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Abstract: Diabetes mellitus (DM) and chronic kidney disease (CKD) are common in middle aged 
and elderly individuals. DM may accelerate the aging process, and the age-related declines in the 
estimated Glomerular Filtration Rate (eGFR), can pose a challenge to diagnose diabetic kidney 
disease (DKD) using standard diagnostic criteria especially with absence of severe albuminuria 
among the elderly. In the presence of CKD and DM, elderly patients may need multidisciplinary 
care due to susceptibility to various health issues e.g., cognitive decline, auditory or visual 
impairment, various comorbidities, complex medical regimens, and increased sensitivity to 
medication adverse effects. As a result, it can be challenging to apply recent therapeutic 
advancements for the general population to the elderly. We review the evidence that the benefits 
from these newer therapies apply equally to elderly and non-elderly patients and propose a 
framework for the management of DKD by discussing the nonpharmacological measures and 
pharmacological management with renin angiotensin system  inhibitors (RASi), Sodium Glucose 
Co-Transporter two inhibitors (SGLT2i), non-steroidal mineralocorticoids receptor antagonists 
(MRAs), and Glucagon Like Peptide 1 Receptor Agonists (GLP1-RAs).  

Keywords: diabetes; chronic kidney disease; treatment; elderly; geriatric; dialysis; SGLT2 inhibitors; 
GLP1 receptor agonists; non-steroidal mineralocorticoid antagonists 
 

1. Introduction 

Diabetes mellitus (DM) and chronic kidney disease (CKD) pose substantial challenges for the 
elderly patients. Historically known as Diabetic Nephropathy (DN), CKD attributed to DM is often 
referred to as Diabetic Kidney Disease (DKD) and is the major cause of CKD and end-stage kidney 
disease (ESKD) in those over 60 years old [1]. Furthermore, a third of new ESKD cases in those over 
75 years old are attributed to DKD, often without a histologic diagnosis. For those individuals the 
more appropriate term is Diabetes in CKD [2], a term that reflects the complex and often 
multifactorial pathogenesis of CKD in individuals with diabetes.  This form of CKD is increasingly 
not associated with proteinuria [3–6] and conversely the presence of proteinuria or CKD in an elderly 
patient with DM is not always due to DN or DKD. 

Providing care in elderly individuals with DM and CKD is challenging because of the substantial 
comorbidity burden, and the co-existence of physical and mental conditions such as dementia [7]. 
Multidisciplinary medical management may be required due to these concomitant conditions, and 
the application of emerging evidence based therapies should neither be reflexively applied nor 
arbitrarily withheld. 

While guidelines have  incorporated fixed, age-independent referral criteria to nephrology,  
elderly patients may benefit less from nephrology referral than younger individuals [8], while the 
likelihood of regression, i.e., a spontaneous improvement in kidney filtration often exceeds the 
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likelihood of progression [9]. This creates challenges in translating interventions which are often 
tested in populations with some degree of proteinuria to those patients with (near-) 
normoalbuminuria. However, recent advancements in DKD therapy are applicable to both old and 
non-elderly patients and confer broad cardiovascular benefits (e.g. on cardiovascular disease or heart 
failure) that may be particularly applicable to elderly patients with multiple comorbidities. 
Furthermore, these newer therapies are extremely easy to apply and can be used in a  pillars of 
therapy approach by either primary care providers or specialists, offering unique opportunities to 
improve the outlook of elderly patients with DM and CKD.  

2. Definition, Epidemiology and Burden of Diabetes in Elderly patients with CKD 

CKD is defined as either a persistent estimate GFR < 60 ml/min/1.73m2 and/or evidence of 
kidney damage (most commonly albuminuria). Based on this definition and using NHANES data an 
estimated 14% of the adult population has CKD, however the prevalence is 33.2% in those 65 years 
old and older. The epidemiology of CKD seems to vary with age, in that CKD determined by low 
eGFR alone (< 60) is more common in the elderly than in younger populations.  Furthermore, the 
association of low GFR with mortality and ESKD in the elderly while still present is less pronounced 
in older individuals[10] . Nevertheless, the implications of CKD on the health of older indviduals 
remains profound given how commonly it occurs. Among US adults with CKD 35.6% have diabete 
mellitus  

CKD in DM predates the development of ESKD among patients with type II DM [3]  and is 
considered a problem of pandemic dimensions [11], as a result of the increasing rates of DM and 
obesity. Sequential analyses of the National Health and Nutrition Examination Survey (NHANES 
analysis: 2003-2004 vs. 2013-2014) showed that the estimated frequency of DM increased by 9 million, 
affecting 30.2 (13%) million US adults [3]. The 2020 updated National Diabetes Statistics that 
examined data from 2013-2018 suggests very little improvement in this figure [12]. According to the 
National Diabetes Statistics report (10), the prevalence of diagnosed and total DM among people over 
the age of 65 in the United States was 21.4% and 26.8%, respectively. These worrisome trends are not 
US specific; the International Diabetes Federation Atlas [13] projects an increasing trend of DM up to 
2045. The NHANES analyses also showed very little change in the prevalence of CKD as defined by 
a persistent urine albumin-to-creatinine ratio of ≥30 mg/g, or a persistent estimated Glomerular 
Filtration Rate [eGFR] of <60 mL/min per 1.73 m2, from 28.4% (1988 to 1994) vs. 26.2% from 2009 to 
2014.  

