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Abstract: The commonly quoted bistable Higgs potential is not a proper description of the Higgs
field because, among other technical reasons, one of its stable states acquires a negative expectation
value in vacuum. We rely on formal catastrophe theory to derive the form of the Higgs potential
that admits only one positive mean value in vacuum. No symmetry is broken during the ensuing
phase transition that assigns mass to the Higgs field; only gauge redundancy is “broken” by the
appearance of phase in the massive state, but this redundancy is not a true symmetry of the massless
field. Furthermore, a secondary, certainly amusing conclusion is that, in its high-energy state, the
field oscillates about its potential minimum between positive and negative masses; but it is doubtful
that such evanescent states can survive below the critical temperature of 159.5 GeV, where the known
particles were actually created.

Keywords: cosmology; critical phenomena; higgs production; non-equilibrium field theory; particle
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1. Introduction

Bistable potential wells possessing two minima separated by an energy barrier are quite common
in the natural sciences [1-6]. Despite their frequent use in descriptions of discontinuous transitions
occurring in physical, chemical, and biological systems and their intimate connections to catastrophe
theory, bifurcation theory, singularity theory, structural stability, and phase transitions [4-9], the
ensuing dynamical evolution is not understood in virtually all cases, to the point that some famous
accounts of transitions are not only technically unphysical, but they are also visibly preposterous.
The deeper reason for such absurdities is the lack of temporal variables in Landau’s phase-transition
theory and in Thom’s catastrophe theory. These theories apply only to gradient systems [1,4-6], and
the notion of time-dependent phenomena is added ad hoc by describing arbitrarily drawn paths in the
control parameter space of the cusp and higher elementary catastrophes.

For instance, Landau’s phenomenological theory of second-order phase transitions predicts the
appearance of two minima of equal depth past the critical point, although we know from experiments
that only one stable state exists below the critical temperature T.. To work around this problem, the
theory postulates, against the odds, that an evolving system will arbitrarily choose to settle into one of
these states. Even in this hypothetical scenario, the model remains unphysical because these states
continue to evolve and change their mean values as the temperature T < T is lowered toward absolute
zero. So, no matter which minimum the system “chooses,” it finds itself out of equilibrium all the time;
thus, the system has to evolve again and again trying to catch up with the ever-changing equilibrium
state. In contemporary parlance, such a situation is described by the metaphor “moving the goalposts”
which has negative connotation.

Furthermore, it is well-known that an infinitesimal linear perturbation wipes out entirely Landau’s
second-order phase transition [6], which means that such transitions should not occur in nature, or
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that the theory is wrong. All these absurdities come to life because of the assumption that the system
finds itself at a local maximum of the potential as T crosses to just below T., where it sees two new
minima opening up as the control parameter becomes nonzero (negative, to be specific [1,5-7]). This
assumption places the system in an unstable initial state, a practice that is heavily at odds with
basic physics and with the stable stationary states that we describe in Section 2 below. It is also
mathematically puzzling how the initial potential minimum at T > T, changes directly to an isolated
maximum without passing through a degenerate inflection point (this procedure builds a priori a
discontinuity in the second derivative of the potential [1]).

The stability of the Higgs potential in particle physics [9-13] is another case in point. The
descriptions of how the Higgs field acquires mass are cursory and nonsensical at their roots: At
high energies, the massless Higgs field is supposed to be stripped of any and all features, yet it is
hypothesized to have “some high symmetry” (zero weak isospin?)! supporting an even potential
function. This is the symmetry that will be broken in the final stationary state, when the unstable field
will conveniently ignore the negative-minimum state and it will choose against the odds to settle into
the other available state of positive vacuum expectation value (VEV). But how can such a symmetry
be broken when the potential continues to be an even function, just as prior to the transition? And
how can the system ever settle into either one of the low-energy states, when these states are not really
stationary but continue to move the goalposts (dotted curves in Figure 1) to different VEVs all the
time?

