1. Introduction
In recent times, there has been a huge number of investigations aimed at fabricating high-entropy alloys (HEAs) using additive manufacturing (AM) [
1,
2]. This may be primarily attributed to the two factors: (i) microstructural optimisation, and (ii) enhanced mechanical properties [
2,
3]. The former is associated with defect density along with low cost (of production) whereas the latter is mainly a subset of the former factor [
4,
5,
6,
7,
8]. In other words, the microstructure plays a crucial role in influencing the mechanical response of AM-based HEAs [
4,
9,
10,
11,
12,
13]. It has recently been reported that AM-based HEAs possess a higher overall toughness (including yield strength and ductility) when compared to those of the bulk counterparts [
14,
15,
16,
17]. In addition, AM has provided a wide range of opportunities towards manufacturing HEA components with (i) high geometrical complexities and (ii) in-situ tailoring of microstructures [
18,
19,
20,
21,
22,
23,
24,
25,
26]. The fabrication technique employed during AM highly influences the latter. For instance, the fine-grained microstructure evolved during rapid solidification has been reported to undergo hot isostatic pressing (HIP), for further enhancement of mechanical properties through removal of fabrication defects and residual stresses in AM-based HEAs [
27,
28,
29,
30,
31]. Moreover, the high cooling rates associated with AM-based techniques may be used to avoid undesired phase transformations and chemically homogenise the HEAs by restricting diffusion [
32].
The high heating and cooling rates associated with AM-based fabrication techniques lead to fine-grained microstructures with enhanced mechanical properties [
31]. More specifically, the non-equilibrium nature of the AM-based fabrication techniques has also been reported to supress the formation of intermetallic compounds during solidification [
31]. In the context of beam (laser and electron beam)-based AM techniques, heat transfer is highly anisotropic and leads to the formation of textured columnar grains along the build direction (in the as-fabricated condition of the alloy) [
31]. In a series of recent investigations, a number of techniques have been devised for controlling the microstructural features such as grain morphology, texture, residual stresses, and residual stresses (during solidification) [
11,
31]. Two of the most common techniques to control the aforementioned features include (i) laser power and (ii) scan strategy [
31]. From the viewpoint of microstructural features and mechanical properties, the recent developments in the avenue of AM-based HEAs include the development of interstitial HEAs, core-shell structured HEAs, and HEA composites. From the viewpoint of HEA fabrication, development of non-beam AM techniques is a major breakthrough in the aforementioned avenue [
31]. Considering the expanding interests of the alloy design community in the avenue of AM-based fabrication of HEAs (in the last few years), the present chapter begins with a brief discussion on the present status and challenges in the area of AM-based HEAs. This has been followed by a discussion on the recent trends in AM of HEAs from two different viewpoints, viz. (i) microstructural features and mechanical properties, and (ii) alloy fabrication. Moreover, future perspectives in the avenue of AM of HEAs have also been highlighted.
2. Present status and challenges in the avenue of AM-based HEAs
Direct laser deposition (DLD) and electron beam melting (EBM) are the two most commonly used AM techniques for the fabrication of HEAs [
32]. However, there has been a limited number of investigations on the selective laser manufacturing (SLM) of HEAs [
32]. In contrast to EBM and SLM techniques, which require pre-alloyed powders, DLD uses elemental powders to fabricate HEAs and also enables tailoring of HEA compositions [
32]. However, SLM and EBM have much finer beam diameter and can tune the microstructure at higher resolution than DLD [
32]. Joseph et al. [
33] have used DLD technique to fabricate Al
xCoCrFeNi HEA with different mole fractions of Al (x = 0.3, 0.6, and 0.85). It was reported that a variation in Al content leads to three different microstructures, viz. FCC, FCC/BCC, and BCC. For instance, DLD-based Al
0.6CoCrFeNi HEA shows a Widmanstatten microstructure at room temperature [
33]. A comparison of the DLD microstructure (of Al
0.6CoCrFeNi) with that of conventional arc melted microstructure (
Fig. 1) shows that there is no appreciable difference in terms of microstructural features in both FCC and BCC phases [
33]. However, for the case of a dual-phase FCC + BCC microstructure, significant differences were observed between DLD and arc melted microstructures [
33]. This was attributed to the (i) higher cooling rates and (ii) larger thermal gradient in the melt pool for DLD as compared to that for conventional arc melting [
33].