The higher rates of DM pose a significant threat to the falling incidence rates of ESKD  observed 
in recent years[14]. While improvements in the overall standards of care could reduce the risk of a 
single individual to experience worsening of their kidney function to the point they need dialysis or 
transplant, the overall number of patients needing renal replacement therapy may increase if more 
patients develop DM. Analyses in NHANES [3] and in  non-US cohorts [15] suggest that this 
epidemiological trend may be particularly relevant for the elderly patients since those older than 65-
year-old are 35% more likely to manifest albuminuria than those younger than 65 (32.3% vs 23.9%, 
NHANES estimate). Prior to the COVID19 pandemic, these trends were expected to lead to a rising 
prevalence in the ESKD from 2015 to 2030 [16].  African Americans, Hispanic Americans and 
American Indians [3], may exhibit even higher rates of  CKD and  DM in CKD[17], and these 
disparities carried to self-management of DM among elderly Medicare beneficiaries [18].   

3. Pathophysiology of CKD in DM among the elderly 

The natural aging process in the kidney shares histopathologic findings e.g. sclerosis, mesangial 
matrix expansion, tubular and glomerular basement thickening and interstitial atrophy and fibrosis 
[19] with those observed in CKD in DM (Table 1), suggesting shared but not identical 
pathophysiology. 
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Table 1. Lesions by Histologic Compartment in the 2010 Pathologic Classification of Diabetic Kidney 
Disease [20]. 

Glomerulus Arterioles Mesangium2 Tubulo-interstitium 

Diffuse Intra-capillary 
Glomerulosclerosis 

Subintimal  
Hyaline Deposits 

Mesangial Matrix 
Expansion 

Tubular Atrophy / 
Interstitial Space Expansion 

Nodular (Kimmelstein 
Wilson)  

 

Capillary Walls 
Bowman Capsules 
(capsular drops) 1 

Mesangiolysis 
 

Tubular Basement  
Membrane Thickening 

 

Glomerulosclerosis  
Mesangial Cell 

Proliferation 
Interstitial Fibrosis 

    
1 Capsular drops may be observed in a small percentage (~5%) of patients without diabetes [20], but are 
considered in general specific for DKD [21] 2 Mesangial Lesions correlate with loss of eGFR albuminuria and 
hypertension [22]. 

Hyperfiltration is thought to proceed the functional loss of nephrons in DN, however in “normal 
aging” this loss [23], is not accompanied by a rise in single nephron GFR [24,25]. Genetic studies have 
shown that loci linked to albuminuria in aging mice and diabetic people are partially overlapping 
[26]. Accelerated senescence in tubular cells (primarily) and podocytes (secondarily) has been shown 
in kidney biopsies from patients with DN and type II DM [27]. Furthermore, these senescent cells 
secrete a variety of mediators (e.g. proinflammatory cytokines, complement component and pro-
fibrotic factors) that drive glomerulosclerosis, podocyte hypertrophy, mesangial changes and 
tubulointerstitial fibrosis observed in DKD [28]. Advanced Glycosylation End products (AGEs) and 
the RAGR (cell surface receptor of AGEs) accumulate in both diabetic and senescent kidneys [29], 
where they promote oxidation and inflammation [30,31], thus increasing the likelihood of age- and 
diabetic-related CKD [32].  A recent review of the molecular pathways underlying the progression 
of DKD in the elderly [33] revealed a complex interplay between oxidative stress, inflammation, and 
hyperglycemia. 

The final common pathway linking inflammation and tissue fibrosis in CKD may be mediated 
through the aberrant activation of the mineralocorticoid receptor, an observation that is more than 
eighty years old [34]. Mineralocorticoid receptor activation links tissue injury, oxidative stress, 
inflammation, arterial hypertension, and end organ damage of the heart, blood vessels and the 
kidneys [35–37].  

While kidney biopsies are not typically obtained to diagnose DKD or DN, but to exclude other 
non-diabetic forms of kidney injury, if diabetic lesions are obtained they should be staged in both the 
Glomerular and the Vascular/Tubulointerstitial Compartments [20]. Due to the shared histology and 
pathophysiology the cause of the lesions observed in biopsies of patients with DM cannot be 
unequivocally assigned to the latter. For example renal artery stenosis (RAS) and secondary kidney 
ischemia [38] may lead to intrarenal arterial hyalinosis [39]. While efferent arteriolar hyalinosis is 
typically associated with a diabetic kidney lesion, afferent arteriolar hyalinosis may be observed in 
hypertensive nephropathy. Normoalbuminuric kidney disease in elderly CKD patients with DM, and 
this clinical phenotype may be associated with non-glomerular lesions [40,41] or the use of inhibitors 
of the renin angiotensin system [3,42–44]. 

