

Review

Not peer-reviewed version

Colorectal Cancer: Current Updates and Future Perspectives

[Rosa Marcellinaro](#)^{*} , Domenico Spoletini , Michele Grieco , [Pasquale Avella](#) , [Micaela Cappuccio](#) , [Raffaele Troiano](#) , Giorgio Lisi , Giovanni M. Garbarino , [Massimo Carlini](#)

Posted Date: 20 October 2023

doi: [10.20944/preprints202310.1321.v1](https://doi.org/10.20944/preprints202310.1321.v1)

Keywords: colorectal cancer, epidemiology, incidence, survival, mortality, screening

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Colorectal Cancer: Current Updates and Future Perspectives

Rosa Marcellinaro ^{1,*}, Domenico Spoletini ¹, Michele Grieco ¹, Pasquale Avella ^{2,3}, Micaela Cappuccio ², Raffaele Troiano ¹, Giorgio Lisi ¹, Giovanni M. Garbarino ¹ and Massimo Carlini ¹

¹ Department of General Surgery, S. Eugenio Hospital, Rome, Italy

² Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy

³ Hepatobiliary and Pancreatic Surgery Unit, Pineta Grande Hospital, Castel Volturno, Caserta, Italy

* Correspondence: rosamarcellinaro@gmail.com; address: Piazzale dell'Umanesimo, 10 - 00144, Rome – Italy; phone: 06 51002829; ORCID: 0000-0002-7235-7477

Abstract: Colorectal cancer is a frequent neoplasm in western countries, mainly due to dietary and behavioral factors. Its incidence is growing in developing countries for the westernization of foods and lifestyles. An increased incidence rate is observed in patients under 45 years of age. In last years the mortality for CRC is decreased, but this trend is slowing. The mortality rate is reducing in those countries where prevention and treatments have been implemented. The survival is increased to over 65%. This trend reflects earlier detection of CRC through routine clinical examinations and screening, more accurate staging through advances in imaging, improvements in surgical techniques and advances in chemotherapy and radiation. The most important predictor of survival is the stage at diagnosis. The screening programs are able to reduce incidence and mortality rates of CRC. The aim of this paper is to provide a comprehensive overview of incidence, mortality and survival rate for CRC

Keywords: colorectal cancer; incidence; mortality; screening; survival

Introduction

Colorectal Cancer (CRC) is the third most commonly diagnosed malignancy and the second cause of death due to cancer worldwide^{1–4}. There are significant variations in CRC incidence and mortality among various countries of the world which are based on different factors: gender⁵, age^{6–8}, and ethnicity⁶. It imposes a substantial global burden in terms of its complications, mortality, side effects of treatment, health care services utilization and medical costs^{5,9}. The higher rates of incidence are registered in most developed countries, but the diffusion of Western behaviors and lifestyle is responsible for the increase of colorectal cancer cases in less developed countries¹⁰. The different possibilities of access to care still play a fundamental role in survival and mortality for this neoplasm¹¹.

In recent years, artificial intelligence has also played a key role in early diagnosis and prediction of cancers^{12–18}, including CRC^{19, 20}, as described by numerous studies in the literature. In this clinical context, knowledge of epidemiological data is of great importance to analyze the trend of incidence and prevalence of pathology and to develop new predictive oncological techniques.

Nowadays, the most commonly used CRC serum biomarker is carcinoembryonic antigen (CEA)^{21–23}. CEA is a protein that is produced by the developing fetus and by some types of cancer cells. CEA levels are typically low in healthy people, but they can be elevated in patients with CRC. CEA is not a specific biomarker for CRC, as it can also be elevated in patients with other diseases²⁴, such as inflammation of the colon. However, it is a useful biomarker for monitoring patients with CRC for recurrence or progression of the disease²⁵. Another CRC serum biomarker is carbohydrate antigen 19-9 (CA 19-9)^{22, 26, 27}. CA 19-9 is a protein that is produced by the pancreas and by some types of cancer cells included cholangiocarcinoma^{28–31}. CA 19-9 levels are typically low in healthy people, but they can be elevated in patients with CRC, especially those with advanced disease^{22, 32}. CA 19-9 is not a specific biomarker for CRC, as it can also be elevated in patients with other diseases, such as

pancreatitis. However, it can be a useful biomarker for monitoring patients with CRC for recurrence or progression of the disease. SEPT9³³, methylated SEPT9^{33, 34}, microRNAs, and circulating tumor DNA (ctDNA)³⁵ and urine-based biomarkers, as volatile organic compounds (VOCs)³⁶, microRNAs³⁷, and DNA methylation markers showed promising results in early-stage CRC detection.

The aim of this paper is to provide a comprehensive overview of incidence, mortality and survival rate for CRC. Furthermore, we analyze the current screening program available and the future perspectives of serological tests to early detect CRC.

Incidence

CRC is the third most commonly diagnosed malignancy after breast and lung cancer with more than 1.9 million of new cases. It's accounts for about 10% of all cancer incidence worldwide^{38, 39}. The global CRC incident rate is estimated to increase by 60% in 2030⁴⁰, and the number of CRC cases is predicted to reach 3.2 million by 2040⁴¹. Based on the sex, it's third most common cancer in males after lung and prostate cancers, and the second most common in females after lung cancer⁴². In general, the incidence of CRC is higher in males than that in females. Moreover, the CRC develops in different site depending on sex of the patient: females have cancer in the right colon while males have it in the left colon. Additionally, males are more likely to develop metastatic colon cancer, and females are more likely to develop metastatic rectal cancer as they age⁴³.

The global incidence of CRC is not uniformly distributed among regions of the world but varies substantially up to 8- and 6-fold for colon and rectal cancers, respectively³⁸.

The highest CRC rate is documented in Asia, which accounts for 52,3% of all global CCR in 2020; China alone held 28.8% of CRC cases worldwide⁴³. Considering rectal cancer, the East Asian regions have the highest incidence rate, particularly Korean males and the Macedonian females ranked first³⁸. In Europe the incidence rate is 26,9% of all global cases of CCR in 2020 with the highest age-standardized incidence rate (ASIR) reported for Hungary (45.3 per 100,000). The ASIRs in most European countries exceeded 40 per 100,000 and is higher than the world average rate⁴⁴. Norway ranking first for CRC in female while Hungary was first for CRC cases reported in males⁴⁵. In Italy, CCR accounts for 12,7% of all cancers with 48.576 new cases diagnosed in 2020 (25,588 males and 22,988 females). The Italian incidence rate is decreasing in all regions, for both males and females⁴². The incidence of CCR in United States accounts for 25.6 per 100,000 persons. Colon and rectal cancers incidences are low in the African continent and the Southern Asian countries^{38, 45}.

Colorectal cancer can be considered a marker of socio-economic development, and its incidence rates tend to rise uniformly with increasing Human Development Index (HDI). Countries undergoing economic growth and westernization (medium HDI nations, such as Brazil, Russia, China, Latin America, the Philippines, and the Baltics) are experiencing increasing incidence of CRC. This trend reflects changes in lifestyle factors and diet: the economic development is responsible of increased consumption of red meat, fat, sugar, animal-source foods and energy-dense food, which is associated with reduced physical activity and rising of overweight and obesity⁴⁶⁻⁵⁰. Mostly high-HDI nations (such as Canada, UK, Denmark and Singapore) has seen an increase in incidence but drop-in mortality, probably due to improved treatment options. Highest HDI nations such as the US, Iceland, Japan and France has witnessed a drop in both mortality and incidence due to successes in prevention and treatment³⁸.