Sistla et al. [
34] have studied the influence of Al/Ni ratio on the microstructure evolution and phase stability in DLD-based Al
xFeCoCrNi
2-x HEA. It was observed that a decrease in the Al/Ni ratio leads to a transition from BCC (lattice parameter= 0.288 nm) to FCC solid solution (lattice parameter= 0.357 nm) [
34]. Ordering and spinodal decomposition in these alloys (during cooling) were attributed to lattice strain caused by Al [
34]. In addition, as shown in
Fig. 2, the microstructure as reported to undergo a transition from dendritic to equiaxed morphology [
34]. Ocelik et al. [
35] have studied the influence of laser processing parameters and that of Al content on the microstructure evolution of AlCoCrFeNi equiatomic HEA. It was reported that high cooling rates lead to a high probability towards formation of BCC phase [
35]. Moreover, it was also highlighted that the efficiency of DLD technique depends on a number of process parameters which include rate of powder in-take, powder melting temperature, traveling speed, and power density of laser beam [
35]. This study showed that it is feasible to fabricate HEAs via in situ alloying during DLD [
35]. Dobbelstein et al. [
36] have used DLD technique to fabricate MoNbTaW refractory HEAs (RHEAs) using pre-mixed powders. Based on this work, it was highlighted that in-situ alloying during DLD may be used to fabricate HEAs [
36]. This study demonstrated that it is possible to control the process parameters (involved in fabrication) by fine-tuning the HEA composition [
36]. In the context of RHEA fabrication, a point worth noting is that all refractory metals are highly sensitive to oxidation [
36].
EBM has been reported to ensure chemical homogeneity of the fabricated HEAs by using pre-alloyed HEA powders [
32]. This is in contrast to DLD which uses elemental powders for fabricating HEAs [
32]. as using pre-alloyed powders can to some extent ensure the chemical homogeneity in the fabricated alloys. In the context of EBM-based AlCoCrFeNi HEAs, Fujieda et al. [
37] have reported that the fabricated alloy has a dual-phase FCC + BCC microstructure (evolved during preheating) whereas the raw powders had a single-phase BCC structure (
Fig. 3(a)). BCC grains in EBM-based HEA were observed to be oriented along the build direction (BD)
(Fig. 3(b)) [
37]. Moreover, the EBM-based HEA was reported to exhibit a fine-grained microstructure in contrast to the specimen prepared by casting (
Fig. 3(b)) [
37]. This was attributed to the high cooling rates followed during EBM [
37]. Both Fe and Co were observed to segregate at grain boundaries (GBs) in EBM as well as cast specimens [
37]. It is also worth mentioning that the bottom part of the fabricated HEA component had a significantly higher fraction of equiaxed FCC grains when compared to the top portion of the component [
37]. This was attributed to the longer preheating process which led to the transition from BCC to FCC crystal structure [
37]. In the context of AlCoCrFeNi HEA, Shiratori et al. [
38] have reported a microstructure comprising of nano-lamellae of BCC and B2 phases. The FCC phases were observed along the GBs of the BCC/B2 phases [
38]. This was attributed to the intrinsic preheating followed during EBM [
38]. In addition, BCC/B2 grains were observed to be elongated along BD on both the top and bottom parts of EBM-based specimen both of the top and bottom parts of the EBM specimens [
38].