Figure 1. Potential V(¢) = ¢* — m?¢?/2 for m = 0,1,2. For m # 0, three unphysical features are
observed: (a) The system suddenly finds itself at a local maximum. (b) Two global minima are available,
the one at ¢y < 0 with negative VEV. (c) The stable minima continue to relocate to ¢g = +m/2 (along
the dotted curves) as m increases, throwing the system out of equilibrium all the time and preventing
its settling to a specific VEV, irrespective of which side it chooses to evolve. These features appear
because the perturbation (—m?¢?/2 + b¢) of the cusp catastrophe germ (¢*) has been overconstrained
by setting b = 0.

All of the above descriptions should have been taken with a large grain of salt because, after all, an
infinitesimal linear perturbation at T = T, eliminates the second-order phase transition altogether. This
occurs because Landau’s assumption of a “higher symmetry” in the initial state [1] alters arbitrarily
the perturbation? (—m?¢?/2 + b¢) attached to Thom's cusp catastrophe germ (¢*; [4]); as a result, one

In contrast, Landau [1] was not thinking about isospin or null quantities when he formulated his theory. To him, symmetries
were visible in the arrangement of atoms in a crystal or in the (mis)alignment of magnetic moments in magnetic materials
2 In all fairness to Landau [1], Thom's catastrophe theory [4] did not exist in Landau’s time, so he did not know that his
Taylor expansion of the potential was not formally correct near the degenerate critical point. In fact, he was apparently
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control parameter is eliminated (b = 0; [6]) and the drawn ad hoc evolutionary path {m, b =0} in
the control parameter space (1, b) becomes incorrect and irreparable—even if an infinitesimal b # 0
perturbation is brought back in. The reason for this structural instability is that m and b are related
along the transition path, thus, the value of b cannot be chosen independently. The proof is given in
Section 2.1 below using polynomial theory.

The resulting overconstrained (b = 0) potential with one remaining control parameter, V (¢) =
¢* — m?¢?/2, is illustrated in Figure 1. The phase-transition path highlighted by the dotted curves is
unphysical for the reasons discussed above; thus, naturally occurring phase transitions (of first and
second order) require a different mathematical approach. We undertake this task for the Higgs field in
Section 2, and we discuss our results for the various types of phase transitions in Section 3. For the sake
of completeness of the methodology, the two higher-order elementary catastrophes (the swallowtail
and the butterfly) are also analyzed in this work, and their results are collected in Appendix A.

2. Derivation of the Higgs Potential from Catastrophe Theory

In cosmology and particle physics, the scalar Higgs field is massless and featureless at the very
high energies occurring right after the big bang [9,10,14-17]. When the universe cools down to a critical
temperature of T, = 159.5 £ 1.5 GeV [16,17], the electroweak phase transition takes place [9-11,16-20].
Lattice monte-carlo simulations indicate that the cross-over of the Higgs field is smooth but fast, lasting
for only ~ 5 GeV [16,17] during which the field settles down to a nonzero (positive) VEV of v = 246.22
GeV, where it has remained until the present time. This value of the Higgs VEV is a natural constant
[20], and it is responsible for the corresponding particle, the Higgs boson, acquiring its observed mass
(125.25 GeV; [21-24]).

There are two methods by which we can derive the scalar Higgs potential at all temperatures
and observe the phase transition to the massive Higgs boson. The first derivation is more tedious and
requires more steps, but it is also transparent in justifying the various assumptions being made; it
further shows that the Higgs potential obeys Thom’s theorem [4] for the cusp catastrophe. The second
derivation is an astute shortcut, but it is opaque and reveals no details; this formulation hides the
influence of catastrophe theory, so it could have been carried out at the time that Landau [1] presented
his phase-transition theory. We summarize both methods below.

