Submitted:
09 October 2023
Posted:
11 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Historical aspects
2.1. Insight from gene polymorphism association studies
2.2. Insight from β3-AR knock-out studies
2.3. Early research and development programs
3. Insulin release and cellular glucose uptake
3.1. Insulin release
3.2. Cellular glucose uptake
4. Lipolysis, adipose tissue remodeling and obesity
4.1. β3-Adrenoceptor expression in adipose tissue
4.2. Lipolysis and thermogenesis
4.2.1. Non-primate animals studies
4.2.2. Human and primate studies
4.2.3. In vitro studies
4.3. Adipose tissue remodeling
5. Obesity
5.1. Non- primate animal studies
5.2. Human and primate studies
6. Clinical development programs
7. Why do rodent and primate studies differ?
8. Conclusion and future perspectives
9. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blüher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288-298. [CrossRef]
- Zhang, L.; Zhu, L.; Xu, T.; Lang, J.; Li, Z.; Gong, J.; Liu, Q.; Liu, X. A population-based survey of the prevalence, potential risk factors, and symptom-specific bother of lower urinary tract symptoms in adult Chinese women. Eur. Urol. 2015, 68, 97-112. [CrossRef]
- Michel, M.C.; Cardozo, L.; Chermansky, C.J.; Cruz, F.; Igawa, Y.; Lee, K.S.; Sahai, A.; Wein, A.J.; Andersson, K.E. Current and emerging pharmacological targets and treatments of urinary incontinence and related disorders. Pharmacol. Rev. 2023, 75, 554-674. [CrossRef]
- Bergmann, N.C.; Davies, M.J.; Lingvay, I.; Knop, F.K. Semaglutide for the treatment of overweight and obesity: A review. Diabetes Obes. Metab. 2023, 25, 18-35. [CrossRef]
- Prillaman, M. Four key questions on the new wave of anti-obesity drugs. Nature 2023, 620, 28-30. [CrossRef]
- Michel, M.C.; Mayoux, E.; Vallon, V. A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans. Naunyn Schmiedebergs Arch. Pharmacol. 2015, 388, 801-816. [CrossRef]
- Zhang, Y.-J.; Han, S.-L.; Sun, X.-F.; Wang, S.-X.; Wang, H.-Y.; Liu, X.; Chen, L.; Xia, L. Efficacy and safety of empagliflozin for type 2 diabetes mellitus: Meta-analysis of randomized controlled trials. Medicine 2018, 97, e12843-e12843. [CrossRef]
- Procino, G.; Carmosino, M.; Milano, S.; Dal Monte, M.; Schena, G.; Mastrodonato, M.; Gerbino, A.; Bagnoli, P.; Svelto, M. b3 adrenergic receptor in the kidney may be a new player in sympathetic regulation of renal function. Kidney Int. 2016, 90, 555-567. [CrossRef]
- Chen, K.Y.; Brychta, R.J.; Sater, Z.A.; Cassimatis, T.M.; Cero, C.; Fletcher, L.A.; Israni, N.S.; Johnson, J.W.; Lea, H.J.; Linderman, J.D. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. Journal of biological chemistry 2020, 295, 1926-1942.
- Darcy, J.; Tseng, Y.-H. ComBATing aging—does increased brown adipose tissue activity confer longevity? Geroscience 2019, 41, 285-296.
- Aldiss, P.; Betts, J.; Sale, C.; Pope, M.; Budge, H.; Symonds, M.E. Exercise-induced ‘browning’of adipose tissues. Metabolism 2018, 81, 63-70.
- Bel, J.S.; Tai, T.; Khaper, N.; Lees, S.J. Mirabegron: The most promising adipose tissue beiging agent. Physiological Reports 2021, 9, e14779.
- O’Mara, A.E.; Johnson, J.W.; Linderman, J.D.; Brychta, R.J.; McGehee, S.; Fletcher, L.A.; Fink, Y.A.; Kapuria, D.; Cassimatis, T.M.; Kelsey, N.; et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. The Journal of Clinical Investigation 2020, 130, 2209-2219. [CrossRef]
- Loh, R.K.; Formosa, M.F.; La Gerche, A.; Reutens, A.T.; Kingwell, B.A.; Carey, A.L. Acute metabolic and cardiovascular effects of mirabegron in healthy individuals. Diabetes, Obesity and Metabolism 2019, 21, 276-284.
- Cawthorne, M.A.; Carroll, M.J.; Levy, A.L.; Lister, C.A.; Sennitt, M.V.; Smith, S.A.; Young, P. Effects of novel beta-adrenoceptor agonists on carbhohydrate metabolism: relevance for the treatment of non-insulin-dependent diabetes. Int. J. Obes. 1984, 8 Suppl. 1, 93-102.
- Lands, A.M.; Arnold, A.; McAuliff, J.P.; Luduena, F.P.; Brown, T.G. Differentiation of receptor systems activated by sympathetic amines. Nature 1967, 214, 597-598.
- Furchgott, R.F. The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. In Catecholamines, Blaschko, H., Muecholl, E., Eds.; Springer Verlag: New York, 1972; pp. 283-335.
- Harms, H.H.; Zaagsma, J.; van der Wal, B. Beta-adrenoceptor studies. III. on the beta-adrenoceptors in rat adipose tissue. Eur. J. Pharmacol. 1974, 25, 87-97. [CrossRef]
- Harms, H.H. Stereochemical aspects of beta-adrenoceptor antagonist-receptor interactions in adipocytes. Differentiation of beta-adrenoceptors in human and rat adipocytes. Life Sci. 1976, 19, 1447-1452. [CrossRef]
- Bianchetti, A.; Manara, L. In vitro inhibition of intestinal motility by phenylethanolaminetetralines: evidence of atypical ß-adrenoceptors in rat colon. Br. J. Pharmacol. 1990, 100, 831-839.
- Nergardh, A.; Boreus, L.O.; Naglo, A.S. Characterization of the adrenergic beta-receptor in the urinary bladder of man and cat. Acta Pharmacol. Toxicol. (Copenh.) 1977, 40, 14-21.
- Arch, J.R.S. Perspectives from ß3-adrenoceptor agonists on pharmacology, physiology and obesity drug discovery. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2008, 378, 225-240. [CrossRef]
- Emorine, L.J.; Marullo, S.; Briden-sutren, M.M.; Patey, G.; Tate, K.; Delavier-Klutchko, C.; Strosberg, A.D. Molecular characterization of the human ß3-adrenergic receptor. Science 1989, 245, 1118-1121.
- Muzzin, P.; Revelli, J.P.; Kuhne, F.; Gocayne, J.D.; McCombie, W.R.; Venter, J.C.; Giacobino, J.P.; Fraser, C.M. An adipose tissue-specific ß-adrenergic receptor. Molecular cloning and down-regulation in obesity. J. Biol. Chem. 1991, 266, 24053-24058.
- Nahmias, C.; Blin, N.; Elalouf, J.M.; Mattei, M.G.; Strosberg, A.D.; Emorine, L.J. Molecular characterization of the mouse ß3-adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO J. 1991, 10, 3721-3727.
- Granneman, J.G.; Lahners, K.N.; Rao, D.D. Rodent and human ß3-adrenergic receptor genes contain an intron within the protein-coding block. Mol. Pharmacol. 1992, 42, 964-970.
- Granneman, J.G.; Lahners, K.N.; Chaudhry, A. Characterization of the human ß3-adrenergic receptor gene. Mol. Pharmacol. 1993, 44, 264-270.