4. Diagnosis of CKD in the elderly patients with DM 

The diagnostic criteria for CKD do not vary by change, i.e., either a depressed eGFR or an 
elevated index of protein excretion in the urine (usually the microalbumin to creatinine ratio) as a 
marker of kidney damage should be demonstrated for diagnosis and staging of CKD. In caring for 
individual patients, the potential for an age-related loss of kidney function should also be considered 
as a potential cause of a reduced eGFR value in the absence of albuminuria. One cohort study was 
conducted in Canada with a considerable representation of cohorts > 65 years old and compared the 
implications of age-adapted vs. fixed eGFR on the 5-year risk of renal failure and death. They 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 October 2023                   doi:10.20944/preprints202310.0551.v1

https://doi.org/10.20944/preprints202310.0551.v1


 4 

 

identified a similar difference in the 5-year absolute risk of kidney failure (0.12%) among individuals 
65 years and older who had an eGFR of 45–60 mL/min/1.73 at baseline and no detectable proteinuria 
compared to non-CKD patients[45]. Proposals for an age-adapted definition of CKD [46], by adopting 
a threshold of <45 ml/min/1.73m2 instead of the <60 ml/min/1.73m2 have not gained traction and thus 
the fixed age-independent threshold of 60 ml/min/1.73m2 should be applied initially. Albuminuria is 
never a manifestation of “normal aging” and its presence signifies an elevated risk for progression of 
CKD, endothelial dysfunction, need for dialysis and cardiovascular morbidity and mortality [47–
49]. For the elderly individual with DM, who is at risk for other forms of kidney disease (e.g., 

vasculitis), the initial diagnostic step is to exclude a non-diabetic kidney lesion. In particular, if 

the diagnosis of CKD predates the diagnosis of DM or occurs within a short period of time (5-10 

years), then the risk for another kidney disorder is particularly high [50].  
The initial workup should not differ for elderly and younger patients and includes a urinalysis, 

Urine Albumin to Creatinine Ratio (UACR), an eGFR, a complete blood count and a basic metabolic 
profile that incorporates measurements of sodium, potassium, bicarbonate, calcium, and 
phosphorus. Serological tests as per the guidance of the US National Institute for Diabetes, Digestive 
and Kidney Diseases include tests for chronic hepatitis B and C, antinuclear antibodies, rheumatoid 
factor, complement levels (C3/C4), serum and urine protein electrophoresis, a free light chain assay. 
A kidney ultrasound is also part of the workup and can be used to diagnose bona fide urinary outflow 
obstruction (e.g., hydronephrosis), or subtler forms of bladder dysfunction (e.g., an elevated postvoid 
residual urinary volume in the bladder).  If a patient with DM has typical and advanced retinopathy 
[51–54], albuminuria and a negative serologic evaluation, most clinicians would not proceed to obtain 
a kidney biopsy. In the elderly patient, vascular disease (e.g. due to atherosclerosis, hypertension, 
and RAS) [38,55] may also be present, and such conditions may be used to diagnose the patient with 
cardiovascular disease and target them for high intensity therapy to reduce cardiovascular risk. At 
the time of this writing, a precise histological diagnosis of DKD is not required to initiate therapies 
such as inhibitors of the renin angiotensin system or sodium glucose co-transporter two inhibitors, 
whose spectrum of indications include both diabetic and non-diabetic kidney lesions. However, a 
missed glomerular diagnosis does not allow the initiation of specific therapy that may preserve 
kidney function or prevent damage to other organs (e.g., due to vasculitis). Since the histology cannot 
be predicted from clinical criteria [56] and a definitively higher risk of bleeding is not seen in the 
elderly [57–59], it may be reasonable to apply the same “atypical feature” [60–63] criteria for pursuing 
a kidney biopsy as in the young (Table 2). 

Table 2. Atypical presentation features for Diabetic Kidney Disease. 

Features On Presentation 
Features Developing on Presentation 

or Follow-up 

Absence of Retinopathy  Rapid Decline in eGFR (> 5ml/min/1.73m2) 
Albuminuria < 5 years or > 25 years 
after diagnosis of Type 1 Diabetes 

↓ eGFR by more than 30% after initiation 
of an Inhibitor of the Renin Angiotensin System 

Active Urine Sediment or Serologies Acute Kidney Injury 
Hematuria/Nephritic Syndrome Sudden/acute worsening of albuminuria 

5. Treatment Considerations 

The general approach to treating CKD in DM in the elderly is not different than the one applied 
to younger individuals, though the elements should be highly individualized in order to account for 
other medical problems and comorbidities with advancing age. When approaching any patient with 
CKD, the overarching aim is to control the risks of both cardiovascular disease and kidney disease 
progression, as most patients are more likely to experience a cardiovascular event than needing 
dialysis [64,65]. The components of this approach include lifestyle changes (smoking cessation, a 
healthy lifestyle that includes exercise preferably longer than 150 minutes weekly), reduction in 
sodium intake (to less than 2 grams every day) and avoiding extreme protein intakes (e.g., 0.8gm/kg/d 
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is a reasonable goal), and active pharmaceutical interventions to control blood pressure, glycemia, 
atherosclerotic cardiovascular risk and specific antiproteinuric and antifibrotic therapies.  

