
Article

Not peer-reviewed version

Deep Ontology Alignment using

Natural Language Processing

Approach for Automatic M2M

Translation in IIoT

Saleha Javed 

*

 , Muhammad Usman Joyia , Fredrik Sandin , Marcus Liwicki , Hamam Mokayed

Posted Date: 21 September 2023

doi: 10.20944/preprints202309.1413.v1

Keywords: Ontology Alignment; M2M Translation; Self-Attention, Deep Learning; Industry 4.0; Industry 5.0

IIoT; Knowledge Graph; Industrial Internet of Things; Smart City

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1380223
https://sciprofiles.com/profile/972022
https://sciprofiles.com/profile/2039693


Article

Deep Ontology Alignment Using Natural Language
Processing Approach for Automatic M2M Translation
in IIoT

Saleha Javed 1,* , Muhammad Usman 2 , Fredrik Sandin 1 , Marcus Liwicki 1 , and Hamam

Mokayed 1

1 Lulea University of Technical, 97187 Lulea, Sweden
2 Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad,

Chiniot-Faisalabad Campus, Chiniot 35400, Pakistan;

* Correspondence: saleha.haseeb@ltu.se

Abstract: The technical capabilities of modern Industry 4.0 and Industry 5.0 are rather vast

and growing exponentially daily. The present-day Industrial Internet of Things (IIoT) combines

manifold underlying technologies that require real-time interconnections and communications among

heterogeneous devices. Smart cities are established with sophisticated designs and control for

seamless Machine-to-Machine (M2M) communication to optimize resources, costs, performances,

and energy distribution. All the sensory devices within a building interact to maintain a sustainable

climate for residents and intuitively optimize the energy distribution to optimize energy production.

However, it encompasses quite a few challenges for devices that lack compatible and interoperable

designs. Conventional solutions are restricted to limited domains or rely on engineers to design and

deploy translators for each pair of ontologies. This is a costly process in terms of engineering efforts

and computational resources. The issue persists that a new device with a different ontology must be

integrated into an existing IoT network. We propose a self-learning model that can determine the

taxonomy of devices given their ontology meta-data and structural information. The model finds

matches between two distinct ontologies using the Natural Language Processing (NLP) approach for

learning linguistic contexts. Then, by visualizing the ontology network as a knowledge graph, it is

possible to learn the structure of the meta-data and understand the device’s message formulation.

Finally, it can align entities of both ontology graphs similar in context and structure. Furthermore, the

model performs dynamic M2M translation without requiring extra engineering or hardware efforts.

Keywords: Ontology Alignment; M2M Translation; Self-Attention, Deep Learning; Industry 4.0;

Industry 5.0 IIoT; Knowledge Graph; Industrial Internet of Things; Smart City

1. Introduction

The speed of technology development is changing with automation and digitization efforts,

bringing forward several challenges [1]. The backbone of Industry 4.0 and 5.0 was industrial

automation systems that enabled sustainable development [1] and innovative functionalities access to

the cyber world [2] known as Cyber-Physical Systems (CPS). CPS is a conjunction between physical

systems and digital microsystems that feature a tight integration for modeling, computation, and

communication. Both Cyber-physical systems and the IoT have been merging in the industrial

digitization process, further known as the Industrial Internet of Things (IIoT). The focus of such merges

has been reshaping society [2] by bridging the physical divides via digital connectivity through IIoT

and digitization applications. The applications such as automation of manufacturing processes [3,4],

agriculture for precision fertilization programs [5], smart farming, condition monitoring of wind

turbines [6] and farms, smart factories [7], and smart building and cities [8], and many others. By

digitizing physical processes, these applications have lowered overheads associated with human

dependency, cost, time, and computations. While these solutions aim to achieve connectivity across

their respective Service-Oriented Architectures (SOA) when it comes to developing a dynamically
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scalable and enhanced Software-as-a-Service (SaaS) architecture that can incorporate machine learning

models as a service (MLaaS) [9], such systems are still in their infancy. Additionally, this problem

becomes more challenging and crucial in the environmental settings of Industry 5.0. This application

domain is the hub of devices with different responsibilities working together for the same business

objective. Despite these devices having homogeneous or heterogeneous underlying structures,

these devices need to comprehend, translate, and interact with each other to converge toward the

business goal. Thus, IIoT automation cannot be confined to the digitization of connections, and

this development is subject to interoperability challenges. In particular, Machine Learning (ML)

approaches are considered to automate costly engineering processes. For example, challenges related

to the automatic translation of messages transmitted between heterogeneous devices are investigated

using supervised and unsupervised machine learning approaches [10].

We conceive the IIoT device ontology as the device’s language, corresponding to the language

encoder component. The schema of the ontology graph contains all the information about classes

and sub-classes hierarchy and their connection, which we convert into the structural encoder. Then,

the names of classes and relations are considered labels mapped as side information in the ontology

graph and as sentence tokens in the NLP paradigm. Finally, the relations indicate which classes are

interconnected, and these constitute the structural question set. To the best of our knowledge, no other

work in literature has proposed this mapping, and so there is a knowledge vacuum about the efficient

use of such synergies. Existing techniques of entity alignment are based on different approaches for

integrating structural information, which overlook that even if a node pair has similar entity labels,

they may not belong to the same ontological context, and vice versa. To address these challenges, a

model based on modifying the BERT-INTeraction model on graph triples is developed. The developed

model is an iterative model for the alignment of heterogeneous IIoT ontologies, enabling alignments

within nodes and relations. When compared to the state-of-the-art BERT INT, on the DBPK15 language

dataset, the developed model exceeds the baseline model by an error rate of 2.1%. This work can be

considered as a step towards enabling translation between heterogeneous IoT sensor devices; therefore,

the proposed model can be extended to a translation module in which, based on the ontology graphs

of any device, the model can interpret the messages transmitted from that device.