- Van Spronsen, A.; Nahmias, C.; Krief, S.; Briend-Sutren, M.-M.; Strosberg, A.D.; Emorine, L.J. The promoter and intron/exon structure of the human and mouse β3-adrenergic-receptor genes. Eur. J. Biochem. 1993, 213, 1117-1124. [CrossRef]
- Brown, J.A.; Machida, C.A. The 5′ flanking region of the rat β3-adrenergic receptor gene: divergence with the human gene and implications for species-specific gene expression. DNA Seq. 1994, 4, 319-324. [CrossRef]
- Clement, K.; Vaisse, C.; Manning, B.S.J.; Basdevant, A.; Guy-Grand, B.; Riuz, J.; Silver, K.D.; Shuldiner, A.R.; Froguel, P.; Strosberg, A.D. Genetic variation in the ß3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N. Engl. J. Med. 1995, 333, 352-354. [CrossRef]
- Walton, J.; Silver, K.; Bogardus, C.; Knowler, W.C.; Celi, F.S.; Austin, S.; Manning, B.; Strosberg, A.D.; Stern, M.P.; Raben, N.; et al. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the ß3-adrenergic receptor gene. N. Engl. J. Med. 1995, 333, 343-347. [CrossRef]
- Li, L.S.; Lönnqvist, F.; Luthman, H.; Arner, P. Phenotypic characterization of the Trp64Arg polymorphism in the beta 3-adrenergic receptor gene in normal weight and obese subjects. Diabetologia 1996, 39, 857-860. [CrossRef]
- Umekawa, T.; Yoshida, T.; Sakane, N.; Kogure, A.; Kondo, M.; Honjyo, H. Trp64Arg Mutation of ß3-adrenoceptor gene deteriorates lipolysis by ß3-adrenoceptor agonist in human omental adipocytes. Diabetes 1999, 48, 117-120.
- Kimura, K.; Sasaki, N.; Asano, A.; Mizukami, J.; Kayahashi, S.; Kawada, T.; Fushiki, T.; Morimatsu, M.; Yoshida, T.; Saito, M. Mutated human ß3-adrenergic receptor (Trp64Arg) lowers the response to ß3-adrenergic agonists in transfected 3T3-L1 preadipocytes. Horm. Metab. Res. 2000, 32, 91-96.
- Kadowaki, H.; Yasuda, K.; Iwamoto, K.; Otabe, S.; Shimokawa, K.; Silver, K.; Walston, J.; Yoshinaga, H.; Kosaka, K.; Yamada, N.; et al. A mutation in the ß3-adrenergic receptor gene is associated with obesity and hyperinsulinemia in Japanese subjects. Biochem. Biophys. Res. Commun. 1995, 215, 555-560. [CrossRef]
- Snitker, S.; Odeleye, O.E.; Hellmér, J.; Boschmann, M.; Monroe, M.B.; Shuldiner, A.R.; Ravussin, E. No effect of the Trp64Arg beta 3-adrenoceptor variant on in vivo lipolysis in subcutaneous adipose tissue. Diabetologia 1997, 40, 838-842. [CrossRef]
- Büettner, R.; Schäffler, A.; Arndt, H.; Rogler, G.; Nusser, J.; Zietz, B.; Enger, I.; Hügl, S.; Cuk, A.; Schölmerich, J.; Palitzsch, K.D. The Trp64Arg polymorphism of the ß3-adrenergic receptor gene is not associated with obesity or type 2 diabetes mellitus in a large population-based Caucasian cohort. J. Clin. Endocrinol. Metab. 1998, 83, 2892-2897. [CrossRef]
- Janssen, J.A.M.J.L.; Koper, J.W.; Stolk, R.P.; Englaro, P.; Uitterlinden, A.G.; Huang, Q.; van Leeuwen, J.P.T.M.; Blum, W.F.; Attanasio, A.M.F.; Pols, H.A.P.; et al. Lack of associations between serum leptin, a polymorphism in the gene for the beta 3-adrenergic receptor and glucose tolerance in the Dutch population. Clin. Endocrinol. (Oxf.) 1998, 49, 229-234. [CrossRef]
- Hoffstedt, J.; Poirier, O.; Thörne, A.; Lönnqvist, F.; Herrmann, S.M.; Cambien, F.; Arner, P. Polymorphism of the human ß3-adrenoceptor gene forms a well-conserved haplotype that is associated with moderate obesity and altered receptor function. Diabetes 1999, 48, 203-205. [CrossRef]
- Ahles, A.; Engelhardt, S. Polymorphic variants of adrenoceptors: physiology, pharmacology and role in disease. Pharmacol. Rev. 2014, 66, 598-637. [CrossRef]
- Michel, M.C. Are β3-adrenoceptor gene polymorphisms relevant for urology? Neurourol. Urodyn. 2023, 42, 33-39. [CrossRef]
- Susulic, V.S.; Frederich, R.C.; Lawitt, J.; Tozzo, E.; Kahn, B.B.; Harper, M.E.; Himms-Hagen, J.; Flier, J.S.; Lowell, B.B. Targeted disruption of the ß3-adrenergic receptor gene. J. Biol. Chem. 1995, 270, 29483-29492. [CrossRef]
- Revelli, J.P.; Preitner, F.; Samec, S.; Muniesa, P.; Kuehne, F.; Boss, O.; Vassalli, J.D.; Dulloo, A.; Seydoux, J.; Giacobino, J.P.; et al. Targeted gene disruption reveals a leptin-independent role for the mouse ß3-adrenoceptor in the regulation of body composition. J. Clin. Invest. 1997, 100, 1098-1106.
- Preitner, F.; Muzzin, P.; Revelli, J.P.; Seydoux, J.; Galitzky, J.; Berlan, M.; Lafontan, M.; Giacobino, J.P. Metabolic response to various ß-adrenoceptor agonists in ß3-adrenoceptor knock-out mice: evidence for a new ß-adrenergic receptor in brown adipose tissue. Br. J. Pharmacol. 1998, 124, 1684-1688. [CrossRef]
- Kaumann, A.J.; Molenaar, P. The low affinity site of the ß1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol. Ther. 2008, 118, 303-336.
- Massoudi, M.; Evans, E.; Miller, D.S. Thermogenic drugs for the treatment of obesity: screening using obese rats and mice. Ann. Nutr. Metab. 1983, 27, 26-37. [CrossRef]
- Yen, T.T.; McKee, M.M.; Bemis, K.G. Ephedrine reduces weight of viable yellow obese mice (Avy/a). Life Sci. 1981, 28, 119-128. [CrossRef]
- Arch, J.R.; Ainsworth, A.T.; Cawthorne, M.A. Thermogenic and anorectic effects of ephedrine and congeners in mice and rats. Life Sci. 1982, 30, 1817-1826. [CrossRef]
- Arch, J.R. The contribution of increased thermogenesis to the effect of anorectic drugs on body composition in mice. Am. J. Clin. Nutr. 1981, 34, 2763-2769. [CrossRef]
- Dulloo, A.G.; Miller, D.S. Thermogenic drugs for the treatment of obesity: sympathetic stimulants in animal models. Br. J. Nutr. 1984, 52, 179-196. [CrossRef]
- Arch, J.R.S. Challenges in β3-adrenoceptor agonist drug development. Ther. Adv. Endocrinol. Metab. 2011, 2, 59-64. [CrossRef]
- Brown, L.; Deighton, N.M.; Bals, S.; Söhlmann, W.; Zerkowski, H.R.; Michel, M.C.; Brodde, O.E. Spare receptors for ß-adrenoceptor-mediated positive inotropic effects of catecholamines in the human heart. J. Cardiovasc. Pharmacol. 1992, 19, 222-232.