5.1. Non-Pharmaceutical interventions and goals of therapy 

5.1.1. Exercise 

An individualized, planned and supervised combination of aerobic and resistance training is 
considered the most effective way to control glycemia [66]. Contraindications to exercise stem from 
specific comorbidities (e.g. proliferative retinopathy, aneurysms, severe autonomic insufficiency with 
propensity for hypoglycemia) and are often temporary in nature (e.g. during an acute exacerbation 
of ischemia, heart failure or hypertensive event and periods of poor glycemic control with propensity 
to hypoglycemia) [67]. Tailoring the prescription of exercise program to the functional capacity 
limitations of the individual can be achieved through the Vivifrail multicomponent exercise program 
[68]. 

5.1.2. Dietary Considerations 

Sodium restriction to less than 2g a day improves hypertension and the efficacy of 
antihypertensive medications. When dietary intake of fresh vegetables is poor, increasing levels of 
sodium intake has been associated with increased incidence of diabetic retinal disease [69]. A DASH 
diet can improve hypertension control, but can lead to hyperkalemic episodes in individuals with 
hyporeninemic hypoaldosteronism. Current American Diabetes Association (ADA) guidelines 
suggest limiting protein intake to 0.8-1.0 g/kg/day in those with DM and CKD. Nevertheless, studies 
on dietary protein restriction have failed to show a clear benefit in reducing the progression of DKD 
[55,70,71]. One should be aware that this target conflicts with that in the guideline for geriatric adults 
that recommend a target protein intake of 1-1.2g/kg to prevent malnutrition and sarcopenia in old 
age [72]. The benefit (progression of CKD) to risk (developing protein – energy wasting) should be 
carefully balanced to when prescribing low protein diets in elderly adults with advanced CKD. This 
balancing act should consider the presence of pre-existing malnutrition, rate of progression of CKD, 
CKD stage and the presence of comorbidities/anticipated life expectancy which would shift the focus 
towards quality, rather than quantity of life and dialysis avoidance. An approach that attempts to 
reconcile guidelines and prioritize goals distinguishes between “nutritional-geriatric” priorities (age 
is the dominant factor) vs. “renal” priority (when the patient’s goal would be to avoid dialysis at any 
cost, emphasizing that these priorities may shift during periods of critical illness [73]. Implementing 
nutritional therapies should be done in a stepwise manner: first, a nutritional assessment with a 
validated tool should take place and if the patient screens positive for protein-energy malnutrition, a 
formal assessment with the Subjective Global Assessment (SGA), second an on-going evaluation of 
muscle mass and function during the implementation of dietary restrictions to detect early 
development of sarcopenia and protein-energy malnutrition that would limit the continuation of 
such diets [73].   

5.1.3. Blood Pressure, Lipid and Glycemia Control in the Elderly with CKD in DM 

The ADA standards of care in DM [74] framework considers blood pressure, glycemic control 
and lipids together and this is integrative, comprehensive approach provides a solid base to approach 
the elderly individual with CKD in DM. This framework acknowledges that tight glycemic control 
comes with higher risks [75–79] in such individuals due to a non-robust physiologic response to 
hypoglycemia and greater hypoglycemia unawareness. That framework progressively de-escalates 
the aggressiveness of goal directed therapy as the number of pre-existing conditions (those severe 
enough to require medication or lifestyle management) advance to end-stage chronic illness. The 
blood pressure targets that the ADA proposes differ from those in the KDIGO guidelines [80] which 
are heavily influenced by the SPRINT trial [81]. However, even the KDIGO guidelines point out that 
the benefits of tight blood pressure control is less certain in those with DM, advanced (stages 4 and 
5) CKD and the very old (individuals older than 90). Hence for the elderly patients with DM and 
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CKD who find themselves at the intersection of these groups, shared decision making and 
individualized goal setting that minimizes the side effects of therapy and their effect on quality of life 
should take precedence over a “one-size-fits-all” blood pressure target. 

Table 3. Targets of anti-hypertensive, glycemic and lipid therapy in the elderly patient with CKD in 
diabetes. 

 Healthy Complex Very Complex 

Patient 
Characteristics 
Health Status 

Few coexisting chronic illnesses 
AND 

intact cognitive and functional 
status 

At least 3 coexisting chronic 
illnesses OR   

2+ instrumental ADL 
impairments OR 

mild-to-moderate cognitive 
impairment 

Long Term Care facility 
resident OR 

end-stage chronic illnesses 
OR moderate-to-severe 

cognitive impairment OR 
2+ ADL impairments 

Rationale 
Longer remaining life 

expectancy 

Intermediate remaining life 
expectancy, high treatment 

burden, hypoglycemia 
vulnerability, fall risk 

Limited remaining life 
expectancy makes benefit 

uncertain 

HbA1c 
<7.0–7.5% 

(53–58 mmol/mol) 
<8.0% 

(64 mmol/mol) 

Do not rely on HbA1C; 
glucose control decisions 

should be based on 
avoiding hypoglycemia 

and symptomatic 
hyperglycemia 

Fasting/pre-
prandial glucose 

80–130 mg/dL 
(4.4–7.2 mmol/L) 

90–150 mg/dL 
(5.0–8.3 mmol/L) 

100–180 mg/dL (5.6–10.0 
mmol/L) 

Bedtime glucose 80–180 mg/dL (4.4–10.0 mmol/L) 
100–180 mg/dL 

(5.6–10.0 mmol/L) 
110–200 mg/dL 

(6.1–11.1 mmol/L) 
Blood Pressure <140/90 mmHg <140/90 mmHg <150/90 mmHg 

Lipid Target 
Statin unless contraindicated,  

or not tolerated 
Statin unless contraindicated, 

or not tolerated 
Consider likelihood of 

benefit with statin 

Coexisting chronic illnesses: arthritis, cancer, heart failure, depression, emphysema, falls, hypertension, 
incontinence, Stage 3 or worse CKD, myocardial infarction, and stroke. End-stage chronic illness, such as stage 
3–4 heart failure or oxygen-dependent lung disease, dialysis dependent ESKD, or uncontrolled metastatic 
malignancy. ADL: Activities of daily living. 