However, the decline in CRC incidence slowed from 3%–4% annually during the 2000s to 1% annually during 2011–2019, driven partly by an increase in individuals younger than 55 years of 1%–2% annually since the mid-1990s⁴². The early incidence of CCR in the United States has increased approximately to 45% in adult ages 20-49 years, from 8,6 per 100,000 in 1992 to 13,1 per 100,000 in 2016⁵¹. A similar pattern is observed among populations in the Netherlands, Denmark, New Zealand, Australia, the UK, Canada, Germany, Sweden and Switzerland⁴³, but not in Italy⁵². Incidence in individuals younger than 50 years increased by about 2% per year for rectal cancer versus 0.5% per year for tumors in the proximal colon. Early onset patients are also more often diagnosed with advanced disease, including 27% with distant metastases versus 21% of older patients⁵³.

Several studies reported racial disparity in CRC incidence^{38, 44, 46, 51, 52}. Siegel et al.⁵³ compared the CRC incidence rate between different racial groups in the US during the period 2012 - 2016; the incidence rate in African Americans was the highest (45.7 per 100,000 persons), in non-Hispanic Caucasians was 38.6 per 100,000 people and in Hispanics it was 34.1 per 100,000 persons, the lowest incidence rate was registered in Asian Americans/Pacific Islanders (30.0 per 100,000 person). Multiple studies focused on the racial difference in genetic susceptibility to CRC found no racial disparity, but the difference in incidence among the ethnic groups seems to be linked at disparity in health care access and exposure to risk factors.

Mortality

CRC is the second cause of death due to cancer with 935,173 deaths estimated worldwide in 2020⁴², which accounted for about 9% of all cancer-related mortality⁵. The mortality rate for CRC seems to be decreasing in recent years, but this trend has slowed from about 4% annually during the early 2000s to about 2% from 2012 through 2020. Although mortality is decreasing in the majority of developed countries, the total deaths for colon and rectal cancer are expected to increase by 60.0% and 71.5% until 2035, respectively⁵⁴. Nevertheless, it is important to underline the increase in surgical interventions in fraile elderly affected by concomitant chronic diseases^{55, 56}.

A disparity in CRC mortality rate and trend for gender has been noticed worldwide: the overall death rate is currently 43% higher in men than in women. A further difference in CRC mortality rate is related to age. The worldwide mortality rate is higher in patients of 65 years and older⁵⁷. However, it is evident an increase in mortality rate among younger compared to older population⁵³. In the US in 2020, 68% of CRC mortality was registered in patients of age 65 years and older, 25% in the age group 50-64 and 7% in patients of age less than 49⁵. In Europe, during the period 1990 and 2016, the CRC mortality rate increased by 1.1% in patients of 30-39 years old, while in patients of age group 40-49 years, the mortality rate decreased by 2.4% between 1990 and 2009, but increased by 1.1% between 2009 and 2016⁵.

Variation in mortality rate was also observed between different racial groups, also. In US, the African American population being the most affected (19.0 per 100,000 persons) while the lowest rate was found in Asian Americans/Pacific Islanders (9.5 per 100,000 persons). The mortality rate in non-Hispanic whites was 13.8 per 100,000 persons and 11.1 per 100,000 persons in Hispanics⁵³.

CRC mortality rates change globally, with an attenuated pattern compared to that of the incidence. About 60% of all deaths occur in countries with high or very high HDI³⁸. The age-standardized rate of CRC mortality per 100,000 people was 27.1 in very high HDI countries compared to 2.75 in low HDI countries, with a positive correlation between the CRC mortality rate and HDI⁵. Decreasing trends were observed in central European countries (Austria, the Czech Republic and Germany) and in the United States and Canada⁵. The mortality of CRC has been increasing in countries with low-medium HDI like countries of Eastern Europe, Asia, and South America. The lowest mortality rates were recorded from Ecuador in Latin America whilst the steepest fall in mortality was in Denmark⁵³. In Italy, CCR ranks second in terms of mortality after lung cancer; if only rectal cancer is considered, it's ranks ninth in terms of mortality while colon cancer alone ranks eleventh. In 2020 were estimated 21789 deaths with a huge prevalence in males. The Southern regions show a higher mortality rate than Northern regions⁴².

Survival

The 5-year relative survival rate for CRC increased from 50% in the mid-1970s to 65% during 2012–2018. This trend reflects earlier detection of CRC through routine clinical examinations and screening, more accurate staging through advances in imaging, improvements in surgical techniques and advances in chemotherapy and radiation^{5, 58-62}. Stage at diagnosis is the most important predictor of survival, with 5-year relative survival ranging from 91% for localized disease to 14% for distant disease. Approximately 10% of survivors live with metastatic cancer, 44% of whom were initially diagnosed with early-stage disease. The largest survival incomes are for metastatic rectal cancer, with

30% of patients diagnosed during 2016–2018 surviving 3 years compared with 25% only a decade earlier⁶³.

Liver represents the leading metastase site^{3, 64–72}. Up to 25% of patients simultaneously experienced primary tumour and colorectal liver metastases (CRLM) diagnosis⁷³, while 20% will progress to stage IV. Although the availability of chemotherapy regimen progress in many primary tumours¹⁵, surgical resection is considered the *gold standard* treatment for CRLM, with a 5-year survival rate from 30% to 60%^{9, 39, 74–81}. However, about 80% of patients are affected by unresectable CRLM, due to bilobar multiple liver metastases and/or extrahepatic disease. Nowadays, systemic chemotherapy regimens^{64, 76, 79, 82–89} are proposed to convert patients with initially unresectable CRLM to obtaining and improving long-term surgical and oncological outcomes^{23, 82, 90–93}. Nevertheless, some of patients will progress during neoadjuvant chemotherapy with a debated role of liver resection in this subgroup.

Stage at diagnosis plays the largest role also in racial and ethnic survival disparities. Black individuals are most likely to be diagnosed with metastatic CRC (25% vs. 21% of White individuals), likely caused by unequal access to care compared to White patients. However, the 5-year relative survival rate for localized disease is relatively similar (89%–91%) across racial and ethnic group⁶³.

Men have a slightly lower 5-year relative survival rate (64%) compared with women (65%) despite a more favorable tumor subsite distribution. In particular, 35% of men versus 44% of women develop tumors in the proximal colon, which have a higher risk of death compared with left-sided cancers independent of histological and molecular characteristics. However, the largest sex disparity in 5-year survival is also for left-sided tumors at 66% in men versus 68% in women for distal colon cancer and 67% versus 70%, respectively, for rectal cancer⁶³. Survival of patients with cancer located in the distal part of the colon was overall higher than that of patients with proximal colon cancer. This observation may be explained by a more favourable stage distribution of cancers located in the distal than in the proximal colon, as well by distinct molecular features between subsites⁹⁴.