- Arch, J.R.S. ß3-Adrenoceptor agonists: potential, pitfalls and progress. Eur. J. Pharmacol. 2002, 440, 99-107.
- Arch, J.R.; Ainsworth, A.T.; Cawthorne, M.A.; Piercy, V.; Sennitt, M.V.; Thody, V.E.; Wilson, C.; Wilson, S. Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 1984, 309, 163-165.
- Cernecka, H.; Sand, C.; Michel, M.C. The odd sibling: features of ß3-adrenoceptor pharmacology. Mol. Pharmacol. 2014, 86, 479-484. [CrossRef]
- Yoshida, T. The antidiabetic ß3-adrenoceptor agonist BRL 26830A works by release of endogenous insulin. Am. J. Clin. Nutr. 1992, 55, 237S-241S.
- Yoshida, T.; Yoshioka, K.; Hiraoka, N.; Umekawa, T.; Sakane, N.; Kondo, N. Effects of CL 316,243, a novel ß3-adrenoceptor agonist, on inuslin secretion in perfused mouse pancreas. Endocr. J. 1994, 41, 671-675.
- Perfetti, R.; Hui, H.; Chamie, K.; Binder, S.; Seibert, M.; McLenithan, J.; Silver, K.; Walston, J.D. Pancreatic ß-cells expressing the Arg64 variant of the ß3-adrenergic receptor exhibit abnormal insulin secretory activity. J. Mol. Endocrinol. 2001, 27, 133-144. [CrossRef]
- Atef, N.; Lafontan, M.; Double, A.; Helary, C.; Ktorza, A.; Penicaud, L. A specific ß3-adrenoceptor agonist induces pancreatic islet blood flow and insulin secretion in rats. Eur. J. Pharmacol. 1996, 298, 287-292.
- Guimaraes, S.; Moura, D. Vascular adrenoceptors: an update. Pharmacol. Rev. 2001, 53, 319-356.
- Ohlstein, E.H.; von Keitz, A.; Michel, M.C. A multicenter, double-blind, randomized, placebo controlled trial of the ß 3 -adrenoceptor agonist solabegron for overactive bladder. Eur. Urol. 2012, 62, 834-840. [CrossRef]
- Uehling, D.E.; Shearer, B.G.; Donaldson, K.H.; Chao, E.Y.; Deaton, D.N.; Adkison, K.K.; Brown, K.K.; Cariello, N.F.; Faison, W.L.; Lancaster, M.E.; et al. Biarylaniline phenethanolamines as potent and selective ß3 adrenergic receptor agonists. J. Med. Chem. 2006, 49, 2758-2771. [CrossRef]
- Grujic, D.; Susulic, V.S.; Harper, M.-E.; Himms-Hagen, J.; Cunningham, B.A.; Corkey, B.E.; Lowell, B.B. β3-adrenergic receptors on white and brown adipocytes mediate β3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake: a study using transgenic and gene knockout mice. Journal of Biological Chemistry 1997, 272, 17686-17693.
- Wheeldon, N.M.; McDevitt, D.G.; McFarlane, L.C.; Lipworth, B.J. ß-Adrenoceptor subtypes mediating the metabolic effects of BRL 35135 in man. Clin. Sci. 1994, 86, 331-337. [CrossRef]
- El Hadri, K.; Charon, C.; Pairault, J.; Hauquel-De Mouzon, S.; Quignard-Boulange, A. Down-regulation of β3-adrenergic receptor expression in rat adipose tissue during the fasted/fed transition: evidence for a role of insulin. Biochem. J. 1997, 323, 359-364. [CrossRef]
- Carpene, C.; Chalaux, E.; Lizarbe, M.; Estrada, A.; Mora, C.; Palacin, M.; Zorzano, A.; Lafontan, M.; Testar, X. ß3-Adrenergic receptors are responsible for the adrenergic inhibition of insulin-stimulated glucose transport in rat adipocytes. Biochem. J. 1993, 296, 99-105.
- Feve, B.; Pietri-Rouxel, F.; El Hadri, K.; Drumare, M.F.; Strosberg, A.D. Long term phorbol ester treatment down-regulates the ß3-adrenergic receptor in 3T3-F4424 adipocytes. J. Biol. Chem. 1995, 270, 10952-10959. [CrossRef]
- Gokmen-Polar, Y.; Coronel, E.C.; Bahouth, S.W.; Fain, J.N. Insulin sensitizes ß-agonist and forskolin-stimulated lipolysis to inhibition by 2’,5’-dideoxyadenosine. Am. J. Physiol. 1996, 270, C562-C569.
- Shimizu, Y.; Kielar, D.; Minokoshi, Y.; Shimazu, T. Noradrenaline increases glucose transport into brown adipocytes in culture by a mechanism different from that of insulin. Biochem. J. 1996, 314, 485-490.
- Kubo, N.; Kawahara, M.; Okamatsu-Ogura, Y.; Miyazaki, Y.; Otsuka, R.; Fukuchi, K. Evaluation of glucose uptake and uncoupling protein 1 activity in adipose tissue of diabetic mice upon β-adrenergic stimulation. Molecular Imaging and Biology 2019, 21, 249-256.
- Abe, H.; Minokoshi, Y.; Shimazu, T. Effect of a β3-adrenergic agonist, BRL35135A, on glucose uptake in rat skeletal muscle in vivo and in vitro. Journal of endocrinology 1993, 139, 479-486.
- Duffaut, C.; Bour, S.; Prévot, D.; Marti, L.; Testar, X.; Zorzano, A.; Carpéné, C. Prolonged treatment with the beta3-adrenergic agonist CL 316243 induces adipose tissue remodeling in rat but not in guinea pig: 2) modulation of glucose uptake and monoamine oxidase activity. Journal of physiology and biochemistry 2006, 62, 101-111.
- Dehvari, N.; da Silva Junior, E.D.; Bengtsson, T.; Hutchinson, D.S. Mirabegron: potential off target effects and uses beyond the bladder. British journal of pharmacology 2018, 175, 4072-4082.
- Finlin, B.S.; Memetimin, H.; Zhu, B.; Confides, A.L.; Vekaria, H.J.; El Khouli, R.H.; Johnson, Z.R.; Westgate, P.M.; Chen, J.; Morris, A.J. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. The Journal of clinical investigation 2020, 130, 2319-2331.
- Cypess, A.M.; Weiner, L.S.; Roberts-Toler, C.; Elía, E.F.; Kessler, S.H.; Kahn, P.A.; English, J.; Chatman, K.; Trauger, S.A.; Doria, A. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell metabolism 2015, 21, 33-38.
- Lee, P.; Bova, R.; Schofield, L.; Bryant, W.; Dieckmann, W.; Slattery, A.; Govendir, M.A.; Emmett, L.; Greenfield, J.R. Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans. Cell metabolism 2016, 23, 602-609.
- Saito, M.; Okamatsu-Ogura, Y.; Matsushita, M.; Watanabe, K.; Yoneshiro, T.; Nio-Kobayashi, J.; Iwanaga, T.; Miyagawa, M.; Kameya, T.; Nakada, K. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009, 58, 1526-1531.
- Peirce, V.; Carobbio, S.; Vidal-Puig, A. The different shades of fat. Nature 2014, 510, 76-83.
- Granneman, J.G.; Li, P.; Zhu, Z.; Lu, Y. Metabolic and cellular plasticity in white adipose tissue I: effects of β3-adrenergic receptor activation. American Journal of Physiology-Endocrinology and Metabolism 2005, 289, E608-E616.