When statins are used for primary and secondary prevention, a benefit can be unequivocally 
expected for those individuals whose life expectancy exceeds the time frames (2 – 6 years) of the 
clinical trials [82]. Equivalently, one may use the average time to benefit for a therapy, which for 
statins was 2.5 years [83] and treat individuals whose expected survival exceeds this time frame. 
Many advanced age individuals with CKD stage 3a-5 would benefit according to this criterion, and 
this is the reason the KDIGO clinical practice guidelines [84] recommend the use of a statin or a 
statin/ezetimibe in patients older than 50 years old. These recommendations are largely based on the 
SHARP trial [85] that randomized participants with CKD (mean eGFR of 27 ml/min/1.73 m2,, N = 
9270) to receive simvastatin 20 mg plus ezetimibe 10 mg daily or placebo. Statin plus ezetimibe 
therapy reduced the primary outcome of major atherosclerotic event (coronary death, myocardial 
infarction, need for revascularization, non-hemorrhagic stroke) by 17% (95% CI: 0.06 – 0.26), but 
without delaying dialysis.  

5.2. Pharmaceutical interventions to reduce cardiorenal risk in eldelry patients with CKD in DM 

5.2.1. Inhibitors of the Renin Angiotensin System 

Inhibitors of the renin angiotensin system (RASi) were established in the treatment of DKD by 
the pivotal trials IDT [86] and RENAAL [87].  IDT and RENAAL established that benefits of RASi 
are maximized when the dose is maximized and identified residual albuminuria as marker of 
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increased cardiovascular and kidney disease risk [88,89] and a criterion for adding additional agents 
and/or enrolling patients in trials of investigational agents to retard the progression of kidney disease. 
In a recent analysis these agents were underutilized: 17% of patients with DM initiated these agents 
[90] within 12 months of diagnosis of CKD [91], eventually these agents are only used in ~ 60% of 
eligible patients, but without any racial disparities in utilization [92]. The British Clinical 
Diabetologists and the UK renal association guidelines about the management of ACEi and ARBs in 
patients with DM and CKD [93], which don’t explicitly apply to elderly individuals are summarized 
below:  

1. Kidney function and potassium level should be checked within 7 to 10 days after initiation  
2. Up to 30% of eGFR decline may be tolerated. 
3. Drops in kidney function more than 30%, should prompt investigation for RAS, sepsis, volume 

depletion or concomitant medications, e.g., NSAIDs 
4. If an alternative explanation for a marked decline in renal function cannot be inferred, the dose 

of the RASi may be reduced. 
5. Potassium binders (Patiromer and Sodium Zirconium Cyclosilicate) may be used to reduce the 

serum potassium if it rises over 5 mEq/l and allow the RASi to be continued. 
6. Combination therapy with ACEi, Direct Renin Inhibitor, and ARBs should not be used since 

multiple clinical trials have shown greater risks of hypotension, hyperkalemia, and acute renal 
injury with these combinations [94]. 

7. In advanced (stage 4 and 5) CKD, discontinuation [95] of the  RASi was associated with a lower 
risk for hyperkalemia (HR, 0.65; 95% CI, 0.54-0.79), but higher risk of death (HR, 1.39, 95% CI 
1.20 – 1.60), and higher risk of progression to ESKD (HR 1.19, 95% CI: 0.86 – 1.65).  The STOP-
ACEi [96,97] RCT examined the benefits vs. harm of stopping the RASi in patients with advanced 
CKD (eGFR was ~18 ml/min/1.73m2 at baseline). There was no difference in the eGFR (primary 
outcome) at 3 years between participants older than 65 years (- 0.32, 95% CI -2.72 – 2.09 
ml/min/1.73m2) and those younger than 65 years (- 0.32, 95%CI -2.92 – 2.28 ml/min/1.73m2). 
ESKD occurred in 128 patients (62%) among those who discontinued the RASi and in 115 
patients (56%) who continued them (HR, 1.28; 95% CI, 0.99 to 1.65). There was a similar number 
of cardiovascular events (108 vs. 88) and deaths (20 vs. 22) in the two arms. 

