Submitted:
11 April 2024
Posted:
11 April 2024
Read the latest preprint version here
Abstract
Keywords:
Introduction
Stability Boundary

Spontaneous Synchronisation
Supplementary Materials
Data availability
Conflicts of Interest
References
- A. Koronovskii, O. I. Moskalenko, and A. E. Hramov, Synchronization in Complex Networks, Tech. Phys. Lett. 38, 924 (2012).
- Dörfler, F.; Chertkov, M.; Bullo, F. Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. 2013, 110, 2005–2010. [CrossRef]
- Wu, K.; Hao, X.; Liu, J.; Liu, P.; Shen, F. Online Reconstruction of Complex Networks From Streaming Data. IEEE Trans. Cybern. 2020, 52, 5136–5147. [CrossRef]
- L. L. Linyuan and T. Zhou, Link Prediction in Complex Networks: A Survey, Phys. A Stat. Mech. Its Appl. 390, 1150 (2011). [CrossRef]
- Xu, Y.; Zhou, W.; Fang, J. Topology identification of the modified complex dynamical network with non-delayed and delayed coupling. Nonlinear Dyn. 2011, 68, 195–205. [CrossRef]
- Molnar, F.; Nishikawa, T.; Motter, A.E. Asymmetry underlies stability in power grids. Nat. Commun. 2021, 12, 1–9. [CrossRef]
- Martínez, I.; Messina, A.R.; Vittal, V. Normal Form Analysis of Complex System Models: A Structure-Preserving Approach. IEEE Trans. Power Syst. 2007, 22, 1908–1915. [CrossRef]
- Zhu, L.; Hill, D.J. Synchronization of Kuramoto Oscillators: A Regional Stability Framework. IEEE Trans. Autom. Control. 2020, 65, 5070–5082. [CrossRef]
- Casals, M.R.; Bologna, S.; Bompard, E.F.; D', G.; Agostino, N.; Ellens, W.; Pagani, G.A.; Scala, A.; Verma, T. Knowing power grids and understanding complexity science. Int. J. Crit. Infrastructures 2015, 11. [CrossRef]
- Gurrala, G.; Dimitrovski, A.; Pannala, S.; Simunovic, S.; Starke, M. Parareal in Time for Fast Power System Dynamic Simulations. IEEE Trans. Power Syst. 2015, 31, 1820–1830. [CrossRef]
- Gurrala, G.; Dinesha, D.L.; Dimitrovski, A.; Sreekanth, P.; Simunovic, S.; Starke, M. Large Multi-Machine Power System Simulations Using Multi-Stage Adomian Decomposition. IEEE Trans. Power Syst. 2017, 32, 3594–3606. [CrossRef]
- Wang, B.; Fang, B.; Wang, Y.; Liu, H.; Liu, Y. Power System Transient Stability Assessment Based on Big Data and the Core Vector Machine. IEEE Trans. Smart Grid 2016, 7, 2561–2570. [CrossRef]
- Yu, Y.; Liu, Y.; Qin, C.; Yang, T. Theory and Method of Power System Integrated Security Region Irrelevant to Operation States: An Introduction. Engineering 2020, 6, 754–777. [CrossRef]
- Yang, P.; Liu, F.; Wei, W.; Wang, Z. Approaching the Transient Stability Boundary of a Power System: Theory and Applications. IEEE Trans. Autom. Sci. Eng. 2022, 20, 2268–2279. [CrossRef]
- Al-Ammar, E.A.; El-Kady, M.A. Application of Operating Security Regions in Power Systems, IEEE PES Transm. Distrib. Conf. Expo. Smart Solut. a Chang. World (2010).
- Kundur, P.; Paserba, J.; Ajjarapu, V.; Andersson, G.; Bose, A.; Canizares, C.; Hatziargyriou, N.; Hill, D.; Stankovic, A.; Taylor, C.; et al. Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. IEEE Trans. Power Syst. 2004, 19, 1387–1401. [CrossRef]
- B. Student Member and G. A. Senior Member, On the Nature of Unstable Equilibrium Points in Power Systems, IEEE Trans. Power Syst. 8, 738 (1993). [CrossRef]
- Chiang, H.-D.; Wu, F.; Varaiya, P. A BCU method for direct analysis of power system transient stability. IEEE Trans. Power Syst. 1994, 9, 1194–1208. [CrossRef]
- Shubhanga, K.N.; Kulkarni, A.M. Application of Structure Preserving Energy Margin Sensitivity to Determime the Effectiveness of Shunt and Serles FACTS Devices. IEEE Power Eng. Rev. 2002, 22, 57–57. [CrossRef]
- Bhui, P.; Senroy, N. Real Time Prediction and Control of Transient Stability Using Transient Energy Function. IEEE Trans. Power Syst. 2016, 32, 1–1. [CrossRef]
- Al Marhoon, H.H.; Leevongwat, I.; Rastgoufard, P. A Fast Search Algorithm for Critical Clearing Time for Power Systems Transient Stability Analysis, 2014 Clemson Univ. Power Syst. Conf. PSC 2014 (2014).