2.1. Method 1: Relying on Catastrophe Theory and Stable Isolated States

For the Higgs potential V(¢) to generally exhibit three isolated extrema, its derivative V' must
have the form

Vi(¢ia,b,c) = 4(¢+a)(@+b)(p+c), ©)
where 4, b, ¢ are interrelated control parameters to be constrained below. Then V' (¢y) = 0 gives the
extrema ¢pg = —a, —b, —c. Integrating equation (1), we find that

V(p;a,b,c) = ¢* + % (a4b+c) ¢+ 2 (ab + be + ca) $* + (4abc) ¢, (2)

where the integration constant has been dropped. In the neighborhood of the critical point of the germ
V = ¢*, the Taylor expansion does not have a cubic term or terms higher than O(¢*). These terms
are eliminated by Thom’s inhomogeneous linear transformation and his nonlinear transformation,
respectively [4-6]. Thus, we must set

a+b+c=0, (3)

lucky to get the rest of the perturbation (A7?) right when he correctly eliminated the cubic term (C® = 0), albeit based on
an inconclusive argument (that, for C # 0, the curve of phase transitions degenerates to a single point in the (P, T) plane,
where P is pressure); the counterargument is that functions A(P, T) and C(P, T) may have the same zeroes [5] and /or that
Cx A.
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in which case we obtain the canonical form
V@mﬁ)=¢4—2@2+w+mﬂ¢2—Mbm+m¢, )

with the extrema located at ¢9 = —a, —b, (a + b). Note that if we arbitrarily choose b = 0, then we
obtain Landau’s [1] potential with extrema at ¢g = 0, +a (see also Section 2.2.2 below). This choice
is unjustifiable, and we are not going to adopt it. Instead, we shift V(¢) by a to the right, in order to
place the first listed extremum at ¢g = 0. The shift transforms the cusp-catastrophe function (4) to

V(¢p;a,b) = ¢* — 4a¢® + 2 (a — b) (2a +b) ¢?, ®)

where an additive constant has been dropped (eliminated by a vertical shift). In this function, the
extrema have been shifted to ¢9 = 0, (a — b), (2a + b). We shall see that ¢y = 0 corresponds to a
local minimum of V(¢;a,b) and we are prepared to assume that the massless Higgs field occupies
this minimum while waiting for a more stable state to open up and become accessible. The subject
of accessibility of a new global minimum is very important in this regard; it is discussed further in
Section 3 below.

Next, we fix the third listed extremum to always be located at ¢9 = 1 by convention. Then, we set

b=1-2a, (6)
and equation (5) takes the form
V(p;a) = ¢* —4ag> +2(3a — 1) ¢?. ?)

The extrema are now located at ¢g = 0, (32 — 1), 1. When ¢y = 1 is a global minimum, it represents the
massive state of the Higgs field, and when this minimum becomes accessible at a critical point in the
control parameter plane (g, b), the field will make the transition to a nonzero VEV (v = ¢9 = 1). The
phase-transition path is described by equation (6). Thus, the path is an oblique line that does not cross
the apex 2 = b = 0 of the separatrix.

In a final step, we redefine the location of the second listed extremum ¢y = 32 — 1 by adopting

k=3a—-1. (8)

This definition gives us a better handle on the location of this extremum. We want it to correspond to a
local maximum (the location of an energy barrier that obstructs the phase transition for all k € (0, 1].
As such, k should be located between the other two extrema, viz.

0<k<1, ©
and then equation (7) is rewritten in the final form
4
V(gik) = ¢* = 2 (k+1)¢° + (2Kk) ¢*. (10)
Looking at this potential function, it is hard to imagine that it satisfies Thom’s cusp-catastrophe

theorem [4], but it does. Equation (10) is equivalent to the cusp-catastrophe potential (4) shifted by a to
the right, where a = (k+1)/3 and b = (1 — 2k)/3.

doi:10.20944/preprints202310.2001.v1
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The Higgs potential (10) is plotted across the transition path {k =1 — 0} in Figure 2. The critical
points (¢o, V(¢o)) of the potential V(¢; k) are

¢o=0, V(0)=0;
go=Fk V(k)=K2-k)/3; (1)
¢o=1, V(1) = (2k—1)/3.

