Pre prints.org

Article Not peer-reviewed version

Ad-Hoc Lanzhou Index

Akbar Ali, Yilun Shang , Darko Dimitrov , Tamas Réti

Posted Date: 28 September 2023
doi: 10.20944/preprints202309.1978.v1

Keywords: topological index; chemical graph theory; ad-hoc Lanzhou index; Lanzhou index; forgotten
topological coindex

E E Preprints.org is a free multidiscipline platform providing preprint service that
3 is dedicated to making early versions of research outputs permanently
|

available and citable. Preprints posted at Preprints.org appear in Web of
dr Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/222300
https://sciprofiles.com/profile/584548
https://sciprofiles.com/profile/3174763
https://sciprofiles.com/profile/3177624

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 September 2023 doi:10.20944/preprints202309.1978.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Ad-Hoc Lanzhou Index

Akbar Ali !, Yilun Shang 2, Darko Dimitrov >* and Tamas Réti 4

1 Department of Mathematics, University of Hd'il, P.O. Box 2240, Hd'il, Saudi Arabia; ak.ali@uoh.edu.sa
2 Department of Computer and Information Sciences, Northumbria University, Newcastle NE1 85T, UK;
yilun.shang@northumbria.ac.uk

Faculty of Information Studies, 8000 Novo Mesto, Slovenia; darko.dimitrovl1@gmail.com

4 Obuda University, Bécsiut, 96/B, H-1034 Budapest, Hungary; reti.tamas@bgk.uni-obuda.hu

*  Correspondence: darko.dimitrovl1@gmail.com

Abstract: This paper initiates the study of the mathematical aspects of the ad-hoc Lanzhou index.
If G is a graph with the vertex set {xy, - - - , x,, }, then the ad-hoc Lanzhou index of G is defined by
Lz(G) = Y" , di(n — 1 — d;)?, where d, represents the degree of the vertex x;. Several identities for
the ad-hoc Lanzhou index, involving some existing topological indices are established. The problems
of finding graphs with the extremum values of the ad-hoc Lanzhou index from the following sets
of graphs are also attacked: (i) set of all connected ¢-cyclic graphs of a fixed order, (ii) set of all
connected molecular ¢-cyclic graphs of a fixed order, (iii) set of all graphs of a fixed order, (iv) set of
all connected molecular graphs of a fixed order.
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1. Introduction

Graph invariants are regarded as the properties of a graph that the graph isomorphism
preserves [1]. Real-valued graph invariants are often known as topological indices [3]. We mention
[2-5] as sources for terminology and notations related to (chemical) graph theory.

One of the most extensively researched topological indices is the first Zagreb index, which
originally appeared in [6]. For a graph G, its first Zagreb index is often represented by M;(G) and is
defined (for example see [7]) as

M@= ¥ @)P= ¥ (4+d),

teV(G) rs€E(G)

where d; represent the degree of the vertex ¢ in G and E(G) is the set of edges of G. The forgotten
topological index [8] (which is sometimes referred to as the F-index, see also [9]) is another index that
first appeared in [6]. The F-index of a graph G is represented by F(G) and is defined [8] as follows.

FG) = ¥ @)= ¥ (@) +(d)?).

teV(G) rs€E(G)

Vukicevi¢ et al. [10] studied (chemically as well as mathematically) the following linear
combination of the indices M;(G) and F(G) for a graph of order n and referred it to as the Lanzhou
index:

Lz(G) = (n —1)M;(G) — F(G).

The Lanzhou index can be rewritten as

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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where G is the complement of G and di represent the degree of ¢ in G. The Refs. [11-14] provide some
recent extremal results regarding the Lanzhou index.

If TI(G) is a topological index of a graph G, then TI(L(G)) is known as its reformulated version
[15,16]. Here, L(G) means the line graph of G. Motivated by the concept of reformulated topological
indices [15,16], we consider ad-hoc topological indices: if TI(G) is a topological index of a graph G,
then we call TI(G) as the ad-hoc version of TI(G), where G represents the complement of G. Thus,
applying the idea of ad-hoc topological indices on the Lanzhou index gives the ad-hoc Lanzhou index,
represented by Lz. The ad-hoc Lanzhou index [10], for a graph G, is defined as

[2(G)= Y di(d)* = Lz(G).
teV(G)

If |V(G)| = n, thend; = n — d; — 1 and thus

L2(G)= Y (&) (n—di—1) and Lz(G)= Y di(n—di—1)"
teV(G) teV(G)

The ad-hoc Lanzhou index was examined in [10] for predicting the octanol-water partition coefficient
of nonane isomers and it was found that this index performs better than both the well-known first
Zagreb index and the F-index.

A graph with n vertices is called an n-order graph. Molecular graphs are those with the maximum
degree at most 4. A connected ¢-cyclic graph of order # is a connected n-order graph with § +7n — 1
edges. For ¢ =0, 1,2, and 3, a connected ¢-cyclic graph is also known as a tree, connected unicyclic
graph, connected bicyclic graph, and connected tricyclic graph, respectively.

In this paper, several identities for the ad-hoc Lanzhou index, involving some existing topological
indices are established. The problems of finding graphs with the extremum values of the ad-hoc
Lanzhou index from the following sets of graphs are also attacked: (i) set of all n-order connected
¢-cyclic graphs (with a particular emphasis on unicyclic graphs, trees, bicyclic as well as tricyclic
graphs), (ii) set of all n-order connected molecular ¢-cyclic graphs, (iii) set of all n-order graphs, (iv) set
of all n-order connected molecular graphs.

