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Abstract: The paper provides a comprehensive review of the recent advancements and 

methodologies in Human-Robot Collaboration (HRC) applied to the manufacturing assembly 

process. In modern manufacturing, the assembly process involves intricate and time-consuming 

operations, often necessitating flexible manual interventions. However, the cost and stability issues 

associated with manual labor highlight the need for collaborative solutions integrating humans and 

robots. HRC, as a viable solution, involves the joint effort of humans and robots in manufacturing 

tasks, presenting advantages in terms of precision, reproducibility, and cycle time. This review 

categorizes and discusses methodologies such as task allocation, reinforcement learning, and Cyber-

Physical Systems (CPS)-based planning approaches that facilitate HRC in the assembly process. It 

also explores experiments and future trends to address challenges and enhance efficiency in 

manufacturing assembly through intelligent collaboration between humans and robots. The 

objective of this research is to provide insights and directions for further research in HRC to 

optimize manufacturing processes. By analyzing the existing state-of-the-art and presenting future 

prospects, this paper aims to guide researchers and practitioners toward more effective 

implementations of HRC in manufacturing assembly, ultimately leading to improved operational 

efficiency and productivity. 

Keywords: human-robot collaboration (HRC); manufacturing assembly; task allocation; 

reinforcement learning; Cyber-Physical Systems (CPS); Industry 4.0; robotic assembly sequence 

planning; collaborative robotics 

 

1. Introduction 

The manufacturing assembly process requires a variety of energy-intensive and time-consuming 

complex operations. The assembly is an integral part of the manufacturing process to assemble 

components, parts, and kits, by obtaining specific position relationship with each other. In order to 

manage various assembly processes, flexible manual operations are often required [1].  It is quite 

difficult for the workers and robots to complete assembly tasks efficiently and independently [2]. 

Because of the disadvantage of human labor for high cost and poor stability, the replacement of 

operators with human-robot collaboration (HRC) in manufacturing task is becoming a viable solution 

[3, 4].  

In response to extremely competitive market conditions, manufacturers frequently encounter 

the problem of producing many versions of the fundamental product on the same assembly line, 

resulting in the assembly line balancing issue (ALBP) [5]. Earlier task distribution between workers 

and robots largely depended on predetermined norms and mostly performed repeating tasks having 

a high frequency. Furthermore, excessive labor intensity can quickly lead to a reduction in operators' 

motivation to work, affecting the assembly process's stability and efficiency [6, 7]. 

HRC has been the subject of a lot of research in the last few years. A systematic categorization 

with explanation approach was provided by Wang et al. for HRC assembly task allocation in their 

research [8]. Then a chessboard-based decision-making technique was proposed by Yu et al. for the 

HRC assembly method [9]. The amount of uncertainty was assessed by Rahman et al. through 

constructing a mutual trust model between people and robots and evaluating the feasibility of job 
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allocation using a two-stage feed-forward optimization approach [10]. Researchers developed a 

hybrid HRC assembly cell based on human behavior monitoring for estimating collaborative work 

demand in a study [11]. Nevertheless, incorporating HRC into actual production processes still poses 

substantial hurdles. The conduct of workers who collaborate is very unpredictable. Collaboration is 

challenging because of the inability of the robot to effectively recognize the intentions of human [12]. 

Furthermore, allocating subtasks that requires collaboration between robots and humans is difficult 

due to the time and energy needed to compute optical algorithms. The energy source is a crucial 

aspect of the operation process [13]. During the learning process through reinforcement, the study 

discovered the change state of agents with doing tasks, getting a reward, and interrelating in the 

environment, which is quite analogous to how humans learn [14]. In the context of the dynamic shift 

of human states engaged in collaboration, a fatigue function was designed by Zhang, R., et al. based 

on task time and task difficulty. Agent-Humans with comparable qualities to actual humans use 

reinforcement learning to make decisions and limit the possibility for mistakes in the  decision-

making process of human [3]. 