Thus, the height of the energy barrier is AV = k3(2 —k)/3and 0 < AV < 1/3. Fork < 1/2, once at the
top of the barrier, a system will dissipate an amount of energy equal to AE = (1 — k)3(1 + k) /3 during
its settling to the global minimum on the right side. This amount is maximized at the critical point
k = 0 for which AE. = 1/3.
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Figure 2. Cusp catastrophe in the potential V(¢; k) (equation (10)) with 0 < k < 1 placing the energy
barrier between the other two extrema. The phase transition path is described by {k =1 — 0}. A
system initially located at (0, 0) may undergo a phase transition to ¢9 = 1 only when this state becomes
the global minimum (for 0 < k < 1/2) and (quantum tunneling aside) only if a finite perturbation
provides the free energy required for climbing over the top of the intervening energy barrier. The
critical point of the phase transition occurs for k = 0, when the diminishing barrier finally disappears,
and the system moves spontaneously to ¢y = 1. For k < 0 (dashed curve), a new local minimum opens
up at ¢ < 0, but the system remains at the global minimum ¢y = 1 for all kpin, < k < 0, where kpin
represents the state at absolute zero—here, as usual, we think of k as proportional to the temperature
difference (T — T).

For k = 1/2, where the two minima have equal depth, the barrier height is AV = 1/16, and an
equal amount of energy, if gained from external perturbations, will be dissipated away (AE = 1/16)
during the transition from the top of the barrier to one of the two stable states. The k = 1/2 stage is
important because it is the first instance along the evolutionary path {k = 1 — 0} where another stable
state (¢p = 1) becomes available to a system located at ¢g = 0, although, barring a sufficiently strong
nonlinear perturbation, the new state is not dynamically accessible because of the intervening barrier
[25-29]. In Section 3,we discuss the types of viable phase transitions along the latter path segment
{k =1/2 — 0}, where the energy barrier continues to diminish with decreasing k.

2.2. Method 2: Implementing a Shortcut

An alternative derivation of equation (10) that dispenses with details and formalities is as follows.
We return to equation (1) for the derivative V’(¢), which we copy here for convenience:

Vi(¢;a,b,c) =4(¢+a)(@+b)(¢+c). (12)
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Following Landau’s assumption (C¢> = 0; [1]), we eliminate the quadratic term from V’, in which case
the sum of the three zeros is set to zero and ¢ = —a — b:

V'(p;a,b) =4(p+a)(p+b)(¢—a—D). (13)
We shift ¢ by a to the right to place one extremum always at ¢y = 0:
V'(¢;a,b) = 4p(p —a+Db)(¢p —2a—b). (14)

We constrain the control parameters by 22 + b = 1 (or by a — b = 1) to place another extremum always
at a fixed location ¢ = 1:

Vi(g;a) =49 —1)(p—3a+1). (15)

We redefine —3a + 1 by equation (8) to simplify the location of the the remaining extremum:

VI(¢ik) = (¢ —1)(9 — k). (16)
Integrating with respect to ¢, we obtain the form (10) for V(¢; k).

2.2.1. Utilizing a Familiarity Heuristic

Perhaps surprisingly, the steps taken in the shortcut above can all be avoided by utilizing a
familiarity heuristic [30].

The final result can be written down in just two steps, without proof or investigation of its
validity, by simply recalling that we are interested in static potentials which we can use to demonstrate
phase transitions. Such potentials must generally exhibit three extrema, two fixed minima (¢g = 0,1)
representing the initial and final stationary states, and a maximum representing an obstacle or barrier
that separates the two states. Therefore, equation (16) can be written down ab initio, and then it can be
integrated to yield the potential V(¢; k) shown in equation (10).

The problem with this extremely fast, albeit heuristic approach is, of course, that we cannot then
formally justify the potential obtained by intuition and familiarity with nature’s phase transitions [1-3].
This problem is solved by the lengthy derivation given in Section 2.1 above.