2. Identities

For a graph G, its forgotten topological coindex (or simply the F-coindex) is represented by F and

is defined [17,18] by
FO) = Y (@) +@)?).
st¢E(G)

Actually, the F-coindex is equal to the Lanzhou index for every graph, see for example [19]. Generally,
if Yster(c) f(8(5),8()) is a topological index of a graph G then the corresponding coindex is defined as
Yster(c) f(8(s),8(t)), where g maybe the degree, the eccentricity, or any other (real-valued) parameter
defined on the vertices of G and f is a real-valued symmetric function. Note that the Lanzhou index
can be rewritten as
12G) = ¥ (d:(C)d(T) +di(G)di(G)),
steE(G)

where ds(G) and ds(G) indicate the degrees of the vertex s € V(G) in G and G, respectively. When
there is no chance of confusion, we drop “(G)” from the notation ds(G). Applying the definition of a
coindex to the Lanzhou index yields the Lanzhou coindex Lz:

st¢E(G)
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Consequently, we have

Lz(G) = Y, (ds(G)ds(G) +di(G)di(G)) = Lz(G).
steE(G)
The following result is immediate from the above.

Observation 1. For every graph G, its Lanzhou coindex is equal to the Lanzhou index of G (which is termed as
the ad-hoc Lanzhou index of G), which is equal to the F-coindex of G; that is,

Lz(G) = Lz(G) = Lz(G) = F(G). (1)

Because of (1), the identity given in the following proposition is already known (see Equation
(3.6) in [18]); however, here we provide its more simple proof.

Proposition 1. For any graph G with size m and order n, the following identity holds
Lz(G) = 2(n —1)*m + F(G) — 2(n — 1)M;(G).
Proof. Note that the formula for Lz can be rewritten as

G)= ¥ ((n-di=1)*+(n—d;~1)). @)

rs€E(G)

Expanding the squared terms in (2) and then making use of the definitions of F and M;, we get the
desired identity. O

By Proposition 1, every upper bound on M; provides a lower bound on Lz and every lower
bound on M; gives an upper bound on Lz; many bounds on M; can be found in [7]. Also, from
the aforementioned proposition, it is concluded that every lower/upper bound on F provides a(n)
lower /upper bound on Lz, respectively; several bounds on F-index can be found in [20].

Proposition 2. For any graph G with size m and order n, the following identity holds
Lz(G) =2(n —1)%m — Lz(G) — (n —1)M;(G)

Proof. The identity given in Proposition 1 gives the desired result after utilizing the following
well-known trivial formula:
Lz(G) = (n —1)M;1(G) — F(G).

O

By Proposition 2, every upper bound on Lz provides a lower bound on Lzand every lower bound
on Lz gives an upper bound on Lz; considerable number of bounds on Lz can be found in [20].
3. Extremal Results Concerning ¢-Cyclic Graphs

If st € E(G) and rt ¢ E(G) thenlet G — st 4 rt denote the graph formed from G by removing the
edge st and adding the edge rt. We begin this section by providing the following simple but useful
lemma that will be used frequently in the remaining part of this paper:

Lemma 1. Suppose that G is an n-order graph containing r,s, t, such that rt ¢ E(G) and st € E(G). If
G* =G — st +rt, then

Lz(G) — Lz(G*) = ((n — 4) +3(n — dy — ds)) (dy — ds + 1),
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where d, = d,(G) and ds = ds(G).
Proof. Utilizing the definition of fi, we get
Lz(G) — Lz(G*) =d,(n — d, — 1)* + ds(n — ds — 1)?
—(dr+1)(n—dy —2)* — (ds — 1) (n — ds)?
=((n—4)+3(n—d, —ds))(dy — ds + 1).
O

Lemma 2. Let G be an n-order graph containing a path rst such that rt ¢ E(G) and the edge rs does not lie on
any cycle of length 3, where d,(G) > ds(G) and n > 5. If G* = G — st + rt, then

Lz(G) > Lz(G*).
Proof. By Lemma 1 we get
Lz(G) — Lz(G*) = ((n —4) +3(n — d, — d)) (dr — ds + 1), ©)

where d, = d,(G) and ds; = ds(G). Since the edge rs does not lie on any cycle of length 3, we have
n —d, —ds > 0 and thus under the given constraints, Equation (3) gives

Lz(G) — Lz(G*) > 0.
O

Now, we provide the first extremal result involving the minimum possible value of Lz for trees.

Theorem 1. In the set of all n-order trees, with n > 5, only the star graph S, possesses the lowest value of Lz;
the mentioned lowest value is (n — 1)(n — 2)2.

Proof. Let T be a tree possessing the lowest value of Lz in the set of all n-order trees. Suppose on the
contrary that T # S,,. Then A(T) # n — 1. Consider a path rst of T such that d,(T) > ds(T). If T* is
the graph deduced from T by dropping st and inserting rt, then by Lemma 2 we have

Lz(T) > Lz(T*),
a contradiction. Also, by elementary computations, one has
Lz(Sn) = (n = 1)(n - 2)%
O

Next, we pay attention to deriving extremal results involving the minimum possible value of Lz
for connected {-cyclic graphs. For this, we require the next two results.