Survival rates for patients with screen-detected cancer were higher than those found for patients with non-screen-detected cancer within each disease stage. This evidence is probably due to higher adherence to therapy and more healthy behaviour of patients undergoing to screening tests compared to non-screen-detected cancers, which contributes to the observed disparities in survival, particularly for patients with stage III and IV cancers.

The CRC survival rate varies among geographic regions. CONCORD-3 study⁹⁵ shows the survival for CRC in 71 countries. Five-year survival for colon cancer was higher than 70% in Israel, Jordan, Korea and Australia. Survival was in the range of 50–69% in 26 countries: Mauritius; Costa Rica and Puerto Rico; Canada and the US; Japan, Singapore and Taiwan; in 17 European countries (Denmark, Finland, Iceland, Ireland, Norway, Sweden, the UK; Italy, Portugal, Slovenia, Spain; Austria, Belgium, France, Germany, the Netherlands, Switzerland) and in New Zealand. As for colon, five-year net survival for rectal cancer varied widely. Survival was higher than 70% in Jordan (73%), Korea (71%), and Australia (71%). Survival was in the range 60–69% in 24 countries: in Canada and the US; in 4 Asian countries, in 17 European countries: (Denmark, Finland, Iceland, Ireland, Norway; Sweden, the UK; Italy, Portugal, Slovenia, Spain; Austria; Belgium; France, Germany, the Netherlands, Switzerland); and in New Zealand⁹⁵.

In Italy the 5-year survival for CRC is 62%, and the 10-years survival is 58% both in men and women. The southern regions have survival approximately 5–8% lower than in the Centre-North regions⁵².

Screening and Prevention

A series of screening modalities for CRC are currently available: an annual or biennial fecal occult blood tests (FOBT) or fecal immunochemical test (FIT), sigmoidoscopy every 5 years, or colonoscopy every 10 years⁹⁶.

The CRC screening program is recommended for people aged between 50 and 75 years. However, in recent years, the American Cancer Society and United States Preventive Service Task Force (USPSTF) have lowered the recommended start age for screening in average-risk populations

to 45 years old due to the early onset of CRC⁵. Among the European countries The Netherlands reported the highest participation rate of 71.3% to the screening programs, twelve countries reported participation rates of over 50%, while the participation rates in Poland (16.7%) and Belgium (4.5%) were less than 20%. In general, the participation to the screening programs is higher in Northern Europe than in South and Central Europe. In Italy, the participation rate amounts to 45.7%, with higher adherence in the northern regions than in the southern ones.

Over the last decades, screening programs have deeply influenced the incidence and mortality rates of CRC. In the US, a CRC incidence has been reduced by 20% for annual FOBT screening and by 18% for biennial regimen⁴⁴. In Japan, a 60% risk reduction in CRC incidence was achieved among subjects who underwent FOBT screening in comparison to the non-screened population⁴⁴. In the UK, a randomized trial with 17-year follow-up reported that flexible sigmoidoscopy screening resulted in a 26% reduction of CRC incidence⁴⁴. With the implementation of a screening program in Italy, a decrease of cumulative incidence by 10% among the people aged between 50-69 years of age has been registered⁴⁴.

In US screening with FOBT resulted in 32% reduction in mortality by the annual screening and an 18% reduction due to the biennial screening. FOBT screening caused CRC mortality reduction by 15% in the UK, by 18% in Denmark, and by 16% in France and Sweden⁵, by 30% in Japan in subjects who underwent FOBT screening, and by 31.7% in China⁵. In Italy, the effects of screening program are similar to other European countries with a reduction of 13% in CRC mortality.

Magnification endoscopy and chromoendoscopy represent useful techniques that enhance lesion demarcation improving adenoma resections. It is linked with a higher sensitivity rate when compared to classical endoscopy.

Although surgical and endoscopic innovations, many procedures have been proposed but not included in routine clinical examinations: virtual colonoscopy, serum proteomics and molecular blood tests represent promising tools for the early detection of colorectal lesions. Further studies are needed to evaluate the sensitivity and specificity of these techniques.

Several risk factors have been identified in the last decades as possible tumorigenesis causes: tobacco use, physical inactivity, obesity and alcohol.

Even though clinical trials with dietary interventions (eg, increases in fibre, fruits, and vegetables, and reductions in fat and alcohol) have shown little effect, several observational studies support a role of dietary modifications. Many drugs are being investigated for chemoprevention of this cancer⁹⁷⁻⁹⁹. Although a significant risk reduction for colorectal cancer or adenomas has already been recorded for several drugs (eg, aspirin, nonsteroidal anti-inflammatory drugs), the role of chemoprevention needs to be further defined.

Surgical prevention is established for FAP and ulcerative colitis, and restorative proctocolectomy with ileoanal J-pouch is recommended for most patients¹⁰⁰⁻¹⁰². For HNPCC, the role of prophylactic surgery is less well defined, but some suggest prophylactic colectomy^{100, 101}. Because prophylactic surgery is mostly on young, apparently healthy people, morbidity and mortality from surgery has to be kept to a minimum.

Conclusions

CRC is one of the cancers whose incidence and mortality are modifiable by following healthy lifestyles. However, the burden of CRC is expected to increase due to the aging of population and to the westernization of less developed countries. Screening programs are able to reduce incidence and mortality rates of CRC. More research is required to explore the reasons for the increasing burden of CRC in young adults. More efforts are needed to implement screening programs and to control risk factors of CRC to reduce its burden.