We focus on designing an ontology alignment model as a first step toward developing automatic

dynamic translation between IIoT heterogeneous devices. The following summarizes our main

contributions:

• Thoroughly investigate how to enable automatic alignment across heterogeneous IIoT sensor

devices using NLP NLP-based learning model in conjunction with entity alignment for the

ontology graph.
• Explore the use of an ontology graph as the main metric in a representation learning problem for

interpreting the metadata of sensory devices.
• The first significant novelty herein is highlighting three knowledge gaps: 1) lack of research

attention on modeling ontology alignment approaches for IIoT heterogeneous devices, 2) scarcity

of literature on fusing NLP methodologies with IIoT domain, and limitations of datasets for IIoT

ontology alignment.
• The second prime novelty of this work is synthesizing a model as a solution for the IIoT ontology

alignment task. The model significantly exceeds the state-of-the-art results on the DBP15K

languages dataset by a wide margin. This work is the first of many to conceptualize a mapping

between NLP and IIoT domains by utilizing knowledge graph modeling for the device’s ontology.

The paper is outlined into eight sections, first, a brief background is given in Section 2 of the various

domains used in constituting the proposed solution. Section 3 presents the important state-of-the-art

of each domain. Then, a detailed discussion on highlighted knowledge gaps is given in Sections

3.4. Section 4 elaborates on the problem formulation followed up by Section 5 with the complete

architecture of the proposed solution followed by a use case explanation for the proposed system
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discussed in section 6. Then, Section 7 states the used experimental setup and a proof of concept with

results is presented in Section 8. Lastly, all the reflections and concluding remarks are discussed in

Section 9.

2. Background

Numerous models with varying strengths and weaknesses have been established for

cross-language translation, but none have been designed for the IIoT automatic ontology paradigm.

This section outlines the different dimensions that go into synthesizing the proposed solution. The first

dimension is about the IIoT ontology’s constitution and role from an industrial perspective. The next

dimension addresses the importance of interoperability in the context of ontologies and the popularity

of ML for modernizing Industry 4.0 applications and leading to Industry 5.0 smart society applications.

2.1. Interoperability in Context of IIoT Ontologies

With the development of embedded CPSs and vast computational resources, IIoT has grown

significantly, resulting in a massive increase in the number of IoT devices. According to recent figures,

the number of linked IoT devices globally has reached 15.14 billion in 2023. This forecast is expected

to quadruple to around 50 billion IoT devices by 2030 [11]. IIoT is a hub for heterogeneous and

homogeneous devices that needs seamless integration and connectivity. The interoperability issue

is the challenge of enabling communication to occur despite varying assumptions about the data

model, message format, and device ontology [12]. Figure 1 presents an example scenario of ontology

interoperability. In the past decade, researchers have shown keen interest in developing ML-based

automatic translation models for solving interoperability problems, but the lack of datasets and

complexity constraints of real-world applications have been hindering this synergy so far.

Figure 1. Explanation of heterogeneity in device ontology. The figure illustrates an example

scenario of a smart building with multiple interconnected sensors installed outside and

inside. Few devices follow the Semantic Sensor Network (SSN) ontology; the rest follow the

Sensor-Observation-Sampling-Actuator (SOSA) ontology. All the devices that follow SSN ontology

can intercommunication, and similarly, devices that follow SOSA ontology can successfully

intercommunicate. However, a device following SSN ontology can not communicate with the device

following SOSA [13].
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2.2. Representation Learning for Sensor Devices

The performance of ML algorithms is highly dependent on the type of data representation used.

As a result, a major percentage of the effort is spent on feature engineering to execute ML algorithms

and build data transformations that result in a representation of the data suited for effective learning.

[14]. Data of sensor devices is conceptualized in several technical layers of SOAs. It includes the

device’s ontology and protocol, data format, message payload schema, message transmission protocol,

and more. However, this work emphasizes the importance of device ontology for identifying and

disentangling the messages received from a heterogeneous device. Given any device’s messages and its

ontology, the representation learning model can map vector representation of low-dimensional space

for each entity in the ontology. The vectors of every unique entity are also unique, called embedding

vectors. There are three major methods in which the model can perform representation learning: 1)

supervised in which input labels and mapping of input X to output Y are given; 2) semi-supervised

in which a mix of labeled data and unlabelled data is used; and 3) unsupervised in which no prior

information of labels or mapping onto output is given. The present IoT sensor ontology domain

literature has examples of supervised and semi-supervised approaches as discussed in Section 3 but

lacks unsupervised learning-based methods.

3. Related Work

The work presented herein is primarily in the context of the industrial Internet of things

paradigm. We address the translation problem amongst heterogeneous sensory devices with respect

to the ontology followed for installing the network in a smart building. Here, all the devices are

interconnected for regulating and optimizing energy consumption such as temperature control (heating

or cooling), humidity, or climate. Each subsection presents the important state-of-the-art of various

domains that contribute to hypothesizing the research question and its solution.

3.1. Sensor Ontologies

Sensors are a major source of data available on the Web today. While sensor data may be published

as mere values, searching, reusing, integrating, and interpreting these data requires more than just

the observation results. The captured information with its context is equally important for properly

interpreting these values as information about the studied feature of interest, such as for a heater, the

observed property, the specific locations and times at which the temperature was measured, and a

variety of other information. This work takes into account only the ontology that is standardized,

integrated by, and aligned with W3C semantic web technologies [15] and Linked Data [16], which are

key drivers for creating and maintaining a global and densely interconnected graph of data. Intelligent

sensors should be seamlessly, securely, and trustworthy interconnected to enable automated high-level

smart applications. Smart interconnection of sensors, actuators, and devices enables the development

of solutions required for smart city- and CPS industrial solutions [17].

Ontologies can enrich sensory data and ensure interoperability by providing an abstraction layer

[18]. The ontology defines the semantic model and contextual information of the devices [19]. Figure

2 shows the essential components of an ontology design. W3C has developed several benchmark

ontologies based on IoT standards, such as Smart Onto Sensor, SSN, SAN, IoT-Lite, SOSA, and others,

adopted by industrial manufacturers globally. The authors present [18] a timeline of the evolution of all

base-level ontologies developed from 2002 till 2018. The authors divide the timeline into before and after

SSN ontology as it was the first ontology with complete design patterns for sensory devices network.

Ontologies are continually evolving, compiling ever more space for reasoning and simplification.
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Figure 2. Basic Components of an Ontology. There are three types of nodes here: 1) subject node, 2)

object node, and 3) literal node. Both subject and object nodes belong to a class of the knowledge

domain for which the ontology is being developed. The edges between nodes represent the relations,

and the third literal node has a data fact in them.