Lemma 3. If G is an n-order connected ¢-cyclic graph, rs is an edge of G and -y is the number of common
neighbors of sand r, then d, +ds <n+vy <n+¢.

doi:10.20944/preprints202309.1978.v1
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Proof. Let & be the number of those neighbors of r that are neither adjacent to s nor equal to s; see
Figure 1. Let B be the number of those neighbors of s that are neither adjacent to r nor equal to r. Then
dr=a+7v+1landds =B+ 7+ 1 Notethata + f+ v <n—2and v < ¢. Thus,

dr+ds=a+B+2y+2<n+y<n+¢.

Figure 1. The structure of the graph G used in Lemma 3.

Lemma 4. Suppose that G is a connected &-cyclic graph of order n containing a path rst such that rt ¢ E(G),
where d,(G) > ds(G) and n > 3¢ + 5. If G* = G — st +rt, then

Lz(G) > Lz(G*).

Proof. In the following, we take d, = d,(G) and ds = ds(G). By Lemma 3, the inequality n — d, — ds >
—¢ holds and thus under the given constraints, Lemma 1 yileds

Lz(G) — Lz(G*) =((n —4) +3(n — d, — ds)) (dr — ds +1) > 0.
0

Corollary 1. Let G be a graph possessing the lowest value of Lz in the set of all n-order connected &-cyclic
graph, with n > 3¢ + 5. Then A(G) =n — 1.

Proof. Contrarily, assume that A(G) # n — 1. Take a vertex r € V(G) satisfying d,(G) = A(G). Then

G has a path rst such that rt € E(G). Take G* = G — st 4 rt. By Lemma 4, it holds that Lz(G) > Lz(G*),
which is not possible because of the definition of G. Thus, A(G) =n—1. O

Next, we provide extremal results involving the minimum possible values of Lz for connected
¢-cyclic graphs when1 < ¢ < 5. For ¢ = 1,2,...,5, connected ¢-cyclic graphs are also known as
unicyclic, bicyclic, tricyclic, tetracyclic, and pentacyclic.

Note that there are only two (non-isomorphic) 4-order connected unicyclic graphs and both of
them have the same value of Lz. Thus, in the next theorem, we find the extremal graphs of order at
least 5.

Theorem 2. The graph generated from the n-order start graph S, by inserting an edge, solely possesses the
lowest value of Lz in the set of all n-order connected unicyclic graphs, for every n > 8. Forn = 7,6,5, the
extremal graphs are depicted in the first row, second row, third row of Figure 2, respectively.
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e

Figure 2. The graphs possessing the lowest value of Lz in the set of all 7-order connected unicyclic
graphs, forn =5,6,7.

Proof. Since there is only one n-order unicyclic graph of maximum degree n — 1 for every n > 8§,
the desired conclusion follows from Corollary 1 for n > 8. Lemma 2 implies that if G is a graph
possessing the least value of Lz in the set of all n-order connected unicyclic graphs, with n > 5, then
the number of pendent vertices in G becomes n — 3. Simple calculations yield the desired conclusion
forn=5,6,7. O

For n > 5, denote by B,(ll) (111,112, 13, a) the n-order bicyclic graph shown in Figure 3, where 177 +
2+ 13 +1s =n—4withy; > 54 > 0and 7, > 13 > 0. Also, for n > 5, denote by B,(f) (11, 12,113, 4, 15)
the n-order bicyclic graph shown in Figure 4, where 1 +#2 + %3 + 174 + 15 = n — 5 with 7 >

max{1a,13,14} and i7; > 0 forevery i € {1,2,...,5}.

Figure 3. The n-order bicyclic graph B,s1>(111,172,113,174), where 171 + 72 + 173 + 74 = n—4 > 1 with

M =14 =>0and iy >3 > 0.

n2 n3

Figure 4. The n-order bicyclic graph B,(lz) (1, 12,113,114, 115), where y + 12 + 113+ 4+ 155 =n—5>0

with 71 > max{#2, 43,44} and 17; > O for every i € {1,2,...,5}.


https://doi.org/10.20944/preprints202309.1978.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 September 2023 doi:10.20944/preprints202309.1978.v1

7 of 19

Theorem 3. Considering the family of all n-order bicyclic connected graphs having n > 11, only the graph
Bﬁll) (n —4,0,0,0) possesses the lowest value of Lz

Proof. Let B, be an n-order connected bicyclic graph, with n > 11. If A(B,) # n — 1 then Corollary 1
implies that B, cannot possess the lowest value of Lz in the set of all n-order connected bicyclic graph.

If A(B,) =n—1thenB, € {Br(,l) (n—4,0,0,0), B (0,0,0,0,n —5) }. By elementary calculations, we
verify that the inequality

TE(B,(}) (n—4,0, o,o)) < E(B,(f) (0,0,0,0,1 — 5))
holds for n > 11. Hence, for every n > 11, it holds that
Lz(By) > Lz(B{" (n — 4,0,0,0)) whenever B, # B\ (n — 4,0,0,0).

O

Next, we characterize the graphs possessing the lowest value of Lz from the set of graphs
mentioned in Theorem 3 for 5 < n < 10.

Theorem 4. Let By, be an n-order connected bicyclic graph with n > 8 such that the cycles of By, do not share
any edge and A(By,) # n — 1. Then, By, does not possess the lowest value of Lz in the set of all n-order connected
bicyclic graphs for every n > 8.