Author Contributions: Conceptualization, R.M., D.S., P.A. and M.C.; investigation, R.M., R.T. and D.S.; writing—review and editing, R.M, D.S., P.A., M.G. and M.C.; visualization, G.L. and G.M.G. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brenner, H.; Kloor, M.; Pox, C. P. Colorectal cancer. *Lancet* **2014**, *383* (9927), 1490-1502. DOI: 10.1016/s0140-6736(13)61649-9 From NLM.
2. Rocca, A.; Cipriani, F.; Belli, G.; Berti, S.; Boggi, U.; Bottino, V.; Cillo, U.; Cescon, M.; Cimino, M.; Corcione, F.; et al. The Italian Consensus on minimally invasive simultaneous resections for synchronous liver metastasis and primary colorectal cancer: A Delphi methodology. *Updates Surg* **2021**. DOI: 10.1007/s13304-021-01100-9 From NLM.
3. Avella, P.; Vaschetti, R.; Cappuccio, M.; Gambale, F.; L, D. E. M.; Rafanelli, F.; Brunese, M. C.; Guerra, G.; Scacchi, A.; Rocca, A. The role of liver surgery in simultaneous synchronous colorectal liver metastases and colorectal cancer resections: a literature review of 1730 patients underwent open and minimally invasive surgery. *Minerva Surg* **2022**, *77* (6), 582-590. DOI: 10.23736/s2724-5691.22.09716-7 From NLM.
4. Carbone, F.; Chee, Y.; Rasheed, S.; Cunningham, D.; Bhogal, R. H.; Jiao, L.; Tekkis, P.; Kontovounisios, C. Which surgical strategy for colorectal cancer with synchronous hepatic metastases provides the best outcome? A comparison between primary first, liver first and simultaneous approach. *Updates Surg* **2022**, *74* (2), 451-465. DOI: 10.1007/s13304-021-01234-w From NLM.
5. Baidoun, F.; Elshiwly, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M. T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. *Curr Drug Targets* **2021**, *22* (9), 998-1009. DOI: 10.2174/138945012199201117115717 From NLM.
6. Patel, S. G.; Karlitz, J. J.; Yen, T.; Lieu, C. H.; Boland, C. R. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. *Lancet Gastroenterol Hepatol* **2022**, *7* (3), 262-274. DOI: 10.1016/s2468-1253(21)00426-x From NLM.
7. Losurdo, P.; Mastronardi, M.; de Manzini, N.; Bortul, M. Survival and long-term surgical outcomes after colorectal surgery: are there any gender-related differences? *Updates Surg* **2022**, *74* (4), 1337-1343. DOI: 10.1007/s13304-022-01323-4 From NLM.
8. Peltrini, R.; Imperatore, N.; Carannante, F.; Cuccurullo, D.; Capolupo, G. T.; Bracale, U.; Caricato, M.; Corcione, F. Age and comorbidities do not affect short-term outcomes after laparoscopic rectal cancer resection in elderly patients. A multi-institutional cohort study in 287 patients. *Updates Surg* **2021**, *73* (2), 527-537. DOI: 10.1007/s13304-021-00990-z From NLM.
9. Wang, H. W.; Jin, K. M.; Li, J.; Wang, K.; Xing, B. C. Postoperative complications predict poor outcomes only in patients with a low modified clinical score after resection of colorectal liver metastases: a retrospective cohort study. *Updates Surg* **2022**, *74* (5), 1601-1610. DOI: 10.1007/s13304-022-01312-7 From NLM.
10. Jensen, C. C.; Prasad, L. M.; Abcarian, H. Cost-effectiveness of laparoscopic vs open resection for colon and rectal cancer. *Dis Colon Rectum* **2012**, *55* (10), 1017-1023. DOI: 10.1097/DCR.0b013e3182656898 From NLM.
11. Bracale, U.; Podda, M.; Castiglioni, S.; Peltrini, R.; Sartori, A.; Arezzo, A.; Corcione, F.; Agresta, F. Changes in surgical behaviors during the COVID-19 pandemic. The SICE CLOUD19 Study. *Updates Surg* **2021**, *73* (2), 731-744. DOI: 10.1007/s13304-021-01010-w From NLM.
12. Schlinger, D.; Graur, F.; Popa, C.; Moiș, E.; Al Hajjar, N. The role of artificial intelligence in pancreatic surgery: a systematic review. *Updates Surg* **2022**, *74* (2), 417-429. DOI: 10.1007/s13304-022-01255-z From NLM.
13. Capretti, G.; Bonifacio, C.; De Palma, C.; Nebbia, M.; Giannitto, C.; Cancian, P.; Laino, M. E.; Balzarini, L.; Papanikolaou, N.; Savevski, V.; et al. A machine learning risk model based on preoperative computed tomography scan to predict postoperative outcomes after pancreateoduodenectomy. *Updates Surg* **2022**, *74* (1), 235-243. DOI: 10.1007/s13304-021-01174-5 From NLM.
14. Rocca, A.; Brunese, M. C.; Santone, A.; Avella, P.; Bianco, P.; Scacchi, A.; Scaglione, M.; Bellifemine, F.; Danzi, R.; Varriano, G.; et al. Early Diagnosis of Liver Metastases from Colorectal Cancer through CT Radiomics and Formal Methods: A Pilot Study. *J Clin Med* **2021**, *11* (1). DOI: 10.3390/jcm11010031 From NLM.
15. Avella, P.; Cappuccio, M.; Cappuccio, T.; Rotondo, M.; Fumarulo, D.; Guerra, G.; Sciaudone, G.; Santone, A.; Cammilleri, F.; Bianco, P.; et al. Artificial Intelligence to Early Predict Liver Metastases in Patients with Colorectal Cancer: Current Status and Future Prospectives.
16. Viganò, L.; Ammirabile, A.; Zwanenburg, A. Radiomics in liver surgery: defining the path toward clinical application. In *Updates Surg*, 2023.
17. Yang, Y.; Ma, X.; Wang, Y.; Ding, X. Prognosis prediction of extremity and trunk wall soft-tissue sarcomas treated with surgical resection with radiomic analysis based on random survival forest. *Updates Surg* **2022**, *74* (1), 355-365. DOI: 10.1007/s13304-021-01074-8 From NLM.
18. Casadei, R.; Ricci, C.; Ingaldi, C.; Cornacchia, A.; Migliori, M.; Di Marco, M.; Pagano, N.; Serra, C.; Alberici, L.; Minni, F. External validation of nomogram for predicting malignant intraductal papillary mucinous neoplasm (IPMN): from the theory to the clinical practice using the decision curve analysis model. *Updates Surg* **2021**, *73* (2), 429-438. DOI: 10.1007/s13304-021-00999-4 From NLM.