SOSA provides a lightweight core for SSN as shown in Figure 3, and aims at broadening the

target audience and application areas that can make use of Semantic Web ontologies. At the same time,

SOSA [20] acts as a minimal interoperability fall-back level, i.e., it defines those common classes and

properties for which data can be safely exchanged across all uses of SSN [21], its modules, and SOSA.

Figure 3. SSN and SOSA Ontology Core structure.

3.2. M2M Translation Problem in IIoT Domain

Devices often use different communication protocols, standards, and data representation

languages, which create interoperability and M2M translation challenges. Existing literature contains

different perspectives to address the M2M translation problem. Application protocol-level solutions

focus on pre-defined functions or annotations as proxies and XML schemes to enable translation
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between sender and receiver devices [22,23]. However, such solutions fail regarding automated CPSs

that cannot rely on hand-crafted predefined schemes for every possible pair of devices. Moreover,

protocol-level proxies exclude the possibility of utilizing data in the messages to draw intuitive

interpretations about the device’s protocol. Data-driven methods [24] exploit the data augmentation

approach to analyze patterns and features in device data messages and infer important knowledge that

can generate interpretations between heterogeneous devices. However, to the best of our knowledge, a

successful automatic translation model based specifically on industrial IoT ontologies has not been

developed. The major challenge in developing such learning-dependent solutions is the unavailability

of large datasets, which is a massive hindrance.

3.3. Knowledge Graph Alignment

Knowledge graph alignment aims to link equivalent entities across different knowledge graphs.

ML models in conjunction with data-driven methods for automatic semantic translations, have recently

been trending among researchers [25]. Deep learning (DL) models such as deep alignment for ontology

[26] design solutions among parallel ontologies by aligning entities of different ontologies have been

developed independently but for the same domain. [26] introduced word vector-driven descriptions

for defining the entities (nodes) and matching tasks on DBpedia dataset of ontologies and Schema.org.

Recently, a large number of Knowledge Graphs (KGs) have been established for supporting AI

applications, such as Freebase [27] and YAGO [28]. Entity alignment seeks to discover identical entities

in different KGs, such as the English entity Thailand and its French counterpart Thaılande. To tackle

this important problem, literature has attempted with the embedding-based entity alignment methods

[29–31]. These methods jointly embed different KGs and put similar entities at close positions in a

vector space, as shown in Figure 4, where the nearest neighbor search can retrieve entity alignment.

Figure 4. Illustration of entity alignment between two heterogeneous KGs. Each KG has its embedding

vector space for its entities, i.e., circles represent nodes, and squares represent relations. The entities

from both graphs that have similar embedding in the vector space overlap in the figure.

Due to its effectiveness, embedding-based entity alignment has drawn extensive attention recently.

KGs have evolved to be the building blocks of many intelligent systems. They provide fundamental

tools for NLP tasks [32] of language representation through BERT, knowledge reasoning [33],

recommend systems using Knowledge Graph Convolutional Networks (KGCN) [34], Corss-lingual

entity alignment (CEA) based on generative adversarial network (GAN) [29] with semi-supervised

learning. Despite the importance, KGs are usually costly to construct and naturally suffer from

incompleteness [35]. Table 1 summarizes a brief survey of recent renowned graph alignment methods
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on the account for whether they are scalable for IIoT domain or not. The analysis is focused on the

utilization of both language and structure information. It is evident that most of the models heavily

rely on pre-aligned entities to be used during the training stage.

Table 1. Summarizing herein recent and renowned state-of-the-art methods for Graph Alignment task.

Ref.
Learning
Approach

Entity
Matching

Domain Datasets Used
Structure
Information
Used?

Scaleable for IIoT Domain?

[36] supervised
MTransE based
alignment

Languages WK31-15k X yes, but only if benchmark datasets is present

[37] supervised
GCN based
entity embeddings

Languages DBP15K X
yes, but only if all pre-aligned entities are
included in training data

[38] supervised
Topic entity graph
using GCN

Languages DBP15K ✘
no, as each entity in ontology graph represents
a topic and topic grouping will fail here

[39] unsupervised
TransE based predicate
alignment for attribute
character embeddings

Locations
DBP, GEO,
YAGO

X
no, as structure information is used only to learn
the relations labels and not the interconnections

[40] supervised
BERT based Interaction
Model

Languages DBP15K ✘
yes, but only with unsupervised learning approach
and inclusion of structure information

[41] semi-supervised BERT for Triadic KG Languages DBP15K ✘
no, as ontology graphs can not be realized as
triadic KG with all independent entities

3.4. Challenges to Adaptation and Integration

For the foreseeable future, ML models will play a prime role in automating the current industrial

applications into intelligent solutions. However, as the previous sections highlight, research in

translation among IoT devices and automatic language translation is so far working as isolated areas,

whereas their synergy can bring bigger benefits to both. The following sub-section presents the

important gaps this work is based on and crisp indications for plausible merges to bridge those gaps.

3.4.1. State-of-The-Art Limitations

We conducted a query search in three renowned search engines, i.e., Google Scholar, SCOPUS,

and Web of Science, to investigate all the existing research publications for the given problem. The

main metric of this analysis is the number of publications per year.

The search queries are designed sequentially, in which the first search query is on publications for

M2M translation but only within the Industry 4.0 paradigm. The second query is narrowed down to the

same problem but specifically addressed by ML approaches. And, lastly, the third query investigates

the number of publications that have focused on ML models for solving ontology alignment problems.

Table 2 presents all the statistics of search results, and the numbers indicate the lack of attention

towards ML approaches for solving M2M translation problems, specifically using alignment tasks.

Table 2. Details of the search queries in different search engines and search results in the number of

publications in every year. Search in Google Scholar is on "Entire Article", and SCOPUS is on "Title,

Abstract, Keywords" and Web of Science is only on "Abstract".