Proof. Take a vertex r € V(B,) satisfying d,(B,) = A(By). Since A(B,) # n — 1, the graph B, has
a path rst such that rt ¢ E(B,). Form a new graph B;, from B, by dropping st and inserting rt. By
Lemma 3, the inequality n — d,(B,) — ds(B,) > —1 holds and thus by bearing in mind the given
assumptions and Lemma 1, we get

EE(BH) - ZE(BZ)
:<(n —4) +3(n —d,(By) — dS(Bn))> (d,(Bn) — ds(By) + 1) >0,

which implies that B, cannot possess the lowest value of Lz in the set of all n-order connected bicyclic
graphs for every n > 8. [

Lemma 2 implies the next corollary.

Corollary 2. If G is a graph possessing the least value of Lz in the set of all n-order connected bicyclic graphs,

with n > 5, then G is isomorphic to either BV (1,112,113, m4) OF B (11,M2,M13, M4, 15) (see Figures 3 and 4).

Lemma 5. For the n-order bicyclic graph B,(ll) (11, 12,113, n4) (depicted in Figure 3) with y > 3 > 1 and

n > 6, the following inequality holds:

Lz(BYM (71,12 + 1,13 — 1,44)) < Lz(BY (11, 12, 113, 14 )-

Proof. Since 171 + 172 + 173 + 14 = n — 4 with i1 > 14 > 0, it holds that 77 4 773 < n — 4. Therefore, by
bearing in mind the given assumptions and Lemma 1, we get

Lz(BM (1,12, 13, m14)) — L2(BY (1,12 + 1,73 — 1,174))

=((n—4)+3n—m—m3—4)) (2 —n3+1) > 0.
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Lemma 6. For the n-order bicyclic graph Bﬁll)(m,ﬂz, 0,%4) (depicted in Figure 3) with 1 > 4 > 1 and
6 < n < 10, it holds that

= E(B,gl)(m,nz, 0,74)) ifeithery, =landn =7,

or o = 0and n = 10,

E(Bﬁll)(ﬁl +1,1,0,114 — 1)) S0
< Lz(By’ (1,112,0,14)) ifa > 1and 8 < n < 10,

> E(B1(’l )(771,772,0,774)) ifp =0and 6 <n <9.

Proof. By Lemma 1, we get

Lz(BM (11, 112,0,14)) — L2(BM (i + 1,112,0, 14 — 1))
=((n—4)+3m—m —n1—06)) (1 —na+1). @)

If 17, > 1 then the equation 1 + 2 + 14 = n —4 gives 1 + 14 < n — 5 (and hence n > 7; if n = 7 then
71 = K2 = #4 = 1) and thus under the given constraints Equation (4) yields

=0 ifn=7,

L2(BS" (1,12, 0,1a)) — L2(BSY (1 + 1,112, 0, 74 — 1))
>0 if8<n<10.

If 7o = 0 then 777 4 774 = n — 4 and thus Equation (4) yields the desired conclusion. [
Lemma 7. For the n-order bicyclic graph Br(ll) (111,12,0,0) with n > 6, the following relations hold:
<Lz( ()(771,172,0 0) ifm>nm—1>0andn>38,
= ,LE(B,S )(;71,172, 0,0)) ifeithern =7andn, > 1,
L2(By (n + 1,72 = 1,0,0)) o =1~ 2and g > 1,

> Lz(B, B! )(171,112,0 0)) if eitherny =11 =1landn =6,

oryy <tHp—2andn > 8.

and

< Lz(By (m,12,0,0)) i either iy —1> 1y > Land n > 8,
e or 1 =0, =2andn =6,
Iz —1,17,+1,0,0 _
(B (m T2 ) = Lz(Bfll)(ql,qz,0,0)) if either n =7 and 1 > 1,

ormp=1m =1,

> EE(BS)(m,iyz,0,0)) ormy < nypandn > 8.
Proof. Since #; + 12 = n — 4, we have

Lz(B (171, 12,0,0)) — Lz(BY (111 + 1,72 — 1,0,0)) = (n—7)(m — 12 +2)
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and
L2(By (11,12,0,0)) — Lz(B}" (11 = 1,124+ 1,0,0)) = (n=7)(12 = ),
which yield the desired relations. [J

Lemma 8. For the n-order bicyclic graph B,(12)(171,172, 13,14, 15) (depicted in Figure 4) with n > 7, the

following inequalities hold:
Lz(B (i + 1, 12,13, 14 — L, 175)) < Lz(BYY (71,12, 113, 14, 115)) when g > 1,

Lz(B (m1 + 1,2, 13 — La, 15)) < Lz(BSY (1, 112, 13, 14, 115)) when 13 > 1,

Lz(B (m1 + 1,2 — Ly, ma,15)) < L2(BSY (1, 112, 13, 14, 115)) when 12 > 1,

Proof. Since 1y + 12+ 13+ 14 +15 = n—5with#; > 0fori € {1,2,...,5}, itholds thaty; +7; <n—5
for every j € {2,...,5}. Also, we recall that 77; > max{#y,#3,14}. Therefore, by using the given
constraints, we have

Lz(B (1, 12, 13,14 15)) — Lz(B (1 + 1,52 — 1,13, 14, 115))
=((n—4)+3n—m—m—4)(m—mn+1) >0,

LNZ( 512) (T]l/ 172/ ;73/ 774/ ’75)) - E(Bi(f) (77] + 1/ 772/ 7]3 - 1/ ;74/ 175))

=((n—4)+3(n—m —nz—4))(m —n3+1) >0,

LZ(BEZ)(m,ﬂz, 13,14, 15)) — LZ(BEIZ) (m + 112,113,124 — 1,75))
=((n—4)+3(n—m —ns—4))(m —na+1) > 0.
O