19. Mitsala, A.; Tsalikidis, C.; Pitiakoudis, M.; Simopoulos, C.; Tsaroucha, A. K. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. *Curr Oncol* **2021**, *28* (3), 1581-1607. DOI: 10.3390/curroncol28030149 From NLM.
20. Bedrikovetski, S.; Dudi-Venkata, N. N.; Kroon, H. M.; Seow, W.; Vather, R.; Carneiro, G.; Moore, J. W.; Sammour, T. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis. *BMC Cancer* **2021**, *21* (1), 1058. DOI: 10.1186/s12885-021-08773-w From NLM.
21. Zhang, Q.; Li, B.; Zhang, S.; Huang, Q.; Zhang, M.; Liu, G. Prognostic impact of tumor size on patients with metastatic colorectal cancer: a large SEER-based retrospective cohort study. *Updates Surg* **2023**, *75* (5), 1135-1147. DOI: 10.1007/s13304-023-01533-4 From NLM.
22. Beppu, T.; Wakabayashi, G.; Hasegawa, K.; Gotohda, N.; Mizuguchi, T.; Takahashi, Y.; Hirokawa, F.; Taniai, N.; Watanabe, M.; Katou, M.; et al. Long-term and perioperative outcomes of laparoscopic versus open liver resection for colorectal liver metastases with propensity score matching: a multi-institutional Japanese study. *J Hepatobiliary Pancreat Sci* **2015**, *22* (10), 711-720. DOI: 10.1002/jhbp.261 From NLM.
23. Stewart, C. L.; Warner, S.; Ito, K.; Raoof, M.; Wu, G. X.; Kessler, J.; Kim, J. Y.; Fong, Y. Cytoreduction for colorectal metastases: liver, lung, peritoneum, lymph nodes, bone, brain. When does it palliate, prolong survival, and potentially cure? *Curr Probl Surg* **2018**, *55* (9), 330-379. DOI: 10.1067/j.cpsurg.2018.08.004 From NLM.
24. Kelleher, M.; Singh, R.; O'Driscoll, C. M.; Melgar, S. Carcinoembryonic antigen (CEACAM) family members and Inflammatory Bowel Disease. *Cytokine Growth Factor Rev* **2019**, *47*, 21-31. DOI: 10.1016/j.cytofr.2019.05.008 From NLM.
25. (AIOM), A. I. d. O. M. *Linee guida tumore del colon*; 2021.
26. Liu, M.; Ma, X.; Shen, F.; Xia, Y.; Jia, Y.; Lu, J. MRI-based radiomics nomogram to predict synchronous liver metastasis in primary rectal cancer patients. *Cancer Med* **2020**, *9* (14), 5155-5163. DOI: 10.1002/cam4.3185 From NLM.
27. Rocca, A.; Scacchi, A.; Cappuccio, M.; Avella, P.; Bugiantella, W.; De Rosa, M.; Costa, G.; Polistena, A.; Codacci-Pisanelli, M.; Amato, B.; et al. Robotic surgery for colorectal liver metastases resection: A systematic review. *Int J Med Robot* **2021**, *17* (6), e2330. DOI: 10.1002/rcs.2330 From NLM.
28. Aleotti, F.; Nano, R.; Piemonti, L.; Falconi, M.; Balzano, G. Total pancreatectomy sequelae and quality of life: results of islet autotransplantation as a possible mitigation strategy. *Updates Surg* **2021**, *73* (4), 1237-1246. DOI: 10.1007/s13304-021-01129-w From NLM.
29. Vining, C. C.; Skowron, K. B.; Hogg, M. E. Robotic gastrointestinal surgery: learning curve, educational programs and outcomes. *Updates Surg* **2021**, *73* (3), 799-814. DOI: 10.1007/s13304-021-00973-0 From NLM.
30. Giuliani, A.; Avella, P.; Segreto, A. L.; Izzo, M. L.; Buondonno, A.; Coluzzi, M.; Cappuccio, M.; Brunese, M. C.; Vaschetti, R.; Scacchi, A.; et al. Postoperative Outcomes Analysis After Pancreatic Duct Occlusion: A Safe Option to Treat the Pancreatic Stump After Pancreaticoduodenectomy in Low-Volume Centers. *Front Surg* **2021**, *8*, 804675. DOI: 10.3389/fsurg.2021.804675 From NLM.
31. Conticchio, M.; Maggioretti, N.; Rescigno, M.; Brunese, M. C.; Vaschetti, R.; Inchegolo, R.; Calbi, R.; Ferraro, V.; Tedeschi, M.; Fantozzi, M. R.; et al. Hepatocellular Carcinoma with Bile Duct Tumor Thrombus: A Case Report and Literature Review of 890 Patients Affected by Uncommon Primary Liver Tumor Presentation. *J Clin Med* **2023**, *12* (2). DOI: 10.3390/jcm2020423 From NLM.
32. Pavai, S.; Yap, S. F. The clinical significance of elevated levels of serum CA 19-9. *Med J Malaysia* **2003**, *58* (5), 667-672. From NLM.
33. Müller, D.; Győrffy, B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. *Biochim Biophys Acta Rev Cancer* **2022**, *1877* (3), 188722. DOI: 10.1016/j.bbcan.2022.188722 From NLM.
34. Sun, J.; Fei, F.; Zhang, M.; Li, Y.; Zhang, X.; Zhu, S.; Zhang, S. The role of (m)SEPT9 in screening, diagnosis, and recurrence monitoring of colorectal cancer. *BMC Cancer* **2019**, *19* (1), 450. DOI: 10.1186/s12885-019-5663-8 From NLM.
35. Zhou, H.; Zhu, L.; Song, J.; Wang, G.; Li, P.; Li, W.; Luo, P.; Sun, X.; Wu, J.; Liu, Y.; et al. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. *Mol Cancer* **2022**, *21* (1), 86. DOI: 10.1186/s12943-022-01556-2 From NLM.
36. Di Lena, M.; Porcelli, F.; Altomare, D. F. Volatile organic compounds as new biomarkers for colorectal cancer: a review. *Colorectal Dis* **2016**, *18* (7), 654-663. DOI: 10.1111/codi.13271 From NLM.
37. Zhang, N.; Hu, X.; Du, Y.; Du, J. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. *Biomed Pharmacother* **2021**, *134*, 111099. DOI: 10.1016/j.biopha.2020.111099 From NLM.
38. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* **2021**, *71* (3), 209-249. DOI: 10.3322/caac.21660 From NLM.
39. Masetti, M.; Fallani, G.; Ratti, F.; Ferrero, A.; Giulante, F.; Cillo, U.; Guglielmi, A.; Ettorre, G. M.; Torzilli, G.; Vincenti, L.; et al. Minimally invasive treatment of colorectal liver metastases: does robotic surgery

provide any technical advantages over laparoscopy? A multicenter analysis from the IGoMILS (Italian Group of Minimally Invasive Liver Surgery) registry. *Updates Surg* **2022**, *74* (2), 535-545. DOI: 10.1007/s13304-022-01245-1 From NLM.