2.2.2. Looking Back to Landau’s Theory of Phase Transitions

By contrast, Landau’s phase-transition theory can be formulated in the same context
(equations (12)-(16)) as follows.

Control parameter c is replaced by —(a + b) in equation (12) to eliminate the ¢? term (no cubic
term in the potential). Then, b is set to zero in equation (13) (in disagreement with catastrophe theory
that was not known at that time), resulting in the overconstrained form

V(¢;a) = 49(¢* —a?). (17)
Integrating with respect to ¢, we obtain the final form
V(g;a) = ¢* —2a%¢*, (18)

which is depicted in Figure 1 for a = 0,0.5,1 (corresponding to m = 0,1,2; here, a = m/2). As was
discussed in Section 1 and summarized in the caption of Figure 1, these potential curves do not form
an evolutionary path in the control parameter plane (a,b) with varying values of the remaining control
parameter {[a| =0 —05—1—---}.
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3. Discussion of Phase Transitions

3.1. The Higgs Phase Transition

For the purposes of our discussion, we rewrite the canonical potential function (4) of the Higgs
field in Thom’s equivalent form of a cusp catastrophe, viz.

V() = ¢* + Ap> + Bg, (19)

where the control parameters (A, B) are functions of two of the roots (a,b) of V/(¢) = 0, viz. A =
—2(a®> +ab+b*) and B = —4ab(a + b). The third root c is not independent, i.e., ¢ = —(a + b)
(equation (3)). If we set any one of these three roots to zero, then B = 0 and the perturbation of the
germ ¢* takes a specialized even form that cannot describe quantitatively any phase transition since
the phenomenon occurs naturally for general perturbations of no particular symmetry. Moreover,
B = 0 fixes the maximum of the bistable potential V(¢) to point (0,0), where the system finds itself
at the onset of the phase transition. Thus, the system is unstable and has no choice but to evolve.
This setup is clearly problematic.> Physical reasoning [2—4,7-9,15-17,25-29] formally requires that the
system be located at a stable minimum of the potential at all times before the second-order critical
point T¢ is reached, and that this minimum become degenerate for T = T¢ (i.e., an inflection point)
and progressively a (no longer relevant) local maximum for T < T, as in Figure 2 (the case T < T¢
corresponds to the k = —0.25 curve). This figure also shows the physical reason for the occurrence
of the second-order phase transition for k = 0: the energy barrier that separates the two stable states
diminishes as T — T.* (k — 07) and disappears altogether for T = Tg; in fact, it is the merging of this
maximum with the minimum at ¢y = 0 that makes the critical point T = T. degenerate. This smooth
process makes sense, as the minimum that initially hosts the system switches gradually, first to an
inflection point, and then to a maximum.

The control parameters A and B do not vary independently along the evolutionary path. Therefore,
setting B = 0 for all values of A in equation (19) (as in Landau’s theory) is prohibited. This can be
proven as follows: Using equations (6) and (8), we express the control parameters (A, B) of the canonical
cusp catastrophe (19) as functions of k, viz.

Az—%(kZ—k—H), (20)

and
4

2k —1) (k+1) (k—2) ; (1)

we can see that B = 0 in k € [0,1] only for a single point, k = 1/2, for which A = —1/ 2.4 Now,
eliminating k between these two equations, we find that the control parameters (A, B) are related along
the path {k =1 — 0} by

4(A+2)*(2A+1)+27B*> =0, (22)

where A€ [—-2/3, —1/2] and B € [-8/27, 8/27]. This curve effectively constrains the evolutionary
path in the (A, B) plane; the constraint reveals the presence of an integral of motion (i.e., a conserved
quantity) during the evolution, as was determined in astrophysical first-order and second-order phase
transitions [26-29].

Landau’s theory has also been criticized and found inadequate from several other perspectives by Huang ([31]; §§17.1,17.4),
Pippard ([32]; Chapter 9), and Stanley ([33]; §10.4).