Lemma 9. For the n-order bicyclic graph B,(lz) (111,0,0,0,75), the following relations hold:

< Lz(BP (11,0,0,0,5)) if 1<y <7s+2andn > 8,
= ZE(B,(})(m,o, 0,0,75)) fifeithern=7andn > 1,
Lz(BY (1 —1,0,0,0,75 + 1)) orns+3=1m1>1,

> E(B,(qz) (11,0,0,0,15)) if 51 =115 =0andn =6,

orys +3 <mypandn > 8.
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< Lz(B (11,0,0,0,15)) if iy —2> 15 > Landn > 8,

oryy =015 =1andn =6,
(2 —

LZ(BIS )(771 +1,0,0,0,75=1)) § = LZ(B,(lZ)(Th,O, 0,0,15)) ifeithern =7 andns > 1,
orm—1=mn52=>1,

> iE(BSLZ)(m,O,O,O,%)) if s >1,m—1<mnsandn > 8.

Proof. Since 71 + 15 = n — 5, we have

Lz(B (111,0,0,0,15)) — Lz(BY? (1 — 1,0,0,0,75 + 1)) = (n—7)(5 — 1 +3)
and
Lz(B® (11,0,0,0,75)) — Lz(BY) (111 +1,0,0,0,75 — 1)) = (n—7)(p — 15— 1),

from which the required relations follow. [

Denote by K4 — ¢ the graph deduced from the 4-order complete graph K4 by dropping an edge.
Let B« be the graph formed from K4 — e by connecting & pendent vertices with one vertex having
degree 3 and the rest n — 4 — a pendent vertices with the other vertex having degree 3 (see the graph
placed on the left-hand side in Figure 5), where 0 < a < |(n —4)/2]. Let B;, denote the graph
generated from Ky — e by attaching n — 4 pendent vertices to a vertex of degree 2 (see the graph placed

on the right-hand side in Figure 5). Certainly, B0 = B,(ll) (n—4,0,0,0).

Figure 5. The n-order bicyclic graphs By, (on the left side) and B;; (on the right side), where 0 < a <
[(n—4)/2].

Now, we are in the position to characterize the graphs possessing the lowest value of Lz from the
set of graphs mentioned in Theorem 3 for 5 < n < 10.

Theorem 5. Among all n-order connected bicyclic graphs,

(i) only the graph BY (0,1 — 4,0,0) has the minimum value of Lz for n = 5,

(ii) only the graph B, has the minimum value of Lz for each n € {6,7},

(iii) only the graph B, has the minimum value of Lz for each n € {8,9},

(iv) only the graphs B0, By.1, B2, By:z have the minimum value of Lz for n = 10.

Proof. By Corollary 2, it is enough to investigate the values of Lz for the graphs:

B (1,12, 13,14)  and BE (1,72, 13, 14, 715).
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For n = 5, there are only three such graphs; namely, B,(ql)(n —4,0,0,0), Bﬁ,l)(O,n —4,0,0) and
B,(qz) (0,0,0,0,n —5). Certainly, for n = 5, it holds that
7o (pM _ T2, _ T2(r@ _
Lz(B;’(0,n —4,0,0)) < Lz(B;,’(n—4,0,0,0)) < Lz(B;;”(0,0,0,0,n —5)),
which confirms Part (i) of the theorem.
If G is a graph possessing the least value of Lz in the set of all 6-order connected bicyclic graphs,

then from Lemmas 6, 7, 8 and 9, it follows that G € {G1, Gy, G3, G4 } where the graphs Gy, Gy, G3, G,
are depicted in Figure 6. It holds that

Lz(Gy) < Lz(Gy) = Lz(G3) and Lz(Gi) < Lz(Gy).

e

Figure 6. The 6-order connected bicyclic graphs Gy, Gz, G3 and Gy.

If G is a graph possessing the least value of Lz in the set of all 7-order connected bicyclic graphs,
then from Lemmas 6, 7, 8 and 9, it follows that G € {Hy, Hy, ..., Hg} where the graphs Hy, Hy, ..., Hg,
are depicted in Figure 7. It holds that

Lz(H) < Lz(Hp) = Lz(Hs) = Lz(Hs) = Lz(He)

and
Lz(Hy) < Lz(Hy) = Lz(Hy) = Lz(Hg).

Since G1 = Bg;; and Hy = By, the proof of Part (ii) is completed.

Ry Y
Lo 5 P

Hs Hg
Figure 7. The 7-order connected bicyclic graphs Hy, Hp, ..., Hs.

Theorem 4 states that if B, is an n-order connected bicyclic graph with n > 8 such that the cycles
of B, do not share any edge and A(B,,) # n — 1, then B,, does not possess the lowest value of Lz in the
family of all n-order bicyclic connected graphs having n > 8. Thus, if G is a graph possessing the least
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value of Lz in the set of all n-order connected bicyclic graphs for n € {8,9,10}, then from Lemmas 6
and 7 it follows that

G € {B,,0,Bu2,B;,Bl} whenn € {8,9},
G € {By4, B}, B}} when 1 = 10.
where B} = B,(12) (0,0,0,0,n —5). For n € {8,9,10} the following relations hold:

Lz(Bpg) = n® — n® — 28n + 68
< Lz(B:) = n® -39 +96
< Lz(B) = n® — n® — 24n + 52.