Year
Query 1: M2M Translation

& Industry 4.0
Query 2: M2M Translation &

Industry 4.0 & ML
Query 3: M2M Translation & Industry 4.0

& ML & Ontology Alignment
Google Scholar SCOPUS Web of Science Google Scholar SCOPUS Web of Science Google Scholar r SCOPUS Web of Science

2010 10200 95 76 9180 0 0 232 0 0

2011 11600 89 85 10900 0 0 229 0 0

2012 12900 101 94 12800 0 0 231 0 0

2013 13400 116 93 14500 0 0 233 0 0

2014 15000 220 140 16100 0 2 202 0 1

2015 16000 344 306 17100 2 3 196 0 1

2016 18500 751 500 17500 21 8 211 0 0

2017 16600 1432 957 16600 49 24 201 1 0

2018 22900 2495 1501 19600 146 77 206 1 1

2019 16800 4886 2242 16700 329 128 210 1 1

2020 29700 5577 2514 22900 496 148 236 1 1

2021 37300 6706 3118 26700 791 225 143 1 0

2022 45120 8954 3118 22950 977 225 298 2 0

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 September 2023                   doi:10.20944/preprints202309.1413.v1

https://doi.org/10.20944/preprints202309.1413.v1


8 of 27

3.4.2. Lack of NLP fusion into IIoT Domain

Dynamic translation between machines has stressed the need to establish automated systems

that enable effective real-time communication across heterogeneous devices. The literature is

unquestionably packed with NLP solutions for various industrial applications, including language

translation (chatbots); most focus on a pre or post-process analysis of processes and datasets. On the

other hand, IIoT network activities are ongoing and greatly diverse, and there is a crucial need to

deploy automatic translators for dynamic, seamless communication between heterogeneous devices.

Using NLP models for that purpose is a considerable gap in the study. As seen in Table 2, researchers

place premium attention on language datasets, even regarding graph alignment approaches. This

work is the first of many efforts to conceptualize the mapping and validate the proposed solution as a

proof of concept. To understand how mapping is implemented in this study, let us dissect the NLP

domain into its main components: a language encoder, a structural encoder, language sentences and

tokens, and a structural question set.

3.4.3. Limitations of Dataset for IIoT Ontology Alignment

Considerable efforts have been made, and will continue for the foreseeable future, to develop a

variety of datasets for computer-based linguistic technology applications [42]. The research community

recognizes that only data can pave the way for linguistic technology. Hence, the number of publicly

accessible NLP datasets has grown significantly as researchers experiment on new tasks, larger models,

and novel benchmarks [43]. Datasets are essential in empirical NLP studies since they are utilized to

evaluate proposed models and their bench-marking. Supervised datasets with predefined annotations

are required to train and fine-tune the models, and large unsupervised datasets are required for

pre-training and language modeling. DBP15K [44], YAGO [45] and DWY100K [46] are the widely used

massive benchmark datasets of knowledge bases for alignment tasks, with high alignment accuracy

of existing embedding-based methods. Each consists of approximately millions of KG triplets with

thousands of entities and relations.

Whereas there is plenty of research attention and datasets for cross-linguistic alignment tasks,

both are increasingly scarce for industrial IoT ontology alignment. The IoT ontology graphs are concise

since they are curated for specific industrial use cases and devices. As seen in Table 3, fewer nodes and

graph triples than the language datasets’ knowledge bases.

Table 3. Statistics of the empirical NLP datasets used for entity alignment for two domains: a)

contemporary language-based b) IIoT domain utilizing both structure and language-based alignments

Dataset Entities Relations Triples

Domain: Language-based

DBP15KZH−EN
Chinese 66,469 2,830 153,929
English 98.125 2,317 237,674

DBP15KJA−EN
Japenese 65,744 2,043 164,373
English 95,680 2,096 233,319

DBP15KFR−EN
English 66,858 1,379 192,191
French 105,889 2,209 278,590

Domain: IIoT Language + Structure-based

Smart Appliance REFerence (SAREF) 37 20 1097

Semantic Actuator Network (SAN) 17 17 271

Semantic Sensor Network (SSN) 105 40 767

Sensor, Observation, Sample, & Actuator (SOSA) 70 23 487

4. Problem Formulation

This section contains two key definitions designed for the address problem domain. Then, we

present the problem definition targeted in this work.
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4.1. Definition 1: Knowledge Graph and Structure Encoding

We generate KGs of two forerunner ontologies by W3C regulations: SSN and SOSA as KG1 and

KG2. A graph is denoted as KG = (H, T, R) where R is a set of all relations entities, H is a set of all head

entities, and T is a set of all tail entities. Each edge represents a relation r ǫ R, a subject node represents

h ǫ H, and an object node represents t ǫ T. In the structural encoder of the proposed model, there are

four representation vectors: DS
H , DS

R, DS
T , and DS. Vector DS

H represents the path length from a head

entity, DS
R represents the path length from the relation, DS

T represents the path length from a tail entity,

and DS which encodes the structural information of the underlying KG. Entity pairs between KG1 and

KG2 are denoted as:

• for pair of head entities g(h, h’) where h ǫ H ǫ KG1 and h’ ǫ H’ ǫ KG2

• for pair of relation entities g(r, r’) where r ǫ R ǫ KG1 and r’ ǫ R’ ǫ KG2

• for pair of tail entities g(t, t’) where t ǫ T ǫ KG1 and t’ ǫ T’ ǫ KG2

4.2. Definition 2: Mapping to BERT Language Model

The metadata, labels of nodes, and relations are conceived as the language of the IoT ontology.

The language encoder of our proposed model is similar to the original BERT encoder [47]. Sets of

H, R, and T along with DS vectors are encoded into BL encoder on which we apply concatenation to

generate a final language representation vector as CL. KG1 will have a matching node in KG2 if a node

ei has a similar embedding vector e′i in the common latent space of both KGs.

4.3. Problem Definition: Ontology Graph Alignment

The problem herein is manifold. Given two ontology graphs KG1 and KG2 provided they both

are designed for IIoT sensor devices, the prime task is to learn alignment across the heterogeneous

ontology graphs. For which, we first use language BERT encoder (BL) on the ontology dataset and

further process it by a two-layer Multi-layer Perceptron (MLP) network that learns the final language

representation vector as CL. Next, we use the structural encoder to transform the language vectors

into a binary vector DS to capture the triplets and in-graph information with respect to neighboring

nodes. Then, the interaction model is used to learn the alignment across the graphs with two baseline

assumptions:

1. An entity from a KG1 can only match with only one entity in KG2. The term C
uniquemax
ij ensures

this property in two different KGs.