Zhang, R., et al. have proposed HRC application through combining high operational intensity 

in robot and the human's flexibility. Considering this aspect, a reinforcement learning algorithm has 

been suggested for optimizing the manufacturing assembly tasks. The great potentiality of the 

proposed method has been verified in dynamic division of HRC tasks. The proposed method has 

enabled the assembly sequence to be sent through visual interface to the shop floor workforce, and 

the decision of the Agent-Human is only needed to followed by the operator for the completion of 

assembly tasks [3]. 

 

Figure 1. HRC assembly [4]. 

HRC applications have already found their way into industrial practice, resulting in the Industry 

4.0 revolution [15], which allows humans and robots to interact in the same area [8, 16]. HRC 

applications have a variety of advantages over non-collaborative ones since they allow both humans 

and robots, to profit. When compared to purely manual manufacturing, robots can provide great 

precision and reproducibility, lift huge weights, and minimize cycle time. Humans, on the other 

hand, have exceptional intellect and dexterity. However, in HRC applications, safety problems arise 

since robots must share space or perform jobs with people, and without adequate application, human 

safety may be jeopardized [17]. The exploration towards manufacturing flexibility, which allows 

enterprises to efficiently match their production with the demand for low volume, highly customized 

products, has been the driving factor behind such research. As humans are sharing task and space 

with robots in HRC applications, there is a concern for the violation of human safety. Research has 

been going on the seamless coexistence of both of these collaborating entities which require 

autonomy and intelligence [18]. 

With the increasing outsourcing of blue-collar tasks towards the industrial robots for improving 

the flexibility of the process operation [19, 20], now robots are not confined only in doing complex 

risky tasks that cannot be done by humans [21]. Robotic arms are extensively used in intelligent 
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manufacturing because of their adaptability, configurability, kinematic boundary conditions, and 

collaboration with smart instruments and sensors [22]. The resulting flexibility, on the other hand, 

can only be achieved if several aspects of intelligent manufacturing work together successfully for 

allowing the system to assess the design of the product exclusive of any interaction and arrange the 

assembly activities based on recent design modifications. 

The popularity of Cyber-Physical Systems (CPS) have grown because of their capacity for 

improving intelligence of the industrial process to enable efficient communication between the 

physical and virtual worlds [23]. CPS's characteristics enable smart manufacturing [24]; It allows the 

virtual planning of the robotic operations, for example, the resource virtualization [22], for providing 

extensive parameters before they are placed into production [25]. CPS helps to detect flaws and plan 

industrial operations automatically while also providing additional system flexibility through 

continual process parameter modification [26]. The fourth industrial revolution and intelligent 

manufacturing rely heavily on robotic assembly. For the plan and design of automated 

manufacturing operations, robust coordination of control modules and robotic arms is required. 

Based on the physical characteristic of robotic arms, Ying, K.-C., et al. have conducted research on 

metaheuristic which is based on Cyber-Physical Assembly System (CPAS) [27].  

An entirely new type of robot with the capability of collaborating with humans, called cobot is 

required in HRC applications. For humans few assembly tasks are tiring and monotonous. Thus, 

different approaches to overcome the challenges of identifying and selecting the correct task 

allocation between cobots and human operators have been stated by many of the researchers. 

Gjeldum, N., et al. have presented task allocation procedure for identifying different improvement 

options by utilizing cobots to perform different tasks in the assembly line. Based on the HUMANT 

algorithm, a decision support system has been used to select the best compromise solution [28]. 

Cobots have become potential field of research interest because of its diverse applications. Yet, 

it is challenging for the experts to reduce the programming effort through natural modes of 

communication. Akkaladevi, S.C., et al. have focused on demonstrating different user interfaces for 

non-programming experts to help with easy programming for the complex robotic tasks [29]. 

However, several advancements have been documented in the history of industrial robotics to 

improve human-robot collaboration. Different communication approaches were used to investigate 

these collaborations. The majority of these communication channels were designed with the goal of 

developing a simple and reliable method of connection. This interaction should allow to jog a robot, 

teach it the required path, and then have it perform the deployed software [30]. 