Also, the inequality Lz(B,.») < Lz(B,,) holds for each n € {8,9}. Moreover, the equation Lz(Big,) =
688 holds for every « € {0,1,2,3}. Thus, Parts (iii) and (iv) also hold.
O

Theorem 6. Considering the family of all n-order tricyclic connected graphs having with n > 14, only the
right-most graph in Figure 8 possesses the lowest value of Lz.

PO PP P

Figure 8. The graphs ]y, J», ..., J5, (from left to right, respectively) used in Theorem 6.

Proof. Let G be an n-order connected tricyclic graph, with n > 14. If A(G) # n — 1 then Corollary 1
implies that G cannot possess the lowest value of Lz in the set of all n-order connected tricyclic graph.
If A(G) = n —1 then G is one of the graphs ]y, J5, ..., J5 (from left to right, respectively) shown in
Figure 8. We have

Lz(J1) = (n = 7)(n —2)> +12(n — 3)?,

Lz(],) = (n—6)(n —2)% +8(n — 3)2 +3(n —4)?,
L2(J3) = (n—5)(n —2)% +4(n — 3)> + 6(n —4)?,
Lz(Js) = (n—5)(n —2)* + 6(n — 3)2 + 4(n — 5)%,
Lz(Js) = (n = 4)(n = 2)* +9(n — 4)*.

But, Lz(J;) > Lz(Js5) for every i € {1,2,3,4}. Hence, Lz(G) > Lz(J5) with equality if and only if
G=1J5. O

A non-trivial path P : rq ... 7, of a graph G is said to be a pendent path if
max{dy, (G),d,,(G)} >3 and min{d, (G) dr,(G)} =1,

provided that d,,(G) = 2 when 2 <i < p — 1. By adjacent pendent paths in a graph G, we mean the
pendent paths of G having a common vertex.
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Lemma 10. For n > 5, if G is a connected n-order graph possessing adjacent pendent paths, then there exists a
connected n-order graph G* which has no adjacent pendent paths satisfying |E(G)| = |E(G*)| and

Lz(G) < Lz(G*).

Proof. Let s be the common vertex of two adjacent pendent paths P; and P, in G. Assume that the edge
st belongs to the path P;. Let r € V(G) be the vertex of P, satisfying d,(G) = 1. Take G’ = G — st +rt.
Evidently, |[E(G)| = |E(G")|. Sincen —4 > 0and n — 1 > ds(G) > 3, by Lemma 1 we get

[2(G) — [2(G') = — [n — 4+ 3(n — 1 — 4(G))}(ds(G) — 2) < 0.

If G’ contains no adjacent pendent paths, the lemma holds true. If G’ does contain such paths, we can
perform again the above-mentioned transformation successively until we obtain the desired graph G*
satisfying Lz(G) < Lz(G') < --- < Lz(G*). O

The next result is one of the direct outcomes of Lemma 10.

Theorem 7. In the set of all n-order trees, with n > 5, only the path graph P, possesses the highest value of Lz;
the mentioned highest value is
2(n —2)(n® —5n+7).

Lemma 11. If G is a graph possessing the highest value of Lz among the family of all n-order connected &E-cyclic
graphs admitting n > 5and & > 1, then 5(G) > 1.

Proof. Contrary, let 6(G) = 1. Because of the constraint { > 1, the graph G must contain at least one
pendent path, say P. Let r and s be the terminal end vertices of the path P; particularly, assume that
ds(G) > 3and d,(G) = 1. Let tr € E(G) where t does not belong to the path P. Take G* = G — st + rt.
After the same calculations as made in the proof of Lemma 10, we arrive at Lz(G) < Lz(G*); this
contradicts the definition of G. Thereby, §(G) > 1.

O

The next result is one of the direct outcomes of Lemma 11.

Theorem 8. Considering the family of all n-order unicyclic connected graphs having n > 5, only the cycle
graph Cy, possesses the highest value of Lz; the mentioned highest value is 2n(n — 3)2.

Lemma 12. If G is a graph possessing the highest value of Lz in the family of all n-order connected &-cyclic
graphs admitting n > 2(§ — 1) > 2and n > 8, then A(G) = 3.

Proof. The connectedness of G and the constraint { > 2 guaranty that A(G) > 3. Contrarily, let
A(G) > 4. By Lemma 11, the inequality 6(G) > 2 holds.

Suppose that G has m edges. Represent by N; the number of members of {r € V(G) : d,(G) = i}.
Since { = m — n + 1, the inequality n > 2(¢ — 1) yields n > 2(m — n), which further implies that

A(G) AG) . A©) AG) N, ALS)
DREEI RN R ERYE»E e
i=2 i=2 i=2 i=3 i=3
which guaranties that
A(G)
Ny > Y (i—3)Nj;
i=4

that is, G possess at least one vertex with degree 2.
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Consider a vertex s € V(G) such that ds(G) = A(G) (then certainly we have 4 < ds(G) < n —1).
Consider also a vertex r € V(G) having degree 2. The inequality d;(G) > 4 confirms the existence of
no less than two neighbors of s that are not adjacent to ». We pick from these neighbors of s a vertex
t such that the graph G* = G — st 4 rt is connected. First, by using Lemma 1 and then by using the
inequalities 4 < d;(G) < n—1and n > 8, we get

Lz(G) — Lz(G*) = — [n — 7+ 3(n — 1 —ds(G))](ds(G) —3) < 0,
which is at odds with the definition of G. Therefore we derive that A(G) = 3, as desired. [

Theorem 9. Consider the set G, ¢ of all n-order connected &-cyclic graphs withn > 2(¢ —1) > 2and n > 8.