- 40. Chung, R. Y.; Tsoi, K. K. F.; Kyaw, M. H.; Lui, A. R.; Lai, F. T. T.; Sung, J. J. A population-based age-period-cohort study of colorectal cancer incidence comparing Asia against the West. *Cancer Epidemiol* **2019**, *59*, 29-36. DOI: 10.1016/j.canep.2019.01.007 From NLM.
- 41. Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. *Transl Oncol* **2021**, *14* (10), 101174. DOI: 10.1016/j.tranon.2021.101174 From NLM.
- 42. Observatory, G. C. International Agency for Research on Cancer Global Cancer Observatory: Cancer Today. . 2023. <https://gco.iarc.fr/> (accessed September 10, 2023).
- 43. Wele, P.; Wu, X.; Shi, H. Sex-Dependent Differences in Colorectal Cancer: With a Focus on Obesity. *Cells* **2022**, *11* (22). DOI: 10.3390/cells11223688 From NLM.
- 44. Li, N.; Lu, B.; Luo, C.; Cai, J.; Lu, M.; Zhang, Y.; Chen, H.; Dai, M. Incidence, mortality, survival, risk factor and screening of colorectal cancer: A comparison among China, Europe, and northern America. *Cancer Lett* **2021**, *522*, 255-268. DOI: 10.1016/j.canlet.2021.09.034 From NLM.
- 45. Ranasinghe, R.; Mathai, M.; Zulli, A. A synopsis of modern - day colorectal cancer: Where we stand. *Biochim Biophys Acta Rev Cancer* **2022**, *1877* (2), 188699. DOI: 10.1016/j.bbcan.2022.188699 From NLM.
- 46. Wong, M. C. S.; Huang, J.; Lok, V.; Wang, J.; Fung, F.; Ding, H.; Zheng, Z. J. Differences in Incidence and Mortality Trends of Colorectal Cancer Worldwide Based on Sex, Age, and Anatomic Location. *Clin Gastroenterol Hepatol* **2021**, *19* (5), 955-966.e961. DOI: 10.1016/j.cgh.2020.02.026 From NLM.
- 47. Rocca, A.; Brunese, M. C.; Cappuccio, M.; Scacchi, A.; Martucci, G.; Buondonno, A.; Perrotta, F. M.; Quarto, G.; Avella, P.; Amato, B. Impact of Physical Activity on Disability Risk in Elderly Patients Hospitalized for Mild Acute Diverticulitis and Diverticular Bleeding Undergone Conservative Management. *Medicina (Kaunas)* **2021**, *57* (4). DOI: 10.3390/medicina57040360 From NLM.
- 48. Komici, K.; Cappuccio, M.; Scacchi, A.; Vaschetti, R.; Delli Carpini, G.; Picerno, V.; Avella, P.; Brunese, M. C.; Rengo, G.; Guerra, G.; et al. The Prevalence and the Impact of Frailty in Hepato-Biliary Pancreatic Cancers: A Systematic Review and Meta-Analysis. *J Clin Med* **2022**, *11* (4). DOI: 10.3390/jcm11041116 From NLM.
- 49. Vignali, A.; Elmore, U.; Guarneri, G.; De Ruvo, V.; Parise, P.; Rosati, R. Enhanced recovery after surgery in colon and rectal surgery: identification of predictive variables of failure in a monocentric series including 733 patients. *Updates Surg* **2021**, *73* (1), 111-121. DOI: 10.1007/s13304-020-00848-w From NLM.
- 50. Manigrasso, M.; Musella, M.; Elmore, U.; Allaix, M. E.; Bianchi, P. P.; Biondi, A.; Boni, L.; Bracale, U.; Cassinotti, E.; Ceccarelli, G.; et al. Safety and efficacy of totally minimally invasive right colectomy in the obese patients: a multicenter propensity score-matched analysis. *Updates Surg* **2022**, *74* (4), 1281-1290. DOI: 10.1007/s13304-022-01298-2 From NLM.
- 51. Burnett-Hartman, A. N.; Lee, J. K.; Demb, J.; Gupta, S. An Update on the Epidemiology, Molecular Characterization, Diagnosis, and Screening Strategies for Early-Onset Colorectal Cancer. *Gastroenterology* **2021**, *160* (4), 1041-1049. DOI: 10.1053/j.gastro.2020.12.068 From NLM.
- 52. Zorzi, M.; Dal Maso, L.; Francisci, S.; Buzzoni, C.; Rugge, M.; Guzzinati, S. Trends of colorectal cancer incidence and mortality rates from 2003 to 2014 in Italy. *Tumori* **2019**, *105* (5), 417-426. DOI: 10.1177/0300891619838336 From NLM.
- 53. Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. *CA Cancer J Clin* **2022**, *72* (1), 7-33. DOI: 10.3322/caac.21708 From NLM.
- 54. Araghi, M.; Soerjomataram, I.; Jenkins, M.; Brierley, J.; Morris, E.; Bray, F.; Arnold, M. Global trends in colorectal cancer mortality: projections to the year 2035. *Int J Cancer* **2019**, *144* (12), 2992-3000. DOI: 10.1002/ijc.32055 From NLM.
- 55. Basso, C.; Gennaro, N.; Dotto, M.; Ferroni, E.; Noale, M.; Avossa, F.; Schievano, E.; Aceto, P.; Tommasino, C.; Crucitti, A.; et al. Congestive heart failure and comorbidity as determinants of colorectal cancer perioperative outcomes. *Updates Surg* **2022**, *74* (2), 609-617. DOI: 10.1007/s13304-021-01086-4 From NLM.
- 56. Rocca, A.; Porfidia, C.; Russo, R.; Tamburrino, A.; Avella, P.; Vaschetti, R.; Bianco, P.; Calise, F. Neuraxial anesthesia in hepato-pancreatic-bilio surgery: a first western pilot study of 46 patients. *Updates Surg* **2023**, 1-11. DOI: 10.1007/s13304-022-01437-9 From NLM.
- 57. Marinello, F.; Fleming, C. A.; Möeslein, G.; Khan, J.; Espín-Basany, E.; Pellino, G. Diversity bias in colorectal surgery: a global perspective. *Updates Surg* **2022**, *74* (6), 1915-1923. DOI: 10.1007/s13304-022-01355-w From NLM.
- 58. Sawicki, T.; Ruszkowska, M.; Danielewicz, A.; Niedzwiedzka, E.; Arłukowicz, T.; Przybyłowicz, K. E. A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. *Cancers (Basel)* **2021**, *13* (9). DOI: 10.3390/cancers13092025 From NLM.
- 59. Marcellinaro, R.; Grieco, M.; Spoletini, D.; Troiano, R.; Avella, P.; Brachini, G.; Mingoli, A.; Carlini, M. How to reduce the colorectal anastomotic leakage? The MIRACLe protocol experience in a cohort in a single high-volume centre. *Updates Surg* **2023**, *75* (6), 1559-1567. DOI: 10.1007/s13304-023-01588-3 From NLM.

60. Carlini, M.; Grieco, M.; Spoletini, D.; Menditto, R.; Napoleone, V.; Brachini, G.; Mingoli, A.; Marcellinaro, R. Implementation of the gut microbiota prevents anastomotic leaks in laparoscopic colorectal surgery for cancer: the results of the MIRACLE study. *Updates Surg* **2022**, *74* (4), 1253-1262. DOI: 10.1007/s13304-022-01305-6 From NLM.

61. Grieco, M.; Marcellinaro, R.; Spoletini, D.; Menditto, R.; Lisi, G.; Russo, G.; Napoleone, V.; Carlini, M. Laparoscopic right colectomy: changes in surgical technique and perioperative management allow better postoperative results in a comparative series of 361 patients. *Updates Surg* **2022**, *74* (3), 883-890. DOI: 10.1007/s13304-022-01287-5 From NLM.

62. Lohsiriwat, V.; Lertbannaphong, S.; Polakla, B.; Riansuwan, W. Implementation of enhanced recovery after surgery and its increasing compliance improved 5-year overall survival in resectable stage III colorectal cancer. *Updates Surg* **2021**, *73* (6), 2169-2179. DOI: 10.1007/s13304-021-01004-8 From NLM.

63. Siegel, R. L.; Wagle, N. S.; Cerce, A.; Smith, R. A.; Jemal, A. Colorectal cancer statistics, 2023. *CA Cancer J Clin* **2023**, *73* (3), 233-254. DOI: 10.3322/caac.21772 From NLM.

64. Martin, J.; Petrillo, A.; Smyth, E. C.; Shaida, N.; Khwaja, S.; Cheow, H. K.; Duckworth, A.; Heister, P.; Praseedom, R.; Jah, A.; et al. Colorectal liver metastases: Current management and future perspectives. *World J Clin Oncol* **2020**, *11* (10), 761-808. DOI: 10.5306/wjco.v11.i10.761 From NLM.

65. Benoist, S.; Brouquet, A.; Penna, C.; Julié, C.; El Hajjam, M.; Chagnon, S.; Mitry, E.; Rougier, P.; Nordlinger, B. Complete response of colorectal liver metastases after chemotherapy: does it mean cure? *J Clin Oncol* **2006**, *24* (24), 3939-3945. DOI: 10.1200/jco.2006.05.8727 From NLM.