2. Review 

2.1. Methodologies 

2.1.1. Human-Robot Collaborative Method 

There is a lot of research on HRC methodologies, and it's been going on for a long time [31]. 

Gestures are one of the most prevalent techniques to help people [32-35]. Offline programming, on 

the other hand, is energy-intensive and insecure, and the robot functions used were quite restricted. 

As a result, HRC approaches have been developed which are largely dependent on multimodal voice 

fusion and bodily motions [36-40].  

Furthermore, a significant amount of research works has focused on the utilization of brain 

signals to operate robots [41-43]. Recently, a growing number of researchers have concentrated on 

context-aware in HRC systems [44-46], with the goal of increasing robot cognitive abilities. Digital 

twin (DT) technology, on the other hand, can effectively provide data relevant to the specific job of 

manufacturing operation [47]. The application of HRC and DT helps towards the stability of human-

robot workload by boosting operational efficiency [48, 49].  

Also, when a robot has to execute certain activities in a human-robot cooperation situation, the 

robot should identify human intent for helping humans more effectively and efficiently. The link 

between the skeleton-based sequence of human motion and human purpose may provide a way for 
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the robot to identify human intent. A deep long short-term memory (LSTM) neural network method 

was introduced by Yan, L., et al. for recognizing human intention in a study. Given the properties of 

a deep LSTM neural network, it was often a multiple stacked LSTM model that combined the benefits 

of a single LSTM layer while overcoming the RNN's limitation of learning long-range temporal 

dependencies. Even though just 40% of motion sequences were used in the experiments, the deep 

LSTM network with 2-layers had greater prediction performance [12]. 

2.1.2. Task Allocation 

Prior to adopting collaborative activities, the HRC technique must be used to assign human-

robot subtasks. The purpose is to achieve efficient assembly using improved work allocation 

mechanisms. The rating of different tasks can be done with established data in terms of task allocation 

[50]. Although being a straightforward approach, this process is inefficient, particularly in terms of 

items having complicated architectures and a high number of pieces. Additionally, the decision-

making approaches for simulating job allocation procedures have been created [51, 52]. Also, 

evolutionary algorithms are frequently employed for HRC to tackle the Assembly Line Balancing 

Problem (ALBP) [53, 54]. A hierarchical approach based multi-robot allocation method was proposed 

by Choudhury et al. [55] to handle successive decision-making issue in the presence of uncertainty 

and multi-agent cooperation. Human subjective impressions, on the other hand, contribute to 

varying levels of willingness to work on different activities during dynamic task execution. 

Furthermore, it is observed the robot's capacity to do various jobs within the specific areas differs. 

Consequently, a work partition plan based on the human stability model is more plausible. 

Gjeldum, N., et al. presented task allocation procedure for HRC implementation in the assembly 

system by integrating identification of assembly step to be automated on the one side and holistic 

selection process of the assembly step to be automated according to multiple criteria decisions, on 

the other side. They provided a framework to companies having little experience and limited 

resource to start with HRC implementation warily by considering both the expected benefits and 

drawbacks. The increase in productivity with the implementation of HRC is established by scientific 

community considering the motoric strengths, complementing sensory and ergonomic limitations of 

human workers [28]. 

2.1.3. Reinforcement Learning 

Giving the learning ability to robots is a more sophisticated approach to achieve intelligence. By 

transferring human operational works to a robot, the robot may use reinforcement learning 

algorithms to continually interact with its surroundings to expanding reward or achieving specified 

objective [56]. A teaching format is based on task modeling and execution, two aspects of interaction-

based reinforcement learning [57]. Reinforcement learning has been used on robots by AI for grasping 

activities with a single robot and collaborative work with numerous robots [58, 59]. Oliff et al. worked 

on the goal to control the HRC's human aspect of uncertainty. It boosted flexibility and autonomy of 

robot decision-making [60]. Although the precision of the agent's decision-making has increased, it 

is not relevant to all challenging circumstances. The unsolvable challenge of complicated human 

behavior and environmental models continues. 