(). Ifn = 2(& — 1) then only (the) 3-reqular graph(s) possess(es) the highest value of Lz in Gy
(ii). Ifn > 2(& — 1) then only the graphs with (A, d) = (3,2) possess the highest value of Lz in G, ¢.

Proof. Assume G is a graph possessing the highest value of Lz in Gy ¢ Then, by Lemmas 11 and 12, it
holds that 6(G) > 2 and A(G) = 3. Thus, we have

N, + N3 =mn 5)
and
2N; +3N3 =2(n+¢—1). (6)
where N; is defined in the proof of Lemma 12.

(). If n = 2(¢ — 1) then Equations (5) and (6) yield N, = 0 and thus G is 3-regular.
(ii). If n > 2(¢ — 1) then Equations (5) and (6) imply that N, > 0 and N3 > 0, as desired. [

One of the implications of Theorem 9 is the following result.

Theorem 10. Only the graphs with (A,5) = (3,2) possess the highest value of Lz in the family of all n-order
bicyclic connected graphs admitting n > 6. For n = 5, such an extremal graph can be constructed from the star
graph through inserting two non-adjacent edges.

Proof. If n > 8 then the desired conclusion follows from Theorem 9. If n > 5 then by Lemma 11, the
minimum degree of a graph possessing the highest value of Lz in the set of all n-order connected
bicyclic graphs must be at least 2. If # = 5 then there are only three n-order connected bicyclic graphs
with minimum degree at least 2; Figure 9 shows all these three graphs together with the values of Lz.
Now, in the following, assume that n € {6,7}.

30 30 32

Figure 9. All connected bicyclic graphs of order 5 and minimum degree at least 2, together with the
values of Lz.

Assume that G is a graph possessing the highest value of Lz in the family of all n-order connected
bicyclic graphs. Then, by Lemma 11, it holds that §(G) > 2. We claim that A(G) = 3. We note that
there is no bicyclic graph with A = n —1and é > 2 (because n > 6). Thus, from the proof of Lemma
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12 it follows that A(G) = 3. Since n > 2(& — 1) = 2, from the proof of Theorem 9(ii) it follows that
J(G) =2.
O

Another implication of Theorem 9 is the following theorem.

Theorem 11. Only the graphs with (A, ) = (3,2) possess the highest value of Lz in the family of all n-order
tricyclic connected graphs admitting n > 8. For n = 5, such an extremal graph can be constructed from the star
graph through inserting three edges between one fixed pendent vertex and three other pendent vertices (see the
right-most graph in Figure 10). For n € {6,7}, such an extremal graph is the one with minimum degree 2 and
maximum degree n — 1.

Proof. If n > 8 then the desired conclusion follows from Theorem 9. If n > 5 then by Lemma 11, the
minimum degree of a graph possessing the highest value of Lz in the set of all n-order connected
tricyclic graphs must be at least 2. If n = 5 then there are only three n-order connected tricyclic graphs
with minimum degree at least 2; Figure 10 shows all these three graphs and its caption gives the values
of Lz for the mentioned three graphs. Now, in the following, assume that 1 € {6,7}.

@ O &2

Figure 10. All connected tricyclic graphs of order 5 and minimum degree at least 2. The first, second,

and third graphs (from left to right) have the following values of Lz, respectively: 20, 22, and 24.

Assume that G is a graph possessing the highest value of Lz in the family of all n-order tricyclic
connected graphs. Then, by Lemma 11, it holds that §(G) > 2. We claim that A(G) = n — 1. Contrarily,
let A(G) < n — 1. Then from the proof of Lemma 12, it follows that A(G) = 3. Sincen > 2(§ — 1) =4,
from the proof of Theorem 9(ii) it follows that §(G) = 2. Equations (5) and (6) yield N; = n —4 and
N3 = 4. Thus, we have

— N 35 ifn=6,
Lz(G) =4(2n —5) < Lz(G*) = .
48 ifn=7,

a contradiction, where G* is the n-order connected tricyclic graph with maximum degree n — 1 and
minimum degree at least 2 (see Figure 11). [

A &5

Figure 11. The n-order connected tricyclic graphs G* of maximum degree n — 1 and minimum degree

no less than 2, forn = 6,7.
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4. Extremal Results Concerning Molecular {-Cyclic Graphs

Note that the extremal graphs specified in Theorems 9, 10 and 11 are molecular ones, except for
n = 6,7,in Theorem 11. Thus, these graphs remain extremal if one puts the following additional
constraint on the graphs considered in these theorems: maximum degree is at most 4. Also, from the
proof of Theorem 11 we deduce that the graphs with (A, ) = (3,2) are the only graphs possessing
the highest ad-hoc Lanzhou index in the set of all n-order molecular connected tricyclic graphs for
n = 6,7. Next, we turn our attention to the results concerning the minimum ad-hoc Lanzhou index
of molecular (1, m)-graphs (or, equivalently n-order ¢-cyclic graphs). An (n,m)-graph is an n-order
graph of size m. For a graph G, define

Hp(G) =}, f(ds). @)

seV(G)

where f is a real-valued function. Some initial studies, recent developments, and a survey on the
indices of the form (7) can be found in [21,22], [23-25,27], and [26], respectively.