2. If an entity ei form KG1 aligned with entity ej of KG2 then their neighbour will also have similar

properties. The term S
topsum
i ensures this property in the neighbor of ei and ej.

Lastly, a Lossinteraction function is defined to learn the maximal similarity based on the side and

structural information of different entities from both KGs.

5. Proposed Conceptual Design

5.1. Overview of the proposed system

There are two forms of information available in a KG. The first is language information, and the

second is structural information. The BERT-based encoders have already proved their effectiveness

for language models [47]. Recently, the BERT-INT, a BERT encoder, has also been used for the entity

alignment task in KGs [40]. But BERT-INT [40] only used language information with a BERT encoder

to generate an encoded vector, which is further encoded by a multi-layered-perceptron (MLP) network

to yield the final representative vector for a given query.

Indeed, the structural information is used in its interaction model at the last stage, but considerably,

structural information is not covered effectively by BERT-INT. In this work, we present a model-based
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solution for Ontology Alignment using a modified BERT-INT model on graph Triplets that encodes the

available information in KGs with or without language pieces of information. Figure 5 illustrates the

overview of the model starting from two heterogeneous sensor devices that have different ontologies.
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Figure 5. Complete overview of the proposed model with abstract components.
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5.2. Improvements on BERT_INT Model

The following sections present in detail every component of the proposed model. However, here

is a summary of proposed improvements to the state-of-the-art model:

• Modified input arrangement is used in this work to utilize the full potential of a pre-trained

BERT model.
• The improved input arrangement can be used for experiments of aggregation models that are

designed using both language and structural encoders.
• For integrating the structural encoder and incorporating side information with an improved

BERT-INT model, the structural question-set reasoning block is designed and implemented with

an in-graph approach.
• Interaction model is changed by proposing an iterative method of calculating similarities between

entities over each iteration.
• Interaction model is designed for an unsupervised learning approach as in the case study used

for the work, where no alignment pairs are available for KG1 and KG2.

6. Ontology Dataset Construction for System Use Case

We select two ontologies SOSA and SSN as discussed in subsection:3.1 as these are the forerunner

ontology curated by W3C on the account of IoT sensor devices. For generating ontology instances

strictly on SOSA and SSN ontology graphs we follow the W3C standardized examples of Appartment

134 [48] and utilize the RDF (Resource Description Framework) files containing graphs with SOSA

and SSN core terms. The example is designed for temperature sensor devices and an actuator in which

the devices log their temperature values for corresponding time stamps. Although this gives us a

complete graph of both ontology for sensor devices for the training of machine learning model we

require a much bigger number of ontology instances.

Therefore, we refer to Kaggle’s dataset of Smart Building Data [49] synthesized by Hong et.al [50].

This dataset was collected from 255 sensor time series, instrumented in 51 rooms on four floors of the

Sutardja Dai Hall(SDH) at UC Berkeley. The dataset can be utilized for experiments relating to IoT,

sensor fusion networks, or time-series tasks. It is also suitable for both supervised and unsupervised

learning tasks. The building infrastructure is that each room includes five types of measurement sensor

data as shown in Figure 6. In the following sections, we discuss the complete workflow the proposed

system for the language encoding and ontologies structure construction.

Figure 6. Smart Building System Dataset collected over a period of one week from Friday, August 23,

2013 to Saturday, August 31, 2013. The PIR motion sensor is sampled once every 10 seconds and the

remaining sensors are sampled once every 5 seconds. Each file contains the timestamps (in Unix Epoch

Time) and actual readings from the sensor.
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6.1. Language Encoder

The language encoder of the proposed work is similar to the BERT-INT with modification as

discussed in section 5.2 and generates the language representative vector for each entity and relation

in the graph represented in Figure 7. Then, the language vectors of the head, relation, and tail of the

triplet are concatenated to form the input vectors for the structural BERT encoder shown in Figure

7b. The corresponding embeddings generated by the structural BERT are further diverged into three

separate vectors by another MLP network to yield the final representative vector for the respective

triplet’s head, relation, and tail.

(a) Encoding Structure (A)

BERT Encoder (Structure) 

Get Language Vector OR Direct Input Embedding 

Triplet 

Head Rel Tail 

Triplet 

Head Rel Tail 

Triplet 

Head Rel Tail 

C C C 

MLP 

CH
S 

CR
S 

CT
S 

BS 

(b) Encoding Structure (B)

Figure 7. Different BERT Encoders used in the proposed model.

The original BERT encoder [47] uses sentence-1, and sentence-2 input arrangement as shown in

Figure 8a. The same input arrangement is utilized by most of the methods that utilize the pre-trained

BERT model [47]. But the BERT-INT [40] does not use this input organization and uses a very different

arrangement shown in Figure 8b. Therefore the utilization of the full potential of a pre-trained BERT

model is questionable. In contrast, the input arrangement of the proposed language encoder as

represented in Figure 8c is very similar to the original BERT encoder. Here only the input arrangement

is updated and everything else remains the same as BERT-INT. The representation generated by the

language BERT encoder (BL) is further processed by a two-layered MLP network which yields the final

language representation vector as CL.

(a) BERT (b) BERT-INT (c) Proposed

Figure 8. Different Input Arrangements for BERT Encoder.
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6.2. Structural Encoder

Structural encoder yields output for a given KG as input such that the generated output can

answer all questions related to the structure of the KG as shown in Figure 9. However, there are two

issues with this structural encoder:

1. How to represent the complete KG as input?
2. What should be the questions set that capture all structural information of KG?

Figure 9. structural Encoder Block

Processing the complete KG as input for very large KGs is not computationally feasible, so initial

work tries to generate the embedding vectors for the different components of KG (such as head

[subject], relations, and tail [object]). Generating an embedding vector for a component of KG requires

contextual information, but acquiring all the contextual information of a node or a relation is complex.