In HRC assembly tasks, the research of Zhang, R., et al. provided a method of reinforcement 

learning to determine appropriate human-robot sequence of action. The interaction of the task 

environment with the reinforcement learning methods can effectively reduce human mental work to 

achieve optimal collaboration strategies. This study worked with the agent based human-robot 

collaborative reinforcement learning to guide human operators to collaborate among different agents 

[3]. 

2.1.4. CPS-based Robotic Assembly Sequence Planning Approach 

Cyber-Physical Systems (CPS) are the basis in the intelligent and flexible manufacturing 

development. Ying, K.-C., et al. suggested an assembly approach of sequence planning based on 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 October 2023                   doi:10.20944/preprints202310.0049.v2

https://doi.org/10.20944/preprints202310.0049.v2


 5 

 

Cyber-Physical Assembly System (CPAS) towards interference relations and the characteristics of 

robotic arms between the assembly components. The proposed approach providing a better assembly 

sequence than the traditional method of the single-armed robot to effectively execute the resulting 

assembly plan. In the assembly sequence planning application, numerical analysis of CPAS has 

verified more efficiency than the most commonly applied interactive methods. Towards an accurate 

and well-organized planning process, the numerical analysis has demonstrated the proposed 

approach’s efficacy on the robotic arms’ technical feature in the operational environment [27]. The 

study of Wang, X.V., et al. gave an HRC overview with categorization and focus on assembly jobs. 

Aside from establishing essential terminology and relationships, the study also suggested ways to 

describe HRC that may be used throughout solution development [8]. 

2.1.5. HRC Assembly using Artificial Intelligence and Wearable Devices 

Presently researchers have been taking advantage of artificial intelligence (AI) in HRC 

applications in terms of task planning and allocation of tasks among humans and robots, cognition 

to enable autonomy, and operator support. Dimitropoulos, N., et al. explored an AI system for 

improving ergonomics and operator’s satisfaction through recognizing the actions being performed 

by operators in a human–robot collaborative cell. The research team demonstrated successful use of 

high payload collaborative robotics in elevator manufacturing operation with an improvement in 

ergonomics by 80% of the sample and in cycle times by 6%. With the current shift of industry from 

manual production or totally automated production towards hybrid solutions, the proposed solution 

sets the stage to bring the industry closer to the widespread adoption of human-robot collaborative 

solutions, by making robots work seamlessly alongside humans. The equipping requirement of 

robots having cognitive capabilities in the seamless human–robot collaboration enabled the 

environment awareness with the actions in the assembly cell. The proposed AI-based system of 

Dimitropoulos, N., et al. can detect the process status and operator status for the identification of the 

tasks executed by the operator [18]. 

2.1.6. Programming-Free Approaches for HRC Assembly Tasks 

Akkaladevi, S.C., et al. focused on the efficient installation and requirement of HRC in 

manufacturing applications. They demonstrated an in-depth review with the novel interfaces to 

improve the current approaches. The introduction of different programming interfaces and 

paradigms was the purpose of the research to help non-experts in terms of easy robot programming 

[29]. 

2.1.7. Intelligent Assembly enabled by Brain EEG 

The interactions between an industrial robot and a human’s electroencephalography (EEG) 

signals have been facilitated by an intelligent HRC assembly framework. The capability of the 

operator was explored by Mohammed, A. and L. Wang for controlling the robot through individual 

brain signal. The objective of the research was to improve the adaptability and quality of HRC 

operations [30]. 

2.1.8. Human-Robot Collaboration for Disassembly (HRCD) 

Remanufacturing aims towards increasing resource use and lowering manufacturing costs. 

