available
real-world smart sensor datasets. While language translation undoubtedly has a solid foundation,
and large datasets are available for human language ontology, this is not true for the IIoT domain.
Secondly, there is no bench-marking dataset available for establishing ground truth for IoT ontology
alignment; therefore, the alignments between SSN and SOSA ontology were annotated by human
experts. Although the results may be subjective to the alignment annotations, they are significantly
important because of their novelty. Lastly, the ontology graphs of IoT ontology for sensor devices
are very concise by design. The number of unique entities (nodes + relations) and triples in them are
maximum in the hundreds as opposed to language ontology, which usually has thousands of nodes.
For instance, SSN ontology has 125 unique entities, and SOSA has 75, so the accuracy results of correct
alignments in Table 6 are as per the limited number of unique entities. Moreover, all the ontology for
sensor devices is designed for similar types of devices functionally but with varying design principles.


https://doi.org/10.20944/preprints202309.1413.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 September 2023 doi:10.20944/preprints202309.1413.v1

24 of 27

Nevertheless, when the model learns language embeddings, it is easier to find nodes across ontologies
that have labels with similar semantic meanings. To remove any such biases, the structure encoder is
utilized to impose the context by correctly aligning only those nodes with matching labels and similar
in-graphs (neighbors).

Table 6. Experiments C results of the ablation study using proposed ontology alignment model on
smart building dataset with Unsupervised learning Approach).

Model Used Result in Percentage
Language Encoder | Structural Encoder
(side information) | (KG structure) HR@1 HR@10| MRR
Synthetic SOSA - KG SSN
v v 876 | 943 | 89.5
X v 819 | 88.6 | 828
v X 838 | 924 | 848
KG SOSA - KG SSN
v v 809 | 914 | 8338
X v 752 | 88.6 | 771
v X 77.1 | 905 | 79.0
KG SOSA - Synthetic SSN
v v 884 | 94.7 | 90.3
X v 70.1 76.9 | 73.2
v X 825 | 932 | 843

There are still several directions this work can potentially grow into. A generalized IoT ontology
designed for any IoT device (beyond sensors) can be tested for ontology alignment to make an even
stronger ablation study. One such ontology is SAREF [51], and it has approximately 1097 unique
triples, the maximum among any IoT ontology. The next potential future work is that the paucity of
benchmarking datasets can be resolved by conducting crowdsourcing ground truth to build validation
data for IoT ontology alignment and annotations. There are public platforms such as BioPortal [52] for
medical researchers that provide annotations for disparate biomedical ontologies. Inspired by this, IoT
ontological resources must also be publicly provided for research to remove the bottlenecks of dataset
limitations. Last but not least, as this work can be considered a step towards enabling translation
between heterogeneous IoT sensor devices, the proposed model can be extended to a translation
module in which, based on the ontology graphs of any device, the model can interpret the messages
transmitted from that device. This idea is at an abstract level as of now and needs extensive efforts and
empirical study to realize it fully.
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