5.2.2. Sodium Glucose Co-transporter two inhibitors 

SGLT2is are small molecules that act on the luminal side in the proximal tubule of the kidney 
and inhibit the SGLT2 transporter. In meta-analyses of treatment naïve patients and patients treated 
with metformin SGLT2is reduced HbA1c by -0.81 to -1.02% and by -0.57 to -0.63%, respectively  [98]. 
The glycosuric effect of this category of antidiabetic agents depends on the total GFR and they become 
less efficacious in reducing HbA1c when eGFR drops below 60mL/min/1.73m  [99,100]. 
Nevertheless, according to Brenner’s hypothesis hyperfiltering nephrons exist at all levels of kidney 
dysfunction and SGLT2is continue to alleviate kidney hyperfiltration in diabetic patients with low 
GFRs.  

The cardiovascular safety trials for empagliflozin (EMPA-REG OUTCOME) [101,102], 
canagliflozin (integrated CANVAS program consisting of two clinical trials, CANVAS and 
CANVAR-R) [103–105], dapagliflozin (DECLARE-TIMI-58) and ertugliflozin (VERTIS-CV)[99,103] 
hinted at the combined cardiorenal benefit of SGLT2i. In these SGLT2i reduced Major Adverse 
Cardiovascular Events (MACE:cardiovascular death, non-fatal myocardial infarction, or stroke) in 
the case of the empagliflozin and canagliflozin trials were non-inferior in the dapagliflozin and 
ertugliflozin trials. All drugs reduced heart failure hospitalizations in these trials. When the 
composite kidney specific outcome of progression to dialysis dependency/need for kidney 
transplantation and declines in eGFR was harmonized across the four trials [99], SGLT2is were seen 
to be associated with renal benefits. Heart failure specific trials have included patients with reduced 
(dapagliflozin, DAPA-HF [106],  empaglifozin EMPEROR-REDUCED[107]) and preserved 
(dapagliflozin, DELIVER [108] ,  empagliflozin EMPEROR-PRESERVED [109]) ejection fraction.  
Trials with primary kidney specific outcomes include the CREDENCE trial (canagliflozin) [110] in 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 October 2023                   doi:10.20944/preprints202310.0551.v1

https://doi.org/10.20944/preprints202310.0551.v1


 8 

 

DKD,  DAPA-CKD (dapagliflozin) [111] and EMPA-KIDNEY (empagliflozin) [112]. The latter two 
trials included patients with both diabetic and non-diabetic forms of CKD. All SGLT2i kidney 
outcome trials included  patients who manifested residual, moderate to severe albuminuria while 
on the standard of therapy for kidney disease, i.e. a  maximum tolerated dose of an ACEi or an ARB. 
Across all trials, the SGLT2i have been associated with  biphasic effects on the eGFR, with an acute 
dip of between 2-5 ml/min/1.73m2 during the first month [113–115] followed by stabilization 
thereafter, while the participants in the placebo group experienced a faster decline in kidney function. 

A previous random effect meta-analysis that modelled heterogeneity in these trials [116] by one 
of the authors has demonstrated that the beneficial effects of SGLT2i is a class effect . Other meta-
analyses have shown that the benefits of these drugs do not vary by participant age [117,118]. In 
Figure 1 we summarize the age by subgroup results in the cardiovascular, heart failure and kidney 
outcomes in the SGLT2i trials to date. Taken as a class the interactions with age are not statistically 
significant (p=0.294, Wald p-value), i.e. benefit of the SGLT2i do not vary by age. Furthermore, there 
was no evidence of heterogeneity by drug type (p=0.62, ANOVA test comparing a model adjusting 
for drug, outcome, age group vs model adjusting for outcome, age group). SGLT2is are in general 
safe drugs, but reported side effects such as diabetic ketoacidosis, and lower limb amputations appear 
to be barriers in prescribing them. A meta-analysis [119] has quantified risks and benefits of SGLT2i 
in patients with and without DM: the Number Needed to Treat  to prevent one death (120) or one 
kidney disease progression event (48) dominated the Number Needed to Harm  for the development 
of one lower limb amputation (309) or diabetic ketoacidosis event (636). For most patients, SGLT2i 
would accrue a 3-10 fold larger benefit than risk depending on the specific pair of outcomes 
considered [119]. Of note, Acute Kidney Injury (AKI) is reduced by 23% (RR 0.77, 95% CI 0.70–0.84) 
under a SGLT2i. A framework for managing the risks of the SGLT2i was put forward in a roundtable 
discussion involving representatives from cardiology, endocrinology, and nephrology (Table 3).  

 
Figure 1. SGLT2i and Clinical Outcomes in Older vs. Younger Individuals (Hazard Ratio and 95% 
Confidence Intervals). CRC: Cardiorenal Composite (CREDENCE: death from renal or cardiovascular 
causes, doubling of serum creatinine, or kidney failure defined as eGFR< 15 ml/min/1.73m2, need for 
dialysis or transplant, DAPA-CKD: death from renal or cardiovascular causes, decline of > 50% of the 
eGFR from baseline and kidney failure, defined as need for dialysis, transplant, or sustained eGFR to 
less than 15 ml/min/1.73m2, EMPA-KIDNEY: death from cardiovascular cases or progression of 
kidney disease defined as ESKD, sustained decrease in eGFR < 10 ml/min/1.73m2, decrease of eGFR 
>40% from baseline, death from kidney renal causes) , HHF: Hospitalization for Heart Failure, MACE: 
Major Adverse Cardiovascular Events (composite of cardiovascular death, non-fatal myocardial 
infarction, or stroke). Diamonds show predictions for a random effects model adjusting for drug, 
outcome and age subgroup, whiskers-boxes show the observed hazard ratios and 95% confidence 
intervals in the source trial data. 
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Table 3. Adverse events associated with SGLT-2i and proposed preventative measures. 