Therefore, most existing works treat all neighbors within a specific path length as the context of the

targeted node. Besides this, these embeddings should provide answers to structural questions. The

most famous approaches are 1) continuous bag of words (CBOW) and 2) Skip-gram for encoding

structural information.

6.2.1. Graph Representation for Structural Encoder

In this work, we represent a graph by its set of triplets. These triplets are passed to the structural

encoder to incorporate the structural information. These triplets do not have any specific order, so we

are not integrated with the positional encoder. Besides this, the set of triplets passed as input at a time

is considered as the in-graph. The components of the original graph that are not part of the in-graph

are considered as care for structural encoder processing. Therefore only the elements of the in-graph

(nodes and relations) will participate, differentiating the entity from having different neighbors and

weakening the issue of aggregating neighbors.

We require a cost function to train the structural encoder such that the generated representation

vectors should incorporate the structural information of the underlying knowledge graph. We can

ensure specific information is encoded into the representation vectors by getting the desired results

from a linear transformation of the vector. The linear transformations shown in Figure 10 convert the

representation vectors into vectors as DS
H , DS

R, DS
T , and DS which represent the structural information

from the knowledge graph.

The vectors generated by the structural encoder should incorporate the structural information.

Therefore a fully connected layer extracts these pieces of information from them. The Figure 10

and equation 1 explain the structural Question-set used in the proposed work. Here the vector CS
R

is transformed into binary vector DS
R where its ith element represents the connectivity of ith entity

with this relationship element. The vectors CS
H , CS

T are transformed into probability vector DS
H , DS

T

respectively where its ith element represents the connectivity score of ith entity with this entity. The gD

is the reference labeled ground truth for the corresponding vector as shown in Equation 1).
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Figure 10. The Structural Question-set for encoding the structural information

g
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
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

e−spl , spl is shortest path length
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g
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{

1, if ithentity is connected with this relation

0, otherwise

g
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













e−spl , spl is shortest path length

between ithentity and this tail

0, no connectivity

gDS = one hot vector for corresponding entity

The cost function for the learning of the parameter of the structural encoder is based on the mean

square error (MRR) function. As we have multiple questions set to encode the structural information,

their corresponding losses are weighted to form the final cost (loss) of the encoder. The cost of

the structural encoder (LS) is given by Equation:1. Here the weight s1, s2, s3 are empirically set as

s1 = 0.3, s2 = 0.5, s3 = 0.3.

LDS
H
=

∑
n
i=0(

g
i DS

H − iDS
H)

2

n

LDS
R
=

∑
n
i=0(

g
i DS

R − iDS
R)

2

n

LDS
T
=

∑
n
i=0(

g
i DS

T − iDS
T)

2

n
(1)

LDS =
∑

n
i=0(

g
i DS − iDS)2

n

LS = s1 × LDS
H
+ s2 × LDS

R
+ s3 × LDS

T
+ LDS

(2)

6.3. Interaction model

The proposed work utilizes the two interaction model learning schemes 1) supervised, and 2)

unsupervised. The supervised interaction model learning scheme is used when we have labeled

data available for training. Whereas the unsupervised interaction model learning does not have any

label data. These two different learning approaches used different interaction models with some

modifications.
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Sij =
CF

ei.C
F
ej

‖CF
ei‖.‖CF

ej‖

Smax
i =

n
max
j=0

(si0, si1, si2, sin)

(3)

6.3.1. Supervised learning of interaction model

The interaction model used in the proposed work is similar to the BERT-INT (refer Figure 11).

Figure 11. The interaction model for alignment of the entities of different graphs

All operations are the same except the calculation of the Smax
i (r BERT-INT). The original BERT-INT

discarded the other similarities except the maximal one. The maximal similarity is given by Equation 3.

Discarding other similarities is a waste of information, and we propose that they should be discarded

after applying a softmax activation (refer Equation 4) across the row similarities. If we have similar

entity pairs from graph 1 and graph 2 then we can maximize the corresponding S
so f tmax
ij and then use

S
so f tmax
ij as the Smax

i for interaction model. But if the pair information is not available (i.e. we don’t

have the proper pairing between the entities) then the Smax
i should be replaced by S

topsum
i which is

calculated by Equation:4. Here N is the number of top elements (having high S
so f tmax
ij ). The value of N

is dynamic in nature and decreases as the learning proceeds. We are decreasing the value of N by one

after each epoch of learning till it becomes one.

Sij =
CF

ei.C
F
ej

‖CF
ei‖.‖CF

ej‖

S
so f tmax
ij =

eα2sij

∑
n
j=0 eα2sij

S
TopN
i = {S

so f tmax
ij | S

so f tmax
ij ∈ top N elements of Si row}

S
topsum
i = ∑

S
so f tmax
ij ∈S

TopN
i

(S
so f tmax
ij )

Lossinteraction = same as BERT-INT

(4)

6.3.2. Unsupervised learning of interaction model

The interaction model used for this scheme is different than the BERT-INT. Here we do not

have the pair alignment information for the entities of KG 1 and KG 2. Therefore we need to reduce

the trainable parameter of the interaction model as there is no validated gradient (corresponding to
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the ground truth label) for parameter learning. The proposed work also does not utilize the dual

aggregation technique for unsupervised learning as we don’t want to use a trainable MLP for final

classification. This new interaction model is defined by the Equation 5. Here as we do not have any

alignment information available so we need to utilize only the implicit information of the different

entities from different KGs. The two properties (assumption) we are exploiting for the learning are

mentioned in 4.3.

Distij = CF
i − CF

j

C
uniquemax
ij =

eβ2Distij

∑
m
i=0 eβ2Distij + ∑

n
j=0 eβ2Distij − eβ2Distij

Sij = C
uniquemax
ei,ej

S
TopN
i = {Sij | Sij ∈ top N elements of Si row}

S
topsum
i = ∑

Sij∈S
TopN
i

(Sij)

Lossinteraction = ∑
All

(1.0 − S
topsum
i )

(5)

7. Experimental Setup

7.1. Training Procedure

In this section, we elaborate on the training procedure used for experiments. We utilize Adam

optimizer to train the proposed system with dynamic learning (exponentially and linear decreasing)

rate setting. The learning rate is initialized to 0.001 and reduced to 10−4 in 25 thousand iterations with

an exponentially decaying rate. After 25 thousand iterations, we operated a linearly decaying learning

rate as equation 6. A total of one million iterations with 16 batch sizes is used to train the proposed

system.