Disassembly is a crucial phase in the remanufacturing process, and it is always completed by hand 

or by robots. Manual disassembly is inefficient and expensive, while robotic disassembly isn't 

versatile enough to tackle complicated disassembly jobs. As a result, HRCD is suggested to conclude 

the disassembly process in remanufacturing in a flexible and efficient manner. The Pareto-based 

algorithm was used in the study of Xu, W. et al. to solve disassembly sequence planning (DSP) for 

HRC. To begin, the disassembly model was designed to produce plausible disassembly sequences. 

The disassembly jobs were then categorized based on how tough they were to disassemble. After 

that, DSP for HRC solutions were developed and assessed. MDBA-Pareto was presented to search 
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for the ideal methods. Simplified computer case studies were conducted to verify the given approach 

[1]. 

2.1.9. Human Activity Pattern Prediction for HRC Assembly Tasks 

It is inevitable that robots and humans will share the workplace in future production 

environments. However, actual collaboration might be intermittent, particularly in assembly 

activities that may need independent actions to be carried out by either human worker or robot. 

According to the study of Zanchettin, A.M., et al., it may be advantageous to forecast the human's 

behaviors for managing robot effectively. They offered an approach for predicting the activity of 

human so that the robot may forecast and execute independent activities according to the human 

collaborative action request [11]. 

2.1.10. Intuitive and Robust Multimodal Robot Control 

The cornerstone to HRC in manufacturing is multimodal robot control which is intuitive and 

robust. Previous research has established multimodal robot control approaches. Human operators 

may manage robots intuitively without having to create brand-specific code using these strategies. 

However, most multimodal robot control approaches are inaccurate because of non-exchanging   

feature representations within the modalities. The research of Liu, H., et al. proposed multimodal 

fusion approach based on deep learning for robust multimodal HRC systems to address this 

challenge. Training of few unimodal models initially was conducted for the features extraction before 

being merged for representation sharing. The suggested method outperformed the unimodal models 

in experiments. The suggested multimodal fusion architecture had a lot of promise for use in robust 

HRC production systems [36]. 

2.2. Experiments 

The manufacturing assembly is becoming more dynamical with modern industry's inclination 

towards personalization. Different manufactured goods can, however, be constructed on the same 

workstation due to the commonality of the constraint relationships. HRC had been given a 

reinforcement learning mechanism, which had been tested in assembly. The goal of the research of 

Zhang, R., et al. was to solve the work assignment and sequence optimization problems. The study 

described the implementation abilities of human-robot in several assembly processes. The proposed 

approach outperformed multi-objective reinforcement learning algorithms in terms of training 

process curve efficiency. The proposed solution eliminates the need for human decision-making, 

minimizes the effort of the management, and eliminates inefficient sequencing. The operator is 

immediately provided with the assembly sequence for the proposed approach through a visual 

interface, and all he or she needs to do is follow Agent-choice [3].  

Autonomous robotic operators have become commonplace in many modern manufacturing. In 

spite of that, the human operator number is still significant in the industry, and consequently, human-

robot contact number has grown in this context. This is a concern because, in the form of performance 

variance, humans add a source of disruption and unpredictability to these systems. Regardless of the 

flexible innate nature of human, the presence of the human operators in the system causes disruption 

and makes these complex processes much difficult, if not impossible. To Improve the capacity of 

robotic operators in adjusting behavior towards human job differences is thus fundamental hurdle 

that must be addressed. The creation of a framework for properly modelling complex systems with 

the capability of autonomous decision-making was presented in the work of Oliff, H., et al. This 

decision-making approach gave robotic operators more flexibility by allowing them to adjust their 

behavior based on inputs from their environment and human counterparts. The research advanced 

a theoretical understanding of how learning approaches might be applied to better human-robot 

interaction. The research also proposed a revolutionary way for implementing an intelligent agent 

that allows robotic operators to adjust their behavioral strategy in reaction to human colleagues' 

performance variations. A generalized simulation model was used to help the development and 
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assessment, and it was parameterized to allow for suitable variance in the performance of human 

[60]. 