- Trayhurn, P.; Beattie, J.H. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proceedings of the Nutrition Society 2001, 60, 329-339.
- Proença, A.R.; Sertié, R.A.L.; Oliveira, A.; Campaaa, A.; Caminhotto, R.; Chimin, P.; Lima, F.B. New concepts in white adipose tissue physiology. Brazilian journal of medical and biological research 2014, 47, 192-205.
- Wronska, A.; Kmiec, Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta physiologica 2012, 205, 194-208.
- Klingenspor, M.; Bast, A.; Bolze, F.; Li, Y.; Maurer, S.; Schweizer, S.; Willershäuser, M.; Fromme, T. Brown adipose tissue. Adipose tissue biology 2017, 91-147.
- Cannon, B.; Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiological reviews 2004.
- Virtanen, K.A.; Lidell, M.E.; Orava, J.; Heglind, M.; Westergren, R.; Niemi, T.; Taittonen, M.; Laine, J.; Savisto, N.-J.; Enerbäck, S. Functional brown adipose tissue in healthy adults. New England Journal of Medicine 2009, 360, 1518-1525.
- Pinckard, K.M.; Stanford, K.I. The heartwarming effect of brown adipose tissue. Molecular Pharmacology 2022, 102, 460-471.
- Nedergaard, J.; Bengtsson, T.; Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. 2007, 293, E444-E452. [CrossRef]
- Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.-H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150, 366-376.
- Pilkington, A.-C.; Paz, H.A.; Wankhade, U.D. Beige adipose tissue identification and marker Specificity—Overview. Frontiers in endocrinology 2021, 12, 599134.
- Thyagarajan, B.; Foster, M.T. Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Hormone molecular biology and clinical investigation 2017, 31, 20170016.
- Baskin, A.S.; Linderman, J.D.; Brychta, R.J.; McGehee, S.; Anflick-Chames, E.; Cero, C.; Johnson, J.W.; O’Mara, A.E.; Fletcher, L.A.; Leitner, B.P.; et al. Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a β3-adrenergic receptor agonist. Diabetes 2018, 67, 2113-2125. [CrossRef]
- Galitzky, J.; Carpene, C.; Bousquet-Mélou, A.; Berlan, M.; Lafontan, M. Differential activation of β1-, β2-and β3-adrenoceptors by catecholamines in white and brown adipocytes. Fundamental & clinical pharmacology 1995, 9, 324-331.
- Blondin, D.P.; Nielsen, S.; Kuipers, E.N.; Severinsen, M.C.; Jensen, V.H.; Miard, S.; Jespersen, N.Z.; Kooijman, S.; Boon, M.R.; Fortin, M. Human brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell metabolism 2020, 32, 287-300. e287.
- Revelli, J.P.; Muzzin, P.; Giacobino, J.P. Modulation in vivo of ß-adrenergic-receptor subtypes in rat brown adipose tissue by the thermogenic agonist Ro 16-8714. Biochem. J. 1992, 286, 743-746.
- Evans, B.A.; Papaioannou, M.; Bonazzi, V.R.; Summers, R.J. Expression of ß3-adrenoceptor mRNA in rat tissues. Br. J. Pharmacol. 1996, 117, 210-216.
- Adli, H.; Bazin, R.; Perret, G.Y. Interaction of amiodarone and triiodothyronine on the expression of ß-adrenoceptors in brown adipose tissue of rat. Br. J. Pharmacol. 1999, 126, 1455-1461.
- Scarpace, P.J.; Matheny, M.; Thümer, N. Differential down-regulation of ß3-adrenergic receptor mRNA and signal transduction by cold exposure in brown adipose tissue of young and senescent rats. Pflügers Archiv: European Journal of Physiology 1999, 437, 479-483.
- Evans, B.A.; Papaioannou, M.; Anastasopoulos, F.; Summers, R.J. Differential regulation of β3-adrenoceptors in gut and adipose tissue of genetically obese (ob/ob) C57BL/6J-mice. Br. J. Pharmacol. 1998, 124, 763-771. [CrossRef]
- Evans, B.A.; Papaioannou, M.; Hamilton, S.; Summers, R.J. Alternative splicing generates two isoforms of the ß3-adrenoceptor which are differentially expressed in mouse tissues. Br. J. Pharmacol. 1999, 127, 1525-1531. [CrossRef]
- Hutchinson, D.S.; Evans, B.A.; Summers, R.J. ß3-Adrenoceptor regulation and relaxation responses in mouse ileum. Br. J. Pharmacol. 2000, 129, 1251-1259. [CrossRef]
- Susulic, V.S.; Frederich, R.C.; Lawitts, J.; Tozzo, E.; Kahn, B.B.; Harper, M.-E.; Himms-Hagen, J.; Flier, J.S.; Lowell, B.B. Targeted disruption of the β3-adrenergic receptor gene. Journal of Biological Chemistry 1995, 270, 29483-29492.
- Feve, B.; Elhadri, K.; Quignard-Boulange, A.; Pairault, J. Transcriptional down-regulation by insulin of the beta-3 adrenergic receptor expression in 3T3-F442A adipocytes: a mechanism for repressing the cAMP signaling pathway. Proc Natl Acad Sci 1994, 91, 5677-5681.
- Rohlfs, E.M.; Daniel, K.W.; Premont, R.T.; Kozak, L.P.; Collins, S. Regulation of the uncoupling gene (Ucp) by ß1, ß2 and ß3-adrenergic receptor subtypes in immortalized brown adipose cell lines. J. Biol. Chem. 1995, 270, 10723-10732. [CrossRef]
- Lönnqvist, F.; Krief, S.; Strosberg, A.D.; Nyberg, B.; Emorine, L.J.; Arner, P. Evidence for a functional ß3-adrenoceptor in man. Br. J. Pharmacol. 1993, 110, 929-936.
- Krief, S.; Lönnqvist, F.; Raimbault, S.; Baude, B.; van Spronsen, A.; Arner, P.; Strosberg, A.D.; Ricquier, D.; Emorine, L.J. Tissue distribution of beta 3-adrenergic receptor mRNA in man. J. Clin. Invest. 1993, 91, 344-349. [CrossRef]
- Berkowitz, D.E.; Nardone, N.A.; Smiley, R.M.; Price, D.T.; Kreutter, D.K.; Fremeau, R.T.; Schwinn, D.A. Distribution of ß3-adrenoceptor mRNA in human tissues. Eur. J. Pharmacol. 1995, 289, 223-228.
- Granneman, J.G.; Lahners, K.N. Analysis of human and rodent ß3-adrenergic receptor messenger ribonucleic acids. Endocrinology 1994, 135, 1025-1031.
- Baskin, A.S.; Linderman, J.D.; Brychta, R.J.; McGehee, S.; Anflick-Chames, E.; Cero, C.; Johnson, J.W.; O’Mara, A.E.; Fletcher, L.A.; Leitner, B.P.; et al. Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a β3-adrenergic receptor agonist. Diabetes 2018, 67, 2113-2125. [CrossRef]
- Cero, C.; Lea, H.J.; Zhu, K.Y.; Shamsi, F.; Tseng, Y.-H.; Cypess, A.M. β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 2021, 6. [CrossRef]
- Thomas, R.F.; Liggett, S.B. Lack of ß3-adrenergic receptor mRNA expression in adipose and other metabolic tissues in the adult human. Mol. Pharmacol. 1993, 43, 343-348.