Adverse Events Title 2 At risk 
Genitourinary Infections Women,  

Uncircumcised men 
Adequate perineal hygiene 

Optimal diabetes care 
Antifungals 

Avoid SGLT-2is in patients with 
history of severe, recurrent 

infections 
Diabetic Ketoacidosis Insulin deficiency, ketogenic 

diet, alcohol abuse, acute illness, 
surgery 

Maintain insulin; ≤20% reduction 
in insulin dosage if necessary 

Discontinue SGLT-2i 
temporarily in acute illness or 

surgery 
Avoid SGLT-2is in patients with 

history of DKA 
Discontinue SGLT-2i if patient is 

not eating or has vomiting 
and/or diarrhea  

Acute Kidney Injury eGFR dip ≥30%, volume 
depletion 

Reassess SGLT-2i regimen 
Frequently assess renal function, 

especially in patients with 
baseline eGFR<60 mL/min/1.73 

m2 

Discontinue SGLT-2i 
temporarily in acute illness 

Volume Depletion eGFR<60 mL/min/1.73 m2, old 
age, concomitant diuretic, prior 
volume depletion, hypotension, 

SBP<110mm Hg 

Reduce diuretic or hypotension-
inducing agent use  

Inform patients to maintain 
adequate oral hydration 

Discontinue SGLT-2i 
temporarily in AKI 

Hypoglycemia Concomitant insulin or SU, old 
age 

Reduce insulin ≤20% or SU ≤50% 
if HbA1c<7.0%-8.0% 

Discontinue SU if HbA1c <8.0% 
in older patients 

Gradually reduce SU if HbA1c 
<8.0% in younger patients 

Amputation History of amputation, 
peripheral vascular disease, 

neuropathy, foot ulcers 

Monitor at-risk patients for new 
pain, skin ulcerations, or 

infections 
Inform patients about proper 

foot care  
Hyperkalemia No concern  

The data in this table was adapted from Figure 3 from [120] under the Creative Commons Attribution (CC BY) 
license. 

5.2.3. Mineralocorticoid antagonists 

The use of Mineralocorticoid receptor antagonism (MRAs) in CKD with DM is predicated on 
their anti-inflammatory and anti-fibrotic effects on heart, blood vessels and kidneys. The benefits of 
steroidal MRAs (e.g. eplerenone, spironolactone) were summarized by the Cochrane group[121] and 
include reductions in systolic blood pressure by ~ 5mmHg (95% CI 1.22 to 1.75 mmHg), protein 
excretion by 500mg per day (95% CI 0.2 to 0.82 gm/day) but uncertain effects on kidney failure, 
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cardiovascular and total mortality. In this meta-analysis of mostly spironolactone studies, the risk for 
gynecomastia  and hyperkalemia  were increased with the use of spironolactone.  

Non-steroidal MRAs such as finerenone, esaxerenone and apararenone offer a balanced 
antagonism in the kidney and the heart, thus reducing the risk of hyperkalemia [37,122]. Phase 2 
clinical trials with esaxerenone [123] and apararenone [124] in DKD show that these agents may 
reduce proteinuria by 40-60% when added on RASi. At the time of this writing the only commercially 
available non-steroidal MRA for CKD in DM is finerenone. The approval of finerenone  was based 
on two large randomized controlled trials: FIDELIO-DKD [125] and FIGARO-DKD [126] and a pre-
specified patient level meta-analysis of these two trials (FIDELITY) [127] which provided the data for 
the effects of this drug on cardiovascular and kidney specific outcomes. Both these studies followed 
a similar design, i.e., they enrolled patients with CKD in Type II DM who had some degree of residual 
albuminuria despite being on a maximum tolerated dose of RASi. FIGARO-DKD recruited patients 
with better preserved kidney function (UACR > 300 mg/g with  eGFR > 60ml/min/1.73m2 or UACR 
in 30-300 mg/g & eGFR in 25-90 ml/min/1.73m2), while FIDELIO-DKD patients with more advanced 
CKD (UACR > 300 mg/g and eGFR 25-75 ml/min/1.73m2 or UACR in 30-300 mg/g and eGFR 25-60 
ml/min/1.73m2 ). The primary outcome of FIDELIO-DKD was a composite of kidney failure (need of 
dialysis and transplant), sustained decrease of the eGFR by 40% relative to baseline and death from 
renal causes). The primary outcome for FIGARO-DKD was a composite of cardiovascular death, non-
fatal myocardial infarction and stroke and hospitalization for heart failure (MACE/HHF). The 
primary outcome of FIGARO-DKD was a secondary outcome of FIDELIO-DKD and vice versa, 
enabling the joint examination of the effects of finerenone on the cardiorenal risk in patients with 
DKD in FIDELITY. Finerenone was equally effective in younger (< 65 years old) and older (≥65 years 
old) patients (Table 4).  