It is critical to provide robots with the ability to predict human intention even before the full 

action is finished in order to improve human-robot collaboration. The research of Yan, L., et al. 

proposed a deep LSTM neural network for human intention identification based on skeletal 

knowledge of human movements. The impact of network depth on network performance was 

investigated. The results showed that the deep LSTM network with two layers outperformed the 

other layers and that the robot could grasp the human purpose when only 40% of the motion 

sequence was employed [12]. 

In the development of intelligent and flexible production towards Industry 4.0, CPSs are critical 

for connecting the virtual and real worlds. They modify operating parameters based on feedback 

from intelligent systems and instruments. Ying, K.-C., et al. demonstrated the characterization of the 

efficient manufacturing assembly sequence. They determined the decrease in collision during dual-

projection methodology in comparison to prevailing approaches by using two case situations. The 

numerical analysis also revealed that the suggested method adequately compensates robot arms’ 

practical characteristics as well as the process setting for providing a smooth process of planning. 

Also, CPAS provides more effective assembly sequences in less time through the reduction in 

directional change of manufacturing assembly process [27]. 

Recent assembly trends indicate a more adaptable process setting in which machines and human 

work together. Instead of constraining each other, symbiotic HRC allows robot and people for 

combining their corresponding skills. By defining the collaboration scenario, establishing the needs, 

and merging infrastructural aspects to a functional solution may build in an organized manner. The 

study of Wang, X.V., et al. outlined a method for the description of a case and outlined characteristic 

needs for providing an explanation with the recommended configuration [8]. 

Dimitropoulos, N., et al. included the change of the assembly task sequence in his study initiated 

arbitrarily by one operator and followed by the compliance of the second, without verbal 

communication in a case of collaborative behavior. A high payload collaborative robot was illustrated 

through transferring this notion to the HRC case (Figure 2) to continuously monitor the workflow 

execution status by using information from equipment controllers, process sensors, and direct human 

input as well as data from wearable devices [18]. 

 

Figure 2. The components and operations of an HRC system. 

Gjeldum, N., et al. have developed the procedure comprising of three major steps. According to 

the previous knowledge on existing production performance metrics and strategic goals, the 

production line has been selected in first step for cobot task allocation. As a group of production 
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workstations, i.e., manufacturing or assembly workstations, this approach considers an overall 

production line or assembly line to produce certain products or product family. For improving work 

quality in the second step, the determination of process tasks allocation is conducted by considering 

the actual capability of both human and robot. In the third step, metrics revealed from prediction 

tools in case of implementation of each developed option are utilized as the input data for the decision 

support system [28].  

Akkaladevi, S.C., et al. detailed different programming approaches to depend on the 

programming paradigms and interfaces by allowing non-experts to easily program robot tasks [29]. 

The research of Mohammed, A. and L. Wang, demonstrated a setup for the evaluation of the 

performance and training of the system. The setup of the experiment in a central server for executing 

machine learning algorithms is shown in Figure 3 [30]. 

 

Figure 3. The network infrastructure mechanism for brain–robot interface. 

In the work of HRCD by Xu, W. et al. MDBA-Pareto was used to solve DSP for HRC. To begin, 

EOL product disassembly precedence connections were developed. According on the complexity of 

disassembly, jobs were divided into three groups. The DSP for HRC solutions were then developed 

and assessed. The development of MDBA-Pareto was conducted for identifying optimal DSP solution 

for HRC using Bees adjustment and Lévy flight techniques. Finally, the suggested strategy was tested 

through case study and the findings reveal that the suggested approach has a higher solution quality 

than the other three optimization techniques [1]. 

However, Liu, H., et al. suggested multimodal HRC fusion architecture in study of multimodal 

robot control. The training of 3 unimodal models were conducted to suit three modalities’ datasets: a 

Convolutional Neural Network (CNN) model for voice commands, a Long short-term memory 

(LSTM) model for hand movements, and a Multilayer Perceptron (MLP) for the motion of body. 

These models were further connected and merged after unimodality model training. Experiments 

showed that the fused model outperformed unimodal models in terms of accuracy. The study 

showed the high potential of the suggested technique in manufacturing [36]. 