- Deng, C.; Paoloni-Giacobino, A.; Kuehne, F.; Boss, O.; Revelli, J.P.; Moinat, M.; Cawthorne, M.A.; Muzzin, P.; Giacobino, J.P. Respective degree of expression of ß1-, ß2- and ß3-adrenoceptors in human brown and white adipose tissue. Br. J. Pharmacol. 1996, 118, 929-934.
- Michel, M.C.; Gravas, S. Safety and tolerability of ß3-adrenoceptor agonists in the treatment of overactive bladder syndrome - insight from transcriptosome and experimental studies. Expert Opin Drug Safety 2016, 15, 647-657. [CrossRef]
- Riis-Vestergaard, M.J.; Richelsen, B.; Bruun, J.M.; Li, W.; Hansen, J.B.; Pedersen, S.B. Beta-1 and not beta-3 adrenergic receptors may be the primary regulator of human brown adipocyte metabolism. The Journal of Clinical Endocrinology & Metabolism 2020, 105, e994-e1005.
- Harms, H.H.; Zaagsma, J.; de Vente, J. Differentiation of ß-adrenoceptors in right atrium, diaphragm and adipose tissue of the rat, using stereoisomers of propranolol, alprenolol, nifenalol and practolol. Life Sci. 1977, 21, 123-128.
- Tan, S.; Curtis-Prior, P.B. Characterization of the beta-adrenoceptor of the adipose cells of the rat. Int. J. Obes. 1983, 7, 409-414.
- Wilson, C.; Wilson, S.; Piercy, V.; Sennitt, M.V.; Arch, J.R.S. The rat lipolytic β-adrenoceptor: studies using novel β-adrenoceptor agonists. Eur. J. Pharmacol. 1984, 100, 309-319. [CrossRef]
- Hollenga, C.; Zaagsma, J. Direct evidence for the atypical nature of functional beta-adrenoceptors in rat adipocytes. Br. J. Pharmacol. 1989, 98, 1420-1424. [CrossRef]
- Hollenga, C.; Haas, M.; Deinum, J.T.; Zaagsma, J. Discrepancies in lipolytic activities induced by beta-adrenoceptor agonists in human and rat adipocytes. Horm. Metab. Res. 1990, 22, 17-21. [CrossRef]
- Murphy, G.J.; Kirkham, D.M.; Cawthorne, M.A.; Young, P. Correlation of beta 3-adrenoceptor-induced activation of cyclic AMP-dependent protein kinase with activation of lipolysis in rat white adipocytes. Biochem. Pharmacol. 1993, 46, 575-581. [CrossRef]
- van Liefde, I.; van Witzenburg, A.; Vauquelin, G. Multiple beta adrenergic receptor subclasses mediate the l-isoproterenol-induced lipolytic response in rat adipocytes. J. Pharmacol. Exp. Ther. 1992, 262, 552-558.
- Germack, R.; Starzec, A.B.; Vassy, R.; Perret, G.Y. ß-Adrenoceptor subtype expression and function in rat white adipocytes. Br. J. Pharmacol. 1997, 120, 201-210.
- Moreno-Aliaga, M.; Alfredo, M.; Stanhope, K.; Otero, M.P.; Havel, P. Effects of TrecadrineR, a beta 3-adrenergic agonist, on leptin secretion, glucose and lipid metabolism in isolated rat adipocytes. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 2002, 26, 912-919. [CrossRef]
- Hatakeyama, Y.; Sakata, Y.; Takakura, S.; Manda, T.; Mutoh, S. Acute and chronic effects of FR-149175, a ß3-adrenergic receptor agonist, on energy expenditure in Zucker fatty rats. Am. J. Physiol. 2004, 287, R336-R341. [CrossRef]
- Rosenbaum, M.; Malbon, C.C.; Hirsch, J.; Leibel, R.L. Lack of ß3-adrenergic effect on lipolysis in human subcutaneous adipose tissue. J. Clin. Endocrinol. Metab. 1993, 77, 352-355. [CrossRef]
- Vicario, P.P.; Candelore, M.R.; Schaeffer, M.-T.; Kelly, L.; Thompson, G.M.; Brady, E.J.; Saperstein, R.; MacIntyre, D.E.; Tota, L.M.; Cascieri, M.A. Desensitization of β3-adrenergic receptor- stimulated adenylyl cyclase activity and lipolysis in rats. Life Sci. 1998, 62, 627-638. [CrossRef]
- Hollenga, C.; Brouwer, F.; Zaagsma, J. Differences in functional cyclic AMP compartments mediating lipolysis by isoprenaline and BRL 37344 in four adipocyte types. Eur. J. Pharmacol. 1991, 200, 325-330. [CrossRef]
- Hollenga, C.; Brouwer, F.; Zaagsma, J. Relationship between lipolysis and cyclic AMP generation mediated by atypical beta-adrenoceptors in rat adipocytes. Br. J. Pharmacol. 1991, 102, 577-580. [CrossRef]
- Oriowo, M.A.; Chapman, H.; Kirkham, D.M.; Sennitt, M.V.; Ruffolo, R.R., Jr.; Cawthorne, M.A. The selectivity in vitro of the stereoisomers of the beta-3 adrenoceptor agonist BRL 37344. J. Pharmacol. Exp. Ther. 1996, 277, 22-27.
- Tavernier, G.; Jimenez, M.; Giacobino, J.P.; Hulo, N.; Lafontan, M.; Muzzin, P.; Langin, D. Norepinephrine induces lipolysis in ß1/ß2/ß3-adrenoceptor knockout mice. Mol. Pharmacol. 2005, 68, 793-799. [CrossRef]
- Tavernier, G.; Galitzky, J.; Bousquet-Melou, A.; Montastruc, J.L.; Berlan, M. The positive chronotropic effect induced by BRL 37344 and CGP 12177, two beta-3 adrenergic agonists, does not involve cardiac beta adrenoceptors but baroreflex mechanisms. J. Pharmacol. Exp. Ther. 1992, 263, 1083-1090.
- Shen, Y.T.; Cervoni, P.; Claus, T.; Vatner, S.F. Differences in ß3-adrenergic receptor cardiovascular regulation in conscious primates, rats and dogs. J. Pharmacol. Exp. Ther. 1996, 278, 1435-1443.
- Bousquet-Melou, A.; Galitzky, J.; Carpene, C.; Lafontan, M.; Berlan, M. ß-Adrenergic control of lipolysis in primate white fat cells: a comparative study with nonprimate mammals. Am. J. Physiol. 1994, 267, R115-R123. [CrossRef]
- Forrest, M.J.; Hom, G.; Bach, T.; Candelore, M.R.; Cascieri, M.A.; Strader, C.; Tota, L.; Fisher, M.H.; Szumiloski, J.; Ok, H.O.; et al. L-750355, a human ß3-adrenoceptor agonist; in vitro pharmacology and profile of activity in vivo in the rhesus monkey. Eur. J. Pharmacol. 2000, 407, 175-181. [CrossRef]
- Lipworth, B.J. Clinical pharmacology of ß3-adrenoceptors. Br. J. Clin. Pharmacol. 1996, 42, 291-300. [CrossRef]
- Hoffstedt, J.; Shimizu, M.; Sjöstedt, S.; Lönnqvist, F. Determination of ß3-adrenoceptor mediated lipolysis in human fat cells. Obes. Res. 1995, 3, 447-457. [CrossRef]
- Hoffstedt, J.; Lönnqvist, F.; Shimizu, M.; Blaak, E.; Arner, P. Effects of several putative beta3-adrenoceptor agonists on lipolysis in human omental adipocytes. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 428-434.