- Rimorov, D.; Wang, X.; Kamwa, I.; Joos, G. An Approach to Constructing Analytical Energy Function for Synchronous Generator Models With Subtransient Dynamics. IEEE Trans. Power Syst. 2018, 33, 5958–5967. [CrossRef]
- Motter, A.E.; Myers, S.A.; Anghel, M.; Nishikawa, T. Spontaneous synchrony in power-grid networks. Nat. Phys. 2013, 9, 191–197. [CrossRef]
- Li, X.; Wei, W.; Zheng, Z. Promoting synchrony of power grids by restructuring network topologies. Chaos: Interdiscip. J. Nonlinear Sci. 2023, 33. [CrossRef]
- Chen, G. Searching for Best Network Topologies with Optimal Synchronizability: A Brief Review. Ieee/caa J. Autom. Sin. 2022, 9, 573–577. [CrossRef]
- Y. Kuramoto and D. Battogtokh, Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators, Physics (College. Park. Md). 4, 380 (2002).
- Martens, E.A.; Thutupalli, S.; Fourrière, A.; Hallatschek, O. Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. 2013, 110, 10563–10567. [CrossRef]
- Panaggio, M.J.; Abrams, D.M. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 2015, 28, R67–R87. [CrossRef]
- Ding, L.; Gonzalez-Longatt, F.M.; Wall, P.; Terzija, V. Two-Step Spectral Clustering Controlled Islanding Algorithm. IEEE Trans. Power Syst. 2012, 28, 75–84. [CrossRef]
- Ajala, O.; Dominguez-Garcia, A.; Sauer, P.; Liberzon, D. A Second-Order Synchronous Machine Model for Multi-Swing Stability Analysis, 51st North Am. Power Symp. NAPS 2019 (2019).
- Alberto, L.; Bretas, N. Required damping to assure multiswing transient stability: the SMIB case. Int. J. Electr. Power Energy Syst. 2000, 22, 179–185. [CrossRef]
- Karatekin, C.Z.; Uçak, C. Sensitivity analysis based on transmission line susceptances for congestion management. Electr. Power Syst. Res. 2008, 78, 1485–1493. [CrossRef]
- Mei, S.; Ni, Y.; Wang, G.; Wu, S. A Study of Self-Organized Criticality of Power System Under Cascading Failures Based on AC-OPF With Voltage Stability Margin. IEEE Trans. Power Syst. 2008, 23, 1719–1726. [CrossRef]
- Dobson, I.; Carreras, B.; Lynch, V.; Newman, D. An Initial Model for Complex Dynamics in Electric Power System Blackouts, Proc. Hawaii Int. Conf. Syst. Sci. 51 (2001).
- T. Nishikawa and A. E. Motter, Symmetric States Requiring System Asymmetry, Phys. Rev. Lett. 117, 114101 (2016).
- Zhou, L.; Swain, A.; Ukil, A. Reinforcement Learning Controllers for Enhancement of Low Voltage Ride Through Capability in Hybrid Power Systems. IEEE Trans. Ind. Informatics 2019, 16, 5023–5031. [CrossRef]
- Dörfler, F.; Bullo, F. Synchronization in complex networks of phase oscillators: A survey. Automatica 2014, 50, 1539–1564. [CrossRef]
- Zou, Y.; Pereira, T.; Small, M.; Liu, Z.; Kurths, J. Basin of Attraction Determines Hysteresis in Explosive Synchronization. Phys. Rev. Lett. 2014, 112, 114102. [CrossRef]
- Chialvo, D.R. Emergent complex neural dynamics. Nat. Phys. 2010, 6, 744–750. [CrossRef]
- Fan, H.; Wang, Y.; Wang, X. Eigenvector-based analysis of cluster synchronization in general complex networks of coupled chaotic oscillators. Front. Phys. 2023, 18, 1–15. [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