66. Ivey, G. D.; Johnston, F. M.; Azad, N. S.; Christenson, E. S.; Lafaro, K. J.; Shubert, C. R. Current Surgical Management Strategies for Colorectal Cancer Liver Metastases. *Cancers (Basel)* **2022**, *14* (4). DOI: 10.3390/cancers14041063 From NLM.

67. Langella, S.; Ardito, F.; Russolillo, N.; Panettieri, E.; Perotti, S.; Mele, C.; Giulante, F.; Ferrero, A. Intraoperative Ultrasound Staging for Colorectal Liver Metastases in the Era of Liver-Specific Magnetic Resonance Imaging: Is It Still Worthwhile? *J Oncol* **2019**, *2019*, 1369274. DOI: 10.1155/2019/1369274 From NLM.

68. Viganò, L.; Jayakody Arachchige, V. S.; Fiz, F. Is precision medicine for colorectal liver metastases still a utopia? New perspectives by modern biomarkers, radiomics, and artificial intelligence. *World J Gastroenterol* **2022**, *28* (6), 608-623. DOI: 10.3748/wjg.v28.i6.608 From NLM.

69. Tranchart, H.; Fuks, D.; Viganò, L.; Ferretti, S.; Paye, F.; Wakabayashi, G.; Ferrero, A.; Gayet, B.; Dagher, I. Laparoscopic simultaneous resection of colorectal primary tumor and liver metastases: a propensity score matching analysis. *Surg Endosc* **2016**, *30* (5), 1853-1862. DOI: 10.1007/s00464-015-4467-4 From NLM.

70. Capussotti, L.; Ferrero, A.; Viganò, L.; Ribero, D.; Lo Tesoriere, R.; Polastri, R. Major liver resections synchronous with colorectal surgery. *Ann Surg Oncol* **2007**, *14* (1), 195-201. DOI: 10.1245/s10434-006-9055-3 From NLM.

71. Ceccarelli, G.; Rocca, A.; De Rosa, M.; Fontani, A.; Ermili, F.; Andolfi, E.; Bugiantella, W.; Levi Sandri, G. B. Minimally invasive robotic-assisted combined colorectal and liver excision surgery: feasibility, safety and surgical technique in a pilot series. *Updates Surg* **2021**, *73* (3), 1015-1022. DOI: 10.1007/s13304-021-01009-3 From NLM.

72. Boudjema, K.; Locher, C.; Sabbagh, C.; Ortega-Deballon, P.; Heyd, B.; Bachellier, P.; Métairie, S.; Paye, F.; Bourlier, P.; Adam, R.; et al. Simultaneous Versus Delayed Resection for Initially Resectable Synchronous Colorectal Cancer Liver Metastases: A Prospective, Open-label, Randomized, Controlled Trial. *Ann Surg* **2021**, *273* (1), 49-56. DOI: 10.1097/sla.00000000000003848 From NLM.

73. Sena, G.; Picciariello, A.; Marino, F.; Goglia, M.; Rocca, A.; Meniconi, R. L.; Gallo, G. One-Stage Total Laparoscopic Treatment for Colorectal Cancer With Synchronous Metastasis. Is It Safe and Feasible? *Front Surg* **2021**, *8*, 752135. DOI: 10.3389/fsurg.2021.752135 From NLM.

74. Milana, F.; Galvanin, J.; Sommacale, D.; Brustia, R. Left hepatectomy and microwave ablation for bilobar colorectal metastases: video description of a "complicated" robotic approach. *Updates Surg* **2022**, *74* (6), 2019-2021. DOI: 10.1007/s13304-022-01398-z From NLM.

75. Wesdorp, N. J.; van Goor, V. J.; Kemna, R.; Jansma, E. P.; van Waesberghe, J.; Swijnenburg, R. J.; Punt, C. J. A.; Huiskens, J.; Kazemier, G. Advanced image analytics predicting clinical outcomes in patients with colorectal liver metastases: A systematic review of the literature. *Surg Oncol* **2021**, *38*, 101578. DOI: 10.1016/j.suronc.2021.101578 From NLM.

76. Belgaumkar, A. P.; Low, N.; Riga, A. T.; Worthington, T. R.; Karanjia, N. D. Chemotherapy before liver resection of colorectal metastases: friend or foe? *Ann Surg* **2015**, *261* (2), e36. DOI: 10.1097/sla.0000000000000807 From NLM.

77. Lehmann, K.; Rickenbacher, A.; Weber, A.; Pestalozzi, B. C.; Clavien, P. A. Chemotherapy before liver resection of colorectal metastases: friend or foe? *Ann Surg* **2012**, *255* (2), 237-247. DOI: 10.1097/SLA.0b013e3182356236 From NLM.

78. Chow, F. C.; Chok, K. S. Colorectal liver metastases: An update on multidisciplinary approach. *World J Hepatol* **2019**, *11* (2), 150-172. DOI: 10.4254/wjh.v11.i2.150 From NLM.

79. Nordlinger, B.; Van Cutsem, E.; Gruenberger, T.; Glimelius, B.; Poston, G.; Rougier, P.; Sobrero, A.; Ychou, M.; Group, E. C. M. T.; Workshop, S. I. C. L. M. Combination of surgery and chemotherapy and the role of targeted agents in the treatment of patients with colorectal liver metastases: recommendations from an expert panel. *Ann Oncol* **2009**, *20* (6), 985-992. DOI: 10.1093/annonc/mdn735.

80. Lin, Q.; Ye, Q.; Zhu, D.; Wei, Y.; Ren, L.; Zheng, P.; Xu, P.; Ye, L.; Lv, M.; Fan, J.; et al. Comparison of minimally invasive and open colorectal resections for patients undergoing simultaneous R0 resection for liver metastases: a propensity score analysis. *Int J Colorectal Dis* **2015**, *30* (3), 385-395. DOI: 10.1007/s00384-014-2089-2 From NLM.

81. Catarci, M.; Benedetti, M.; Maurizi, A.; Spinelli, F.; Bernacconi, T.; Guercioni, G.; Campagnacci, R. ERAS pathway in colorectal surgery: structured implementation program and high adherence for improved outcomes. *Updates Surg* **2021**, *73* (1), 123-137. DOI: 10.1007/s13304-020-00885-5 From NLM.

82. Nordlinger, B.; Van Cutsem, E.; Rougier, P.; Köhne, C. H.; Ychou, M.; Sobrero, A.; Adam, R.; Arvidsson, D.; Carrato, A.; Georgoulias, V.; et al. Does chemotherapy prior to liver resection increase the potential for cure in patients with metastatic colorectal cancer? A report from the European Colorectal Metastases Treatment Group. *Eur J Cancer* **2007**, *43* (14), 2037-2045. DOI: 10.1016/j.ejca.2007.07.017.

83. Satake, H.; Hashida, H.; Tanioka, H.; Miyake, Y.; Yoshioka, S.; Watanabe, T.; Matsuura, M.; Kyogoku, T.; Inukai, M.; Kotake, T.; et al. Hepatectomy Followed by Adjuvant Chemotherapy with 3-Month Capecitabine Plus Oxaliplatin for Colorectal Cancer Liver Metastases. *Oncologist* **2021**, *26* (7), e1125-e1132. DOI: 10.1002/onco.13816 From NLM.