- Sennitt, M.V.; Kaumann, A.J.; Molenaar, P.; Beeley, L.J.; Young, P.W.; Kelly, J.; Chapman, H.; Henson, S.M.; Berge, J.M.; Dean, D.K.; et al. The contribution of classical (ß1/2-) and atypical ß-adrenoceptors to the stimulation of white adipocyte lipolysis and right atrial appendage contraction by novel ß3-adreoceptor agonists of differing selectivities. J. Pharmacol. Exp. Ther. 1998, 285, 1084-1095.
- Umekawa, T.; Yoshida, T.; Sakane, N.; Kogure, A.; Kondo, M.; Honjyo, H. Trp64Arg mutation of beta3-adrenoceptor gene deteriorates lipolysis induced by beta3-adrenoceptor agonist in human omental adipocytes. Diabetes 1999, 48, 117-120.
- El-Yazbi, A.F.; Elrewiny, M.A.; Habib, H.M.; Eid, A.H.; Elzahhar, P.A.; Belal, A.S. Thermogenic modulation of adipose depots: A perspective on possible therapeutic intervention with early cardiorenal complications of metabolic impairment. Molecular Pharmacology 2023.
- Astrup, A.; Toubro, S.; Cannon, S.; Hein, P.; Breum, L.; Madsen, J. Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. The American journal of clinical nutrition 1990, 51, 759-767.
- Van Schaik, L.; Kettle, C.; Green, R.; Sievers, W.; Hale, M.; Irving, H.; Whelan, D.; Rathner, J. Stimulatory, but not anxiogenic, doses of caffeine act centrally to activate interscapular brown adipose tissue thermogenesis in anesthetized male rats. Scientific Reports 2021, 11, 113.
- De Matteis, R.; Arch, J.; Petroni, M.; Ferrari, D.; Cinti, S.; Stock, M. Immunohistochemical identification of the β3-adrenoceptor in intact human adipocytes and ventricular myocardium: effect of obesity and treatment with ephedrine and caffeine. International journal of obesity 2002, 26, 1442-1450.
- Meyers, D.S.; Skwish, S.; Dickinson, K.E.; Kienzle, B.; Arbeeny, C.M. β3-Adrenergic receptor-mediated lipolysis and oxygen consumption in brown adipocytes from cynomolgus monkeys. The Journal of Clinical Endocrinology & Metabolism 1997, 82, 395-401.
- Rohlfs, E.M.; Daniel, K.W.; Premont, R.T.; Kozak, L.P.; Collins, S. Regulation of the uncoupling protein gene (Ucp) by β1, β2, and β3-adrenergic receptor subtypes in immortalized brown adipose cell lines. Journal of Biological Chemistry 1995, 270, 10723-10732.
- Puigserver, P.; Pico, C.; Stock, M.; Palou, A. Effect of selective β-adrenoceptor stimulation on UCP synthesis in primary cultures of brown adipocytes. Molecular and cellular endocrinology 1996, 117, 7-16.
- Yamakawa, A.; Tanaka, E.; Nakano, S. Effect of the adrenergic beta 3-agonist, BRL37344, on heat production by brown adipocytes in obese and in older rats. The Tokai journal of experimental and clinical medicine 1994, 19, 139-142.
- Hao, L.; Scott, S.; Abbasi, M.; Zu, Y.; Khan, M.S.H.; Yang, Y.; Wu, D.; Zhao, L.; Wang, S. Beneficial metabolic effects of mirabegron in vitro and in high-fat diet-induced obese mice. Journal of Pharmacology and Experimental Therapeutics 2019, 369, 419-427.
- Choe, S.S.; Huh, J.Y.; Hwang, I.J.; Kim, J.I.; Kim, J.B. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Frontiers in endocrinology 2016, 7, 30.
- Tanaka, M.; Itoh, M.; Ogawa, Y.; Suganami, T. Molecular mechanism of obesity-induced ‘metabolic’tissue remodeling. Journal of Diabetes Investigation 2018, 9, 256-261.
- Auger, C.; Kajimura, S. Adipose tissue remodeling in pathophysiology. Annual Review of Pathology: Mechanisms of Disease 2023, 18, 71-93.
- Lee, M.-J.; Wu, Y.; Fried, S.K. Adipose tissue remodeling in pathophysiology of obesity. Current opinion in clinical nutrition and metabolic care 2010, 13, 371.
- Lee, Y.-H.; Mottillo, E.P.; Granneman, J.G. Adipose tissue plasticity from WAT to BAT and in between. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2014, 1842, 358-369.
- Willows, J.W.; Blaszkiewicz, M.; Townsend, K.L. The sympathetic innervation of adipose tissues: regulation, functions, and plasticity. Comprehensive Physiology 2011, 13, 4985-5021.
- Zhao, Y.; Li, X.; Yang, L.; Eckel-Mahan, K.; Tong, Q.; Gu, X.; Kolonin, M.G.; Sun, K. Transient overexpression of vascular endothelial growth factor A in adipose tissue promotes energy expenditure via activation of the sympathetic nervous system. Molecular and Cellular Biology 2018, 38, e00242-00218.
- Jimenez, M.; Léger, B.; Canola, K.; Lehr, L.; Arboit, P.; Seydoux, J.; Russell, A.P.; Giacobino, J.-P.; Muzzin, P.; Preitner, F. β1/β2/β3-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS letters 2002, 530, 37-40.
- van Marken Lichtenbelt, W.D.; Vanhommerig, J.W.; Smulders, N.M.; Drossaerts, J.M.; Kemerink, G.J.; Bouvy, N.D.; Schrauwen, P.; Teule, G.J. Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine 2009, 360, 1500-1508.
- Finlin, B.S.; Memetimin, H.; Confides, A.L.; Kasza, I.; Zhu, B.; Vekaria, H.J.; Harfmann, B.; Jones, K.A.; Johnson, Z.R.; Westgate, P.M. Human adipose beiging in response to cold and mirabegron. JCI insight 2018, 3.
- Preite, N.Z.; do Nascimento, B.P.; Muller, C.R.; Américo, A.L.V.; Higa, T.S.; Evangelista, F.S.; Lancellotti, C.L.; dos Santos Henriques, F.; Batista Jr, M.L.; Bianco, A.C. Disruption of beta3 adrenergic receptor increases susceptibility to DIO in mouse. The Journal of endocrinology 2016, 231, 259.
- Granneman, J.; Burnazi, M.; Zhu, Z.; Schwamb, L. White adipose tissue contributes to UCP1-independent thermogenesis. American Journal of Physiology-Endocrinology and Metabolism 2003, 285, E1230-E1236.
- Warner, A.; Kjellstedt, A.; Carreras, A.; Böttcher, G.; Peng, X.-R.; Seale, P.; Oakes, N.; Lindén, D. Activation of β3-adrenoceptors increases in vivo free fatty acid uptake and utilization in brown but not white fat depots in high-fat-fed rats. American Journal of Physiology-Endocrinology and Metabolism 2016, 311, E901-E910.
- Van Schaik, L.; Kettle, C.; Green, R.; Irving, H.R.; Rathner, J.A. Effects of caffeine on brown adipose tissue thermogenesis and metabolic homeostasis: a review. Frontiers in neuroscience 2021, 15, 54.
- de Souza, C.J.; Burkey, B.F. Beta3-adrenoceptor agonists as anti-diabetic and anti-obesity drugs in humans. Current pharmaceutical design 2001, 7, 1433-1449.
- Arch, J.; Wilson, S. Prospects for beta 3-adrenoceptor agonists in the treatment of obesity and diabetes. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity 1996, 20, 191-199.