A similarity was observed in terms of the microstructure of top portion of EBM-based specimen and cast specimens [
38]. On the other hand, microstructural coarsening was observed in the bottom part where the volume fraction of FCC grains was higher than that of the BCC grains. In addition, Al-Ni and Cr-Fe rich phases were also observed on the top portion of EBM-based specimen. Fujieda et al. [
40] have fabricated CoCrFeNiTi HEA using Selective EBM (SEBM) technique. In the case of SEBM-based specimen, Ni
3Ti precipitates (with basketweave morphology) were observed in the FCC matrix [
40]. On the other hand, both Ni
3Ti and (Cr
11Fe
13Ni
4)Mo
3 intermetallic phases were detected in the cast HEA (
Fig. 4(a)) [
40]. Clustering of both Ni and Ti elements was observed in the SEBM-based specimens, in as-fabricated condition [
40]. In addition, it was reported that Ni
3Ti precipitates completely disappear after solution-treatment (
Fig. 4(b-d)). It is also noteworthy to mention that fine ordered phases (enriched with Ni and Ti and with an average diameter of ~40 nm) were observed in the FCC matrix (
Fig. 4(b-d)) [
40]. The formation of this phase was attributed to the spinodal decomposition [
40]. Brif et al. [
41] have fabricated equiatomic FeCoCrNi HEA with a single-phase FCC structure through SLM of pre-alloyed powders. Based on this work, it was demonstrated that post-heat treatment is necessary for chemical homogenisation of SLM-based HEA specimens [
41].
4. AM of HEAs: future perspectives
Both powder-bed and powder-flow based AM techniques involve a series of unique complex thermomechanical and rapid solidification techniques [
32]. These involve cyclic heating and cooling of the fabricated specimens [
1]. This sets AM-based techniques apart from conventional fabrication techniques. In the context of AM for HEAs, the present state of research is focussed mainly on utilizing HEA powders produced by gas-atomization technique [
2]. As highlighted by Li [
32], not all HEAs can be fabricated using AM. This necessitates extensive investigations on the (i) process parameters of different AM-based techniques and (ii) composition and microstructure of HEAs. For instance, a number of parameters such as laser velocity, laser power, laser absorptivity, fluidity (of the metal), and powder melting temperature need to be considered during SLM of HEAs [
3,
9]. In addition, the resistance to crack formation of the HEAs and the ability to overcome high residual stresses associated with high thermal gradients (during AM-based fabrication techniques) must be considered for the design of AM-based HEAs [
32].
The other challenge to be overcome is to establish a systematic structure-property corelation in AM-based HEAs [
32]. For instance, the influence of laser parameters such as laser power and density on the chemical homogeneity of the melt pool in HEAs is still not fully understood till date [
32]. In addition, the role of interstitial atoms such as B, N, and C and contaminants (for example, oxygen) on the phase evolution and mechanical properties of AM-based HEAs is not completely clear [
32]. Besides, not much is known about the solidification process (during AM) and its associated influence on the residual stress [
33]. In the context of mechanical properties, creep deformation behaviour and fatigue response of AM-based HEAs, are the areas where limited information exists [
31,
37]. Besides, the poor surface quality of AM-based HEAs necessitates extensive surface machining. Altogether, these are the major avenues which show enormous potential for future experimental and theoretical investigations [
58]. In this context, it is important to highlighting that laser shock peening (LSP) has already been reported to show a tremendous potential towards improving mechanical properties (through the reduction of porosities) [
31]. However, extensive microstructural investigations are required to understand the compatibility of different HEA systems with LSP before commercialising the process [
31]. Such investigations are also necessary to understand the mechanism(s) and sequence of precipitation hardening in age-hardenable AM-based HEA systems [
31].
From a broader viewpoint, AM-based fabrication techniques for HEAs are currently based on a trial-and-error principle and is still at its very early stage, which is highly time-consuming and also costly [
59]. Besides, characterisation of melt pool during AM involves a very small interaction volume between the source (energy source) and powder particles [
60]. This may be attributed to very high heating and cooling rates associated with AM-based fabrication methods [
60]. Hence, there is a very limited information on the heating and cooling processes at different regions of the melt pool during AM-based fabrication techniques [
34]. Moreover, owing to the non-equilibrium nature of AM-based fabrication techniques, a number of process and material parameters influence the fabrication process [
5,
6,
33,
61,
62]. Understanding these parameters experimentally, is a highly challenging. In order to overcome this issue, experimental observations need to be coupled with appropriate computation-based modelling approach which include integrated computational materials engineering (ICME), machine learning, and artificial intelligence. To the best of the author’s knowledge, no applications of AM-based HEAs have been reported till date. Currently, hybrid AM techniques are being developed with high manufacturing capacity at a low operational cost. Nevertheless, such developments may be expected to render AM-based fabrication as suitable options for large-scale economic manufacturing of HEAs.