Table 4. Finerenone and Clinical Outcomes in Older vs. Younger Individuals (Hazard Ratio and 95% 
Confidence Intervals). 

Clinical Trial Outcome Effect in younger patients Effect in older patients 

FIGARO-DKD MACE/HHF2 0.90 
0.74 – 1.10 

0.85 
0.72 – 1.00 

FIGARO-DKD1 CR3 0.72 
0.52 – 0.99 

0.92  
 0.61-1.38 

FIDELIO-DKD CR 0.85 
0.72 – 1.01 

0.79 
0.67 – 0.94 

1 the subgroup analysis was presented in a follow-up publication [128] and used a sustained reduction of 
eGFR>57%, rather than the 40% used in the primary analysis of the FIGARO-DKD study 2, HHF: Hospitalization 
for Heart Failure, MACE: Major Adverse Cardiovascular Events (composite of cardiovascular death, non-fatal 
myocardial infarction, or stroke) 3 CR: Composite Renal outcome. 

3.2.4. GLP1 and dual GLP1/GIP1 Receptor Agonists 

GLP1 and the dual receptor agonists of the GLP1/GIP receptors are a class of antiglycemic agents 
with broad cardiometabolic effects and emerging benefit for kidney and cardiovascular benefits. 
These drugs activate the receptors of the endogenous incretins, glucagon-like peptide 1 and glucose-
dependent insulinotropic polypeptide (GIP). Similar to SGLT2is, GLP1RAs were initially introduced 
to reduce glycemia with a minimal risk for hypoglycemia, while also reducing weight. Specific GLP1 
RAs (liraglutide and semaglutide) have been approved as anti-obesity medications even in patients 
without DM. Dual agonists are associated with more pronounced weight loss and an enhanced 
antiglycemic effect relative to insulin or pure GLP1RAs in the SURPASS clinical trial [129–132]. 
Certain GLP1 class (dulaglutide, liraglutide, semaglutide) have been shown to reduce cardiovascular 
disease, and thus are indicated in the ADA standards of care for DM [133] for the management of 
patients with atherosclerotic cardiovascular disease (ASCVD), or with high-risk indicators of 
ASCVD.  In a recent meta-analysis [134], GLP-1 receptor agonists in adults older than 65 years old, 
were associated with a 15.3% (OR 0.85, 95% CI 0.79 to 0.91) reduction in MACE events, similar to the 
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16% (OR 0.84, 95% CI 0.70 to 1.01) benefit seen in younger adults. Hence, GLP1RAs are equally 
beneficial in older and younger adults with type II DM for the management of their cardiovascular 
disease. To date, the clinical benefits of GLP1 and GLP1/GIP RA on kidney outcomes has been limited 
to surrogate markers of kidney function loss (eGFR slope) and markers of kidney damage (UACR) 
often examined as explorations of kidney specific outcomes [135–138] in their cardiovascular safety 
and primary efficacy trials.  A recent meta-analysis [139] examined the effects of GLP1RAs on 
cardiovascular (MACE) and two kidney outcomes: a kidney composite consisting of development of 
macroalbuminuria, doubling of serum creatinine or at least a 40% decline in eGFR, kidney 
replacement therapy, or death due to kidney disease; and worsening of kidney function, defined as 
either doubling of serum creatinine or at least a 40% decline in eGFR. GLP1RA reduced MACE by 
14% (HR 0.86, 95% CI 0.80 – 0.96, p< 0.001), with no evidence of interaction by age (p=0.78 comparing 
effects in individuals younger than 65 vs. those older than 65). In REWIND [140], one of the few 
GLP1RA trials to report a kidney specific outcome by age, individuals older than 66 years had a HR 
of 0.79 (95%CI 0.69 – 0.90) that was not statistically different (p-value for the interaction 0.17) to that 
of individuals younger than 66 (HR:  0.90, 95% CI: 0.79 – 1.02). In SURPASS-4[136], the placebo 
corrected difference in the eGFR slope did not differ in older (≥65 years old) and younger individuals: 
2.4 (1.5 – 3.3)  vs.  2.1 (95% CI 1.2 – 2.9) ml/min/1.73m2/year, p for interaction = 0.67. Finally, the 
least squares change from baseline over placebo was -38.5% (95% CI: -43.6% to -26.2%) vs. -28.5% 
(95% CI: -36.4% to -19.7%) p for interaction = 0.80. Hence, similarly to SGLT2i and non-steroidal MRA, 
the beneficial effects of GLP1 and GLP1/GIP receptor agonists are observed across the adult age span.   

6. Conclusions 

CKD in the elderly patient with DM is associated with both cardiovascular risk and kidney 
progression risks. Pathophysiology is complex and the spectrum of CKD is not limited to typical DN, 
but may also include additional vascular insults superimposed on a senescence molecular phenotype. 
Care of the elderly patient with CKD in DM requires a multidisciplinary, holistic approach that 
considers cardiovascular risk, comorbidities, life expectancy in addition to the risk of kidney disease 
progression. The effects of emerging standard of care pharmaceutical interventions (e.g. SLGT2 
inhibitors, MRAs and GLP1RA/dual GLP1/GIP RA antagonists) to reduce the risk of cardiovascular 
and kidney risk are observed in both younger and older individuals 
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