The learning stage also includes the L2 regularisation with a scale of 10−4 to limit the overfitting

in the trained system.

lr = 10−4 × (1.01 −
iterationCount

2500000
) (6)

7.2. Evaluation Metric

Consistent with the previous works in literature, Hits@k (k=1, and 10) and mean reciprocal rank

(MRR) are selected as the evaluation metrics in this paper. Hits@k calculates the proportion of correctly

aligned entities ranked in the top-k list. Here, we focus on Hits@1 and Hits@10. MRR measures the

average of the reciprocal ranks of the results. Outstanding methods should have higher Hits@k and

MRR. Furthermore, during training 30-70% split of dataset is applied by consciously taking out the

data of floor#4 to be used during validation.

7.3. Experiments Breakout

The empirical study for this work is designed on three different experiments shown in Figure 12.
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Figure 12. Layout of all experiments and the components used in them.

Experiments are designed from a systematically logical perspective. First, we conduct a

comparative analysis of the baseline model with our proposed model. Next, we evaluate the

performance of the proposed model in contrast to all state-of-the-art methods. Lastly, we conducted an

ablation study on the proposed model to study its architecture’s effectiveness. The selection of data set

in each set of experiments is also mentioned in Figure 12.

8. Proof of Concept and Results

8.1. Improvement on SoTA (BERT_INT vs Proposed)

As discussed earlier, the proposed model is designed on a similar model of BERT-INT but

with modifications explained in subsections 5.2, and 6.3. We extended the experiments of language

encoder-based graph alignment conducted by Tang et al. [40] by using the same DBP15K dataset and

similar BERT embedding setting and evaluate the results using the same parameters of HitRatio@K

(K=1,10) and MRR. The modification of the language encoder is in updating the input arrangement

shown in Figure 8b. The effectiveness of this input arrangement is also verified by incorporating

it within BERT-INT as shown in Table 4). The table’s first row exemplifies the BERT-INT model’s

performance improved when the proposed input arrangement is used. The second row states the

results of the proposed model using only the proposed language encoder with the modified input

arrangement. The results clearly show that even minor improvements beat the BERT-INT model.

Moreover, we compare the complete proposed model (language + structural encoder) with all the

state-of-the-art results presented in [40] in Table 5, and it is seen that the performance of the proposed

model is highest among all by approximately 1.2-2.7%.

Table 4. Experiment A results of the performance of supervised entity alignment by BERT_INT method

and its variant with proposed input arrangement on DBP15K dataset.

Method DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

HR1 HR10 MRR HR1 HR10 MRR HR1 HR10 MRR

BERT-INT 96.8 99.0 97.7 96.4 99.1 97.5 99.2 99.8 99.5

Proposed 97.1 99.1 97.9 96.9 99.1 97.9 99.3 99.8 99.6
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Table 5. Experiment B results on the overall performance of graph alignment on DBP15K dataset by all

SoTA and proposed models.

Method DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

HR1 HR10 MRR HR1 HR10 MRR HR1 HR10 MRR

Only use graph structures by variant TransE

MTransE 30.8 61.4 36.4 27.9 57.5 34.9 24.4 55.6 33.5
IPTransE 40.6 73.5 51.6 36.7 69.3 47.4 33.3 68.5 45.1
BootEA 62.9 84.8 70.3 62.2 85.4 70.1 65.3 87.4 73.1
RSNs 50.8 74.5 59.1 50.7 73.7 59.0 51.6 76.8 60.5
TransEdge 73.5 91.9 80.1 71.9 93.2 79.5 71.0 94.1 79.6
MRPEA 68.1 86.7 74.8 65.5 85.9 72.7 67.7 89.0 75.5

Only use graph structures by variant TransE plus GCN

MuGNN 49.4 84.4 61.1 50.1 85.7 62.1 49.5 87.0 62.1
NAEA 65.0 86.7 72.0 64.1 87.3 71.8 67.3 89.4 75.2
KECG 47.8 83.5 59.8 49.0 84.4 61.0 48.6 85.1 61.0
AliNet 53.9 82.6 62.8 54.9 83.1 64.5 55.2 85.2 65.7

Only use graph structures by variant TransE plus adversarial learning

AKE 32.5 70.3 44.9 25.9 66.3 39.0 28.7 68.1 41.6
SEA 42.4 79.6 54.8 38.5 78.3 51.8 40.0 79.7 53.3

Combine graph structures and side information by variant GCN

GCN-Align 41.3 74.4 54.9 39.9 74.5 54.6 37.3 74.5 53.2
GM-Align 67.9 78.5 - 74.0 87.2 - 89.4 95.2 -
RDGCN 70.8 84.6 74.6 76.7 89.5 81.2 88.6 95.7 91.1
HGCN 72.0 85.7 76.8 76.6 89.7 81.3 89.2 96.1 91.7
DGMC 77.2 89.7 - 77.4 90.7 - 89.1 96.7 -

Combine graph structures and side information by multi-view learning

JAPE 41.2 74.5 49.0 36.3 68.5 47.6 32.4 66.7 43.0
MultiKE 50.9 57.6 53.2 39.3 48.9 42.6 63.9 71.2 66.5
JarKA 70.6 87.8 76.6 64.6 85.5 70.8 70.4 88.8 76.8
HMAN 87.1 98.7 - 93.5 99.4 - 97.3 99.8 -
CEAFF 79.5 - - 86.0 - - 96.4 - -
BERT_INT 96.8 99.0 97.7 96.4 99.1 97.5 99.2 99.8 99.5

graph structural encoder in conjunction with language encoder

Proposed 98.1 99.2 98.3 97.2 99.2 98.1 99.4 99.8 99.6

8.2. Quantitative Analysis with Ablation Study

To thoroughly investigate the effectiveness of proposed encoders, we conduct an ablation study

on the proposed model. The dataset used for these experiments is the synthesized ontology dataset

created from the Smart Building dataset of Kaggle as discussed in subsection 6 using SOSA and SSN

ontology graphs. In Table 6, the first set of experiments are on Synthetic SOSA - KG SSN in which