84. Karoui, M.; Penna, C.; Amin-Hashem, M.; Mitry, E.; Benoist, S.; Franc, B.; Rougier, P.; Nordlinger, B. Influence of preoperative chemotherapy on the risk of major hepatectomy for colorectal liver metastases. *Ann Surg* **2006**, *243* (1), 1-7. DOI: 10.1097/01.sla.0000193603.26265.c3 From NLM.

85. Pulitanò, C.; Aldrighetti, L.; Arru, M.; Vitali, G.; Ronzoni, M.; Catena, M.; Finazzi, R.; Villa, E.; Ferla, G. Influence of preoperative chemotherapy on the risk of major hepatectomy for colorectal liver metastases. In *Ann Surg*, Vol. 244; 2006; pp 833-835; author reply 835.

86. Adam, R.; de Gramont, A.; Figueras, J.; Kokudo, N.; Kunstlinger, F.; Loyer, E.; Poston, G.; Rougier, P.; Rubbia-Brandt, L.; Sobrero, A.; et al. Managing synchronous liver metastases from colorectal cancer: a multidisciplinary international consensus. *Cancer Treat Rev* **2015**, *41* (9), 729-741. DOI: 10.1016/j.ctrv.2015.06.006 From NLM.

87. Zhang, Y.; Ge, L.; Weng, J.; Tuo, W. Y.; Liu, B.; Ma, S. X.; Yang, K. H.; Cai, H. Neoadjuvant chemotherapy for patients with resectable colorectal cancer liver metastases: A systematic review and meta-analysis. *World J Clin Cases* **2021**, *9* (22), 6357-6379. DOI: 10.12998/wjcc.v9.i22.6357 From NLM.

88. Shah, J. L.; Zendejas-Ruiz, I. R.; Thornton, L. M.; Geller, B. S.; Grajo, J. R.; Collinsworth, A.; George, T. J., Jr.; Toskich, B. Neoadjuvant transarterial radiation lobectomy for colorectal hepatic metastases: a small cohort analysis on safety, efficacy, and radiopathologic correlation. In *J Gastrointest Oncol*, Vol. 8; 2017; pp E43-e51.

89. Adam, R.; De Gramont, A.; Figueras, J.; Guthrie, A.; Kokudo, N.; Kunstlinger, F.; Loyer, E.; Poston, G.; Rougier, P.; Rubbia-Brandt, L.; et al. The oncosurgery approach to managing liver metastases from colorectal cancer: a multidisciplinary international consensus. *Oncologist* **2012**, *17* (10), 1225-1239. DOI: 10.1634/theoncologist.2012-0121 From NLM.

90. Cheng, J.; Qiu, M.; Zhang, Y.; Hong, N.; Shen, D.; Zhou, J.; Wang, Y. Enhanced Rim on MDCT of Colorectal Liver Metastases: Assessment of Ability to Predict Progression-Free Survival and Response to Bevacizumab-Based Chemotherapy. *AJR Am J Roentgenol* **2020**, *215* (6), 1377-1383. DOI: 10.2214/ajr.19.22280 From NLM.

91. Borner, M. M. Neoadjuvant chemotherapy for unresectable liver metastases of colorectal cancer--too good to be true? In *Ann Oncol*, Vol. 10; 1999; pp 623-626.

92. Lam, V. W.; Spiro, C.; Laurence, J. M.; Johnston, E.; Hollands, M. J.; Pleass, H. C.; Richardson, A. J. A systematic review of clinical response and survival outcomes of downsizing systemic chemotherapy and rescue liver surgery in patients with initially unresectable colorectal liver metastases. *Ann Surg Oncol* **2012**, *19* (4), 1292-1301. DOI: 10.1245/s10434-011-2061-0 From NLM.

93. Narita, M.; Oussoultzoglou, E.; Bachellier, P.; Rosso, E.; Pessaux, P.; Jaeck, D. Two-stage hepatectomy procedure to treat initially unresectable multiple bilobar colorectal liver metastases: technical aspects. *Dig Surg* **2011**, *28* (2), 121-126. DOI: 10.1159/000323822 From NLM.

94. Cardoso, R.; Guo, F.; Heisser, T.; De Schutter, H.; Van Damme, N.; Nilbert, M. C.; Christensen, J.; Bouvier, A. M.; Bouvier, V.; Launoy, G.; et al. Overall and stage-specific survival of patients with screen-detected colorectal cancer in European countries: A population-based study in 9 countries. *Lancet Reg Health Eur* **2022**, *21*, 100458. DOI: 10.1016/j.lanepe.2022.100458 From NLM.

95. Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C. J.; Estève, J.; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-

based registries in 71 countries. *Lancet* **2018**, *391* (10125), 1023-1075. DOI: 10.1016/s0140-6736(17)33326-3 From NLM.

- 96. Losurdo, P.; Samardzic, N.; Di Lenarda, F.; de Manzini, N.; Giudici, F.; Bortul, M. The real-word impact of breast and colorectal cancer surgery during the SARS-CoV-2 pandemic. *Updates Surg* **2022**, *74* (3), 1063-1072. DOI: 10.1007/s13304-021-01212-2 From NLM.
- 97. Drew, D. A.; Cao, Y.; Chan, A. T. Aspirin and colorectal cancer: the promise of precision chemoprevention. *Nat Rev Cancer* **2016**, *16* (3), 173-186. DOI: 10.1038/nrc.2016.4 From NLM.
- 98. Drew, D. A.; Chan, A. T. Aspirin in the Prevention of Colorectal Neoplasia. *Annu Rev Med* **2021**, *72*, 415-430. DOI: 10.1146/annurev-med-060319-120913 From NLM.
- 99. Dulai, P. S.; Singh, S.; Marquez, E.; Khera, R.; Prokop, L. J.; Limburg, P. J.; Gupta, S.; Murad, M. H. Chemoprevention of colorectal cancer in individuals with previous colorectal neoplasia: systematic review and network meta-analysis. *Bmj* **2016**, *355*, i6188. DOI: 10.1136/bmj.i6188 From NLM.
- 100. Perrod, G.; Rahmi, G.; Cellier, C. Colorectal cancer screening in Lynch syndrome: Indication, techniques and future perspectives. *Dig Endosc* **2021**, *33* (4), 520-528. DOI: 10.1111/den.13702 From NLM.
- 101. Drogan, C.; Kupfer, S. S. Colorectal Cancer Screening Recommendations and Outcomes in Lynch Syndrome. *Gastrointest Endosc Clin N Am* **2022**, *32* (1), 59-74. DOI: 10.1016/j.giec.2021.08.001 From NLM.
- 102. Tonelli, F.; Di Martino, C.; Amorosi, A.; Mini, E.; Nesi, G. Surgery for ulcerative colitis complicated with colorectal cancer: when ileal pouch-anal anastomosis is the right choice. *Updates Surg* **2022**, *74* (2), 637-647. DOI: 10.1007/s13304-022-01250-4 From NLM.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.