- Liu, X.; Pérusse, F.; Bukowiecki, L.J. Mechanisms of the antidiabetic effects of the β3-adrenergic agonist CL-316243 in obese Zucker-ZDF rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1998, 274, R1212-R1219.
- Himms-Hagen, J.; Cui, J.; Danforth Jr, E.; Taatjes, D.; Lang, S.; Waters, B.; Claus, T. Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1994, 266, R1371-R1382.
- Arbeeny, C.M.; Meyers, D.S.; Hillyer, D.E.; Bergquist, K.E. Metabolic alterations associated with the antidiabetic effect of beta 3-adrenergic receptor agonists in obese mice. American Journal of Physiology-Endocrinology and Metabolism 1995, 268, E678-E684.
- Hamann, A.; Flier, J.S.; Lowell, B.B. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology 1996, 137, 21-29.
- Lowell, B.B.; S-Susulic, V.; Hamann, A.; Lawitts, J.A.; Himms-Hagen, J.; Boyer, B.B.; Kozak, L.P.; Flier, J.S. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 1993, 366, 740-742.
- Viguerie-Bascands, N.; Bousquet-Mélou, A.; Galitzky, J.; Larrouy, D.; Ricquier, D.; Berlan, M.; Casteilla, L. Evidence for numerous brown adipocytes lacking functional beta 3-adrenoceptors in fat pads from nonhuman primates. The Journal of Clinical Endocrinology & Metabolism 1996, 81, 368-375.
- Vijgen, G.H.; Bouvy, N.D.; Teule, G.J.; Brans, B.; Schrauwen, P.; van Marken Lichtenbelt, W.D. Brown adipose tissue in morbidly obese subjects. PloS one 2011, 6, e17247.
- Chondronikola, M.; Volpi, E.; Børsheim, E.; Porter, C.; Annamalai, P.; Enerbäck, S.; Lidell, M.E.; Saraf, M.K.; Labbe, S.M.; Hurren, N.M. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014, 63, 4089-4099.
- Astrup, A.; Bülow, J.; Christensen, N.; Madsen, J. Ephedrine-induced thermogenesis in man: no role for interscapular brown adipose tissue. Clinical science (London, England: 1979) 1984, 66, 179-186.
- Widen, E.; Lehto, M.; Kanninen, T.; Walston, J.; Shuldiner, A.R.; Groop, L.C. Association of a polymorphism in the β3-adrenergic–receptor gene with features of the insulin resistance syndrome in Finns. New England Journal of Medicine 1995, 333, 348-352.
- Clément, K.; Vaisse, C.; Manning, B.S.J.; Basdevant, A.; Guy-Grand, B.; Ruiz, J.; Silver, K.D.; Shuldiner, A.R.; Froguel, P.; Strosberg, A.D. Genetic variation in the β3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. New England Journal of Medicine 1995, 333, 352-354.
- Arner, P.; Hoffstedt, J. Adrenoceptor genes in human obesity. Journal of Internal Medicine 1999, 245, 667-672.
- Malik, S.G.; Saraswati, M.R.; Suastika, K.; Trimarsanto, H.; Oktavianthi, S.; Sudoyo, H. Association of beta3-adrenergic receptor (ADRB3) Trp64Arg gene polymorphism with obesity and metabolic syndrome in the Balinese: a pilot study. BMC research notes 2011, 4, 1-7.
- Li, L.; Lnnqvist, F.; Luthman, H.; Arner, P. Phenotypic characterization of the Trp64Arg polymorphism in the beta3-adrenergic receptor gene in normal weight and obese subjects. Diabetologia 1996, 7, 857-860.
- Gagnon, J.; Mauriège, P.; Roy, S.; Sjöström, D.; Chagnon, Y.C.; Dionne, F.T.; Oppert, J.-M.; Pérusse, L.; Sjöström, L.; Bouchard, C. The Trp64Arg mutation of the beta3 adrenergic receptor gene has no effect on obesity phenotypes in the Québec Family Study and Swedish Obese Subjects cohorts. The Journal of clinical investigation 1996, 98, 2086-2093.
- Oksanen, L.; Mustajoki, P.; Kaprio, J.; Kainulainen, K.; Jänne, O.; Peltonen, L.; Kontula, K. Polymorphism of the beta 3-adrenergic receptor gene in morbid obesity. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity 1996, 20, 1055-1061.
- Larson, C.J. Translational Pharmacology and Physiology of Brown Adipose Tissue in Human Disease and Treatment. Handb. Exp. Pharmacol. 2019, 251, 381-424. [CrossRef]
- Connacher, A.A.; Bennet, W.M.; Jung, R.T.; Rennie, M.J. Metabolic effects of three weeks administration of the beta-adrenoceptor agonist BRL 26830A. Int. J. Obes. Relat. Metab. Disord. 1992, 16, 685-694.
- Connacher, A.A.; Lakie, M.; Powers, N.; Elton, R.A.; Walsh, E.G.; Jung, R.T. Tremor and the anti-obesity drug BRL 26830A. Br. J. Clin. Pharmacol. 1990, 30, 613-615. [CrossRef]
- Wheeldon, N.M.; McDevitt, D.G.; Lipworth, B.J. Do beta 3-adrenoceptors mediate metabolic responses to isoprenaline. Q. J. Med. 1993, 86, 595-600.
- Cawthorne, M.A.; Sennitt, M.V.; Arch, J.R.; Smith, S.A. BRL 35135, a potent and selective atypical beta-adrenoceptor agonist. Am. J. Clin. Nutr. 1992, 55, 252s-257s. [CrossRef]
- Mitchell, T.H.; Ellis, R.D.; Smith, S.A.; Robb, G.; Cawthorne, M.A. Effects of BRL 35135, a beta-adrenoceptor agonist with novel selectivity, on glucose tolerance and insulin sensitivity in obese subjects. Int. J. Obes. 1989, 13, 757-766.
- Dow, R.L. β3-Adrenergic agonists: potential therapeutics for obesity. Expert Opinion on Investigational Drugs 1997, 6, 1811-1825. [CrossRef]
- Riis-Vestergaard, M.J.; Richelsen, B.; Bruun, J.M.; Li, W.; Hansen, J.B.; Pedersen, S.B. Beta-1 and not beta-3 adrenergic receptors may be the primary regulator of human brown adipocyte metabolism. J. Clin. Endocrinol. Metab. 2020, 105, e994-e1005. [CrossRef]
- Weyer, C.; Tataranni, P.A.; Snitker, S.; Danforth, E., Jr.; Ravussin, E. Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans. Diabetes 1998, 47, 1555-1561. [CrossRef]
- Muzzin, P.; Revelli, J.P.; Ricquier, D.; Meier, M.K.; Assimacopoulos-Jeannet, F.; Giacobino, J.P. The novel thermogenic ß-adrenergic agonist Ro 16-8714 increases the interscapular brown-fat ß-receptor-adenylate cyclase and the uncoupling-protein mRNA level in obese (fa/fa) Zucker rats. Biochem. J. 1989, 261, 721-724. [CrossRef]
- Henny, C.; Schutz, Y.; Buckert, A.; Meylan, M.; Jequier, E.; Felber, J.P. Thermogenic effect of the new beta-adrenoreceptor agonist Ro 16-8714 in healthy male volunteers. Int. J. Obes. 1987, 11, 473-483.