MMR score is highest when both encoders are used. For experiments of Only KG Structure, the

Interaction Model is pre-trained on known ontology and uses the direct input embedding vector

for the corresponding entity.However, the MRR score is lowest when only the structural encoder is

used, which indicates that enforcing the graph structural information might have excluded all those

alignment matches that were correct with respect to the language encoder but incorrect as per the

ontology. A similar pattern is observed in other experiment sets as well. The last key observation

is that the highest HRs’ and MRR scores are achieved when KG SOSA - Synthetic SSN dataset was

used. Our reflection from this is that SSN is a superset of SOSA so the model might have found all the

correct alignments for every token of SOSA. Additionally, all alignment results had to be validated

by annotations hand-picked by a human expert, as no bench-marking ontology alignment dataset

is present. Although these results are subjective to the alignment annotations, they are significantly

important because of their novelty.
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8.3. Qualitative Analysis of proposed model

To visualize the alignments, we generate tsne plots of all the entities from both ontologies. First,

we do indexing of all nodes and relations for both SOSA and SSN ontology. Then, lookup tables of

entities are created. Next, we reduce the embedding vectors of all entities onto two-dimensional tsne

plots as shown in Figure 14. Figure 13 demonstrates an alignment pair. Here, we magnify a pair of

adjacent nodes from the alignment plot and follow their index in the lookup tables. We could see

that both nodes were similar across the ontology; hence, they are aligned in the plot with the least

Euclidean distance. Additionally, for further analysis of all the entities, the tsne plots are used to

curate heat-maps by calculating the Euclidean distance map shown in Figures 15 and 16. These figures

also show the learning of the model throughout iterations from 1000 to 62000th iteration. The heat

maps show one-to-one mapping between pairs of SOSA and SSN nodes and relations, respectively.

In the beginning, the model has almost learned no mapping, but the processing of loss functions

continues; it starts identifying similar entities and those with lesser Euclidean distances between them

are highlighted with lighter colors on the map.

Figure 13. Ontology graph alignment pair demonstration. Entities in color blue represent SOSA graph

nodes, and green represents SSN graph nodes. For clarity and ease in visualization, all SSN nodes in

the alignment plot are shifted three spaces to the left.
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Figure 14. tsne plots generated from vectors of SOSA and SSN entities. An entity can be a node (subject

or object) or a relation.
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(b) Sub-Sub DistMap at 18000 iteration
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(d) Sub-Sub DistMap at 62000 iteration

Figure 15. DistMap between Different Nodes of SOSA and SSN KGs
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(c) Rel-Rel DistMap at 35000 iteration
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(d) Rel-Rel DistMap at 62000 iteration

Figure 16. DistMap between Different Relations of SOSA and SSN KGs

9. Conclusion and Future Work

This paper is the first work to conceptualize ontology alignment for the Industrial Internet of

Things (IIoT) domain based on a natural language processing (NLP) model for alignment among

heterogeneous devices. The proposed model characterizes the ontology meta-data as side information

and structure as the schema and learns vector embeddings for all entities and relations. Extensive

experiments on both cross-lingual and cross-ontology tasks consistently outperform the baseline model

BERT_INT model by 1.2-2.7% in HR and MRR scores. However, these results have few pertinent

limitations. First, the ontology dataset had to be synthesized due to the lack of publicly available

real-world smart sensor datasets. While language translation undoubtedly has a solid foundation,

and large datasets are available for human language ontology, this is not true for the IIoT domain.

Secondly, there is no bench-marking dataset available for establishing ground truth for IoT ontology

alignment; therefore, the alignments between SSN and SOSA ontology were annotated by human

experts. Although the results may be subjective to the alignment annotations, they are significantly

important because of their novelty. Lastly, the ontology graphs of IoT ontology for sensor devices

are very concise by design. The number of unique entities (nodes + relations) and triples in them are

maximum in the hundreds as opposed to language ontology, which usually has thousands of nodes.

For instance, SSN ontology has 125 unique entities, and SOSA has 75, so the accuracy results of correct

alignments in Table 6 are as per the limited number of unique entities. Moreover, all the ontology for

sensor devices is designed for similar types of devices functionally but with varying design principles.
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Nevertheless, when the model learns language embeddings, it is easier to find nodes across ontologies

that have labels with similar semantic meanings. To remove any such biases, the structure encoder is

utilized to impose the context by correctly aligning only those nodes with matching labels and similar

in-graphs (neighbors).

Table 6. Experiments C results of the ablation study using proposed ontology alignment model on

smart building dataset with Unsupervised learning Approach).

Model Used Result in Percentage

Language Encoder
(side information)

Structural Encoder
(KG structure)

HR@1 HR@10 MRR

Synthetic SOSA - KG SSN

X X 87.6 94.3 89.5

✘ X 81.9 88.6 82.8

X ✘ 83.8 92.4 84.8

KG SOSA - KG SSN

X X 80.9 91.4 83.8

✘ X 75.2 88.6 77.1

X ✘ 77.1 90.5 79.0

KG SOSA - Synthetic SSN

X X 88.4 94.7 90.3

✘ X 70.1 76.9 73.2

X ✘ 82.5 93.2 84.3

There are still several directions this work can potentially grow into. A generalized IoT ontology

designed for any IoT device (beyond sensors) can be tested for ontology alignment to make an even

stronger ablation study. One such ontology is SAREF [51], and it has approximately 1097 unique

triples, the maximum among any IoT ontology. The next potential future work is that the paucity of

benchmarking datasets can be resolved by conducting crowdsourcing ground truth to build validation

data for IoT ontology alignment and annotations. There are public platforms such as BioPortal [52] for

medical researchers that provide annotations for disparate biomedical ontologies. Inspired by this, IoT

ontological resources must also be publicly provided for research to remove the bottlenecks of dataset

limitations. Last but not least, as this work can be considered a step towards enabling translation

between heterogeneous IoT sensor devices, the proposed model can be extended to a translation

module in which, based on the ontology graphs of any device, the model can interpret the messages

transmitted from that device. This idea is at an abstract level as of now and needs extensive efforts and

empirical study to realize it fully.
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