Lemma 13. [28] Consider a molecular (n, m)-graph G, where n > 5. Take
2 1 1 2
Y1 = —2f)+FQ) ~ 3 (@) and = ~3f(1) + F(3) - 2f(4).
If min{4y, Yo} > 0and o /2 < P1 < 24Py, then

HH(G) > 3 (4£() — (&) )+ 2 (F&) — (1)) m

QI =

F@2) = 2F) = 3f@) ifam-n=1 (mod3)

+ f(3)_%f(1)_§f(4) if 2m—n=2 (mod 3)

0 if2m—n=0 (mod 3)

where the equality holds if and only if the degree set of G is

e {1,2,4} and G admits exactly one vertex of degree 2 whenever 2m —n =1 (mod 3);
e {1,3,4} and G admits exactly one vertex of degree 3 whenever 2m —n =2 (mod 3);
o {1,4} whenever 2m —n =0 (mod 3).

Theorem 12. For a molecular (n, m)-graph G, with n > 8, the following holds:

Lz(G) > 2m(n —8)(n —4) + 4n(2n —7)
22n—-9) if2m—n=1 (mod 3)

+44(n—-5) if2m—n=2 (mod3)

0 if 2m—n=0 (mod 3)

where the equality characterization is the same as mentioned in Lemma 13.
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Proof. Consider f(x) = x(n — 1 — x)? with n > 8. Then, we have
2 1
“20) +£2) — 35 4) > 0

1 2
— )+ F3) 5@ >0
and

2 (= 3+ FB) = 7)) < 27(1) + £2) — 3£ < 2(~ 3FQ) + £3) ~ 2F®)).

Thus, by Lemma 13, the desired result follows. [

One of the simple but noticeable consequences of Theorem 12 is the following extremal result
involving molecular trees.

Corollary 3. For every n > 8, in the family of all n-order molecular trees, only the trees having the degree set

() {1,2,4} and admitting exactly one vertex of degree 2, possess the least value of LNNZ, whenn =0 (mod 3);
(i) {1,3,4} and admitting exactly one vertex of degree 3, possess the least value of Lz, when n =1 (mod 3);
(iii) {1,4} possess the least value of Lz, when n = 2 (mod 3).

5. Extremal Results for n-Order Graphs

To prove the first extremal result involving Lz for n-order graphs, we require the following known
result:

Lemma 14. [10] If G is an n-order graph, then

dn(n—1)>3

< <
0< Lz(G) < ——

Here the left equality is true if and only if G € {K,, Ky}, and the right equality is true if and only if n = 1 (
mod 3) and G isa (" 1 - regular graph.

Proposition 3. In the set of all n-order graphs, only the edgeless graph Ky, and the complete graph K, possess

the least value of Lz; the mentioned least value is 0. Also, in the same set with the constraint n =1 (mod 3),
( D

only the -reqular graph possesses the highest value of Lz; the mentioned highest value is
dn(n—1)3
27 '
Proof. Since Lz(G) = Lz(G), by Lemma 14 it is enough to show the existence of at least one
M—regular graph with n vertices satisfying the congruence n = 1 (mod 3). Sincen =1 (mod 3),w
have n — 1 = 3k for some integer k. Thus, if 7 — 1 is even then k must be even and thereby 25! remains
n(n 1) .

even. Eventually, whether n — 1 is even or odd, in either case, we conclude that is even. Also,

it is a well-known observation that there exists at least one t-regular graph with order n whenever
tn is even; this fact implies that there exists at least one u
satisfying n = 1 (mod 3).

O

-regular graph with order = for every n

Next, we pay our attention to the extremum values of Lz for n-order molecular graphs.

Theorem 13. In the set of all n-order molecular graphs, with the constraint n > 14, only 4-reqular graphs
possess the highest value of Lz.
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Proof. Consider an n-order molecular graph G. For every s € V(G), it holds that ds(n — 1 — d;)? <
4(n — 5)? with equality if and only if ds = 4. Consequently, we have

Lz(G) < 4n(n —5)?, ®)

where the equality is true if and only if G is 4-regular. Since at least one 4-regular graph exists for every
n > 14, the desired result follows from (8). [

For the minimal version of Theorem 13, we require the following:
Lemma 15. If G is an n-order molecular graph, with n > 14, and st € E(G), then
Lz(G) > Lz(G — st).
Proof. Since the function f(x) = x(n — 1 — x)2, with n > 14, is strictly increasing for x > 0, we get
Lz(G) — Lz(G —st) = ds(n — 1 — ds)? + dy(n — 1 — d;)?
—(ds = 1)(n—2—ds)* + (dy = 1)(n =2 —d)* > 0,
where d; = ds(G) and dy = di(G). O

Theorem 14. For every n > 14, in the set of all n-order connected molecular graphs, only the trees having the
degree set

() {1,2,4} and admitting exactly one vertex of degree 2, possess the least value of E, whenn =0 (mod 3);
(i) {1,3,4} and admitting exactly one vertex of degree 3, possess the least value of Lz, when n =1 (mod 3);
(iii) {1,4} possess the least value of Lz, when n = 2 (mod 3).

Proof. Consider an n-order connected molecular graph G containing at least one cycle, where n > 14.
By Lemma 15, it holds that Lz(G) > Lz(G — st), where st is an edge lying on a cycle of G. Thus, for
every n > 14, a graph possessing the least value of Lz in the set of all n-order connected molecular
graphs must be a tree. Consequently, the desired conclusion follows from Corollary 3. O
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