3. Future Trends 

According to the review of the current research, studies have generally focused on single or set 

tasks. For dynamic circumstances with many duties, there is a scarcity of in-depth study. 

Furthermore, many collaborative systems depend on technologies primarily based on fixed features 

or human-controlled robots. Nevertheless, the great portion of decisions are made by humans, and 

the industrial robots who help them lack intelligence. In the context of future manufacturing, the 

integration of sustainable approaches like the circular economy [61] could revolutionize the 

manufacturing process [62], leading to efficient manpower management and facilitating seamless 

human-robot collaboration. 

The work done by Zhang, R., et al. will look at ways in the computation and update of the real 

operational time and the utilization of resource during HRC in the future. Numerous factors should 

be remembered, such as product qualities and process modifications, to influence the actual 

completion time. Furthermore, the duration of repeated human operations varies. In addition, for the 
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best cooperation tactics, more complicated assembly activities would be specified utilizing a graph-

based methodology [3]. 

The study of Ying, K.-C., et al. may be expanded in a number of ways. Firstly, their suggested 

technique may be extended by incorporating the component coordination system in cases when the 

directions of assembly are not specified in Cartesian coordinates. Secondly, while designing optimum 

assembly sequences, applying new and different performance criteria applicable to single and 

double-arm robots may improve accuracy, speed, and cost. Thirdly, for the improvement of the 

intelligence of the assembly sequence planning, the creation of robot assembly code is worth 

exploring. If assembly sequence planning can transform assembly sequences into robot instructions 

by adding extra information, the process from CAD file to product might become faster and more 

intelligent [27].  

The researchers can work on the implementation of algorithms to capture more complex—non-

assembly-based—human actions in order for the system to either ignore them or plan for countering 

their effects. Moreover, the virtual mannequin used for simulations will have the capability to adapt 

to the exact dimensions of the operator, so more accurate simulations of ergonomics can be explored. 

Additionally, the investigation of additional wearable hardware, such as IMUs on a wristband, for 

highly granular detection of human posture is required. Extensions for ensuring the safety of the 

operators in a certified way must also be implemented [18].  

The development of adaptive integrative simulation models of Gjeldum, N., et al. to enable the 

algorithm for the selection of a roadmap of generated options can be explored in the future to avoid 

the iterative application of the procedure [28].  

However, regarding the work of Xu, W. et al. on HRCD, the fatigue of the shop floor operators 

may take into account in the future. The DSP for HRC will then be solved while taking into account 

the operator's weariness. To maintain the operator's safety, robot movement throughout the 

disassembly should steer clear of the end-of-life (EOL) items and also the operators. Mobility of the 

operator is more complex in the disassembly process than it was in this study. As a result, the human 

operator must be seen as dynamical impediment, whereas the products should be treated as 

stationary one. As a result, DSP for HRC will be investigated in the future, taking into account the 

robots' safe moving trajectory. In this research, a case study was done using a simplified computer 

scenario, and several optimization methods were set side by side. More case studies must be 

conducted in the future, and more optimization techniques should be compared to the proposed 

methodologies [1]. 

There are some future improvement scopes in the work of Liu, H., et al. on robust multimodal 

HRC. The suggested architecture can be implemented in a real-time scheme. The theoretical elements 

and the model architecture can be investigated to explain neural networks by incorporating various 

modalities for HRC robot control [36]. 

4. Conclusion 

The application of HRC in the complex assembly process would result in the improvement of 

efficiency by reducing human workload. However, it is quite challenging in terms of industrial robots 

to comprehend the intents of the processes due to the unpredictable human behavior in the 

manufacturing assembly activities. Thus, it is quite difficult to collaborate humans and robots in the 

industrial applications. So, the objective of the project was to review the latest technologies in the 

scientific community regarding effective implementation of HRC in the manufacturing assembly 

tasks. The project emphasized on the comprehensive review of the recent methodologies in the 

human-robot collaboration application for the manufacturing assembly tasks.  
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