- Jéquier, E.; Munger, R.; Felber, J.P. Thermogenic effects of various beta-adrenoceptor agonists in humans: their potential usefulness in the treatment of obesity. Am. J. Clin. Nutr. 1992, 55, 249s-251s. [CrossRef]
- Toubro, S.; Astrup, A.; Hardmann, M. A double-blind randomized 14 day trials of the effect of the ß-3 agonist ICI D-7114 on 24 h energy expenditure and substract oxidation in adipose patients. Int. J. Obes. 1993, 17, S73.
- Kullmann, F.A.; Limberg, B.J.; Artim, D.E.; Shah, M.; Downs, T.R.; Contract, D.; Wos, J.; Rosenbaum, J.S.; De Groat, W.C. Effects of ß3-adrenergic receptor activation on rat urinary bladder hyperactivity induced by ovariectomy. J. Pharmacol. Exp. Ther. 2009, 330, 704-717. [CrossRef]
- Redman, L.M.; de Jonge, L.; Fang, X.; Gamlin, B.; Recker, D.; Greenway, F.L.; Smith, S.R.; Ravussin, E. Lack of an effect of a novel ß3-adrenoceptor agonist, TAK-677, on energy metabolism in obese individuals: a double-blind, placebo-controlled randomized study. J. Clin. Endocrinol. Metab. 2007, 92, 527-531. [CrossRef]
- van Baak, M.A.; Hul, G.B.J.; Toubro, S.; Astrup, A.; Gottesdiener, K.M.; DeSmet, M.; Saris, W.H.M. Acute effect of L-796568, a novel ß3-adrenergic receptor agonist, on energy expenditure in obese men. Clin. Pharmacol. Ther. 2002, 71, 272-279. [CrossRef]
- Larsen, T.M.; Toubro, S.; van Baak, M.A.; Larson, P.; Saris, W.H.; Astrup, A. Effect of a 28-d treatment with L-796568, a novel ß3-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am. J. Clin. Nutr. 2002, 76, 780-788.
- Michel, M.C.; Korstanje, C. ß3-Adrenoceptor agonists for overactive bladder syndrome: role of translational pharmacology in a re-positioning drug development project. Pharmacol. Ther. 2016, 159, 66-82. [CrossRef]
- Chapple, C.R.; Cardozo, L.; Nitti, V.W.; Siddiqui, E.; Michel, M.C. Mirabegron in overactive bladder: a review of efficacy, safety, and tolerability. Neurourol. Urodyn. 2014, 33, 17-30. [CrossRef]
- Cypess, A.M.; Weiner, L.S.; Roberts-Toler, C.; Franquet, E.; Kessler, S.H.; Kahn, P.A.; English, J.; Chatman, K.; Trauger, S.A.; Doria, A.; Kolodny, G.M. Activation of human brown adipose tissue by a ß3-adrenergic receptor agonist. Cell Metab. 2015, 21, 33-38. [CrossRef]
- Kennelly, M.J.; Rhodes, T.; Girman, C.J.; Thomas, E.; Shortino, D.; Mudd, P.N., Jr. Efficacy of vibegron and mirabegron for overactive bladder: a systematic literature review and indirect treatment comparison. Adv. Ther. 2021, 38, 5452-5464. [CrossRef]
- Okeke, K.; Angers, S.; Bouvier, M.; Michel, M.C. Agonist-induced desensitisation of β3-adrenoceptors: where, when and how? Br. J. Pharmacol. 2019, 176, 2539-2558. [CrossRef]
- Mo, W.; Michel, M.C.; Lee, X.W.; Kaumann, A.J.; Molenaar, P. The β3-adrenoceptor agonist mirabegron increases human atrial force through β1-adrenoceptors: an indirect mechanism? Br. J. Pharmacol. 2017, 174, 2706-2715. [CrossRef]
- Alexandre, E.C.; Kiguti, L.R.; Calmasini, F.B.; Silva, F.H.; da Silva, K.P.; Ferreira, R.; Ribeiro, C.A.; Monica, F.Z.; Pupo, A.S.; Antunes, E. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving ß3-adrenoceptor activation and α1-adrenoceptor blockade. Br. J. Pharmacol. 2016, 173, 415-428. [CrossRef]
- Huang, R.; Liu, Y.; Ciotkowska, A.; Tamalunas, A.; Waidelich, R.; Strittmatter, F.; Stief, C.G.; Hennenberg, M. Concentration-dependent alpha1-adrenoceptor antagonism and inhibition of neurogenic smooth muscle contraction by mirabegron in the human prostate. Front. Pharmacol. 2021, 12. [CrossRef]
- Michel, M.C. α1-Adrenoceptor activity of β-adrenoceptor ligands – An expected drug property with limited clinical relevance. Eur. J. Pharmacol. 2020, 889, 173632. [CrossRef]
- Perrone, M.G.; Scilimati, A. β3-Adrenoceptor ligand development history through patent review. Expert Opin. Ther. Pat. 2011, 21, 505-536. [CrossRef]
- Grazia Perrone, M.; Scilimati, A. β3-Adrenoceptor agonists and (antagonists as) inverse agonists: history, perspective, constitutive activity, and stereospecific binding. In Methods Enzymol., Conn, P.M., Ed.; Academic Press: 2010; Volume 484, pp. 197-230.

| β1-AR | β2-AR | β3-AR | |
|---|---|---|---|
| Ovary | 0.02 | 0.79 | 6.89 |
| Gall bladder | 0.10 | 4.43 | 2.57 |
| Placenta | 28.77 | 5.99 | 2.53 |
| Urinary bladder | 0.29 | 6.63 | 1.54 |
| Fallopian tube | 0.09 | 4.38 | 0.64 |
| Colon | 0.75 | 2.07 | 0.54 |
| Appendix | 0.38 | 2.34 | 0.41 |
| Prostate | 4.01 | 9.64 | 0.29 |
| Small intestine | 1.18 | 1.66 | 0.25 |
| Endometrium | 0.07 | 2.20 | 0.22 |
| Adipose tissue | 2.29 | 12.60 | 0.19 |
| Duodenum | 0.73 | 1.54 | 0.19 |
| Rectum | 0.87 | 2.63 | 0.16 |
| Brain | 4.58 | 2.02 | 0.12 |
| Myometrium | 0.13 | 3.62 | 0.12 |
| Stomach | 0.76 | 6.68 | 0.11 |
| Lung | 6.55 | 18.01 | 0.07 |
| Lymph nodes | 0.11 | 3.08 | 0.07 |
| Esophagus | 0.99 | 8.55 | 0.03 |
| Skin | 0.16 | 5.60 | 0.02 |
| Tonsil | 0.31 | 5.51 | 0.02 |
| Heart | 11.57 | 4.92 | 0.02 |
| Bone marrow | 0.32 | 7.82 | 0 |
| Spleen | 0.90 | 6.90 | 0 |
| Skeletal muscle | 0.06 | 4.19 | 0 |
| Liver | 1.03 | 4.12 | 0 |
| Salivary gland | 4.93 | 2.54 | 0 |
| Adrenal | 0.16 | 1.48 | 0 |
| Thyroid | 0.21 | 1.07 | 0 |
| Kidney | 0.99 | 0.68 | 0 |
| Pancreas | 0.65 | 0.58 | 0 |
| Testis | 0.26 | 0.52 | 0 |
| rodent | humans and other primates | |
|---|---|---|
| BAT presence in adults | abundant | sparse |
| Insulin release by β3-AR agonists | +++ | - |
| β3-AR expression in AT | +++ | + |
| Glucose uptake in BAT | +++ | + |
| Lipolysis/thermogenesis | +++ | + |
| Lipolysis in WAT | β3-AR | β1-AR |
| Weight loss | ++ | inconclusive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