4 The point k = 1/2 or (A, B) = (—1/2,0) is where the evolutionary path {k = 1 — 0} crosses the B-axis in the control
parameter plane (see Figure 3 below).
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Figure 3 shows the (A, B) plane of the cusp potential (19) and the evolutionary path {k =1 — 0}
that lies entirely within the separatrix (the fold curve 8A3 + 27B% = 0) and terminates at the critical
point k = 0, where the phase transition occurs spontaneously. (Note the degenerate inflection point
at o = 0 in the inset of the Higgs potential V(¢;0).) For k = 0, the coordinates are (A, B) =
(—2/ 3, -8/ 27). Because this point also lies on the separatrix, this is the first demonstration of the
so-called “delay convention” [3-6,34] in a second-order phase transition. Except that the delay down to
k = 0 does not occur by convention here, it is a calculated outcome in the evolution of V(¢; k) depicted
in Figure 2. This brings the discussion to the other convention® commonly used in catastrophe theory,
the so-called “Maxwell convention” [3,6,25,34] used in first-order phase transitions.

8A% +27B? =0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 3. The evolutionary path {k = 1 — 0} on the control parameter plane (A, B) of the cusp
catastrophe, where A and B are the coefficients seen in equations (4) and (19). The insets are borrowed
from the potential curves V(¢; k) of Figure 2. The separatrix 8A3 + 27B? = 0 is shown in blue color.

3.2. The Maxwell Convention and Chemical Reactions

The Maxwell convention singles out the point with k = 1/2 in the middle of the path shown in
Figure 3 as a viable phase-transition point because the two minima seen in the V(¢;0.5) inset have the
same depth [34,35]. This is utter speculation that came about because a system was thought to already
be at the top of the energy barrier. From the top, both minima are accessible with equal probabilities
of transition, and the two stable states coexist. This setup and assumptions are basically the same
as in the Higgs field which can also transition to the two stable states (one with negative VEV) with
equal probability, according to Landau’s theory [1]. But, as we explained above, placing a system
at a local maximum at the transition point is unphysical; so, we proceed to describe and clarify the
evolution of nonspontaneous first-order phase transitions and Maxwell’s rule under the action of
external perturbations in the control parameter plane of Figure 3.

Maxwell’s rule [35] (the basis for the Maxwell convention) identifies the point (k = 1/2) along the
path {k =1 — 0} in Figure 3 in which the two stable minima attain equal depths. The system initially
occupies the left minimum and, as the evolution proceeds along the segment {k = 1/2 — 0}, it cannot
generally access the other stable state because of the intervening energy barrier. Thus, Maxwell’s
rule simply captures the first instance that another stable state becomes available, but not necessarily
accessible. Only external perturbations can induce such a nonspontaneous transition of system parts
and sectors for k < 1/2, if they are sufficiently strong, and then the two phases will coexist. Thus,

5 Recall that catastrophe theory is applicable only to gradient systems [6], so it does not account for time, and qualitative

conventions have been invented to describe actual time evolution before and after a phase transition (or “catastrophe”).
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chances are that such a discontinuous transition of sectors may occur at a value smaller than k = 1/2
because the barrier height decreases along the segment (Figure 2). This is precisely what takes place
in the chemical reactions that use catalysts [36-40]; catalysts lower the so-called activation energy
barrier, thereby increasing the reaction rates (i.e., they induce a first-order phase transition in parts of
the reactants), without actually being consumed. Lowering the energy barrier is a mechanism used
in catalyzed chemical reactions. An alternative mechanism is to perturb the reactants by supplying
excess heat. In this pathway, the barrier remains intact, but the reactants absorb the energy, and more
constituents go over the top of the barrier to the other state that hosts the products of the reaction.

3.3. Overcoming the Energy Barrier

The above chemical reaction mechanisms fit rigorously into our framework of first- and
second-order phase transitions (Figures 2 and 3). A spontaneous reaction occurs when there is
no barrier (k = 0); and a catalyzed reaction or a heat-driven barrier jump occurs for k < 1/2, but only
under the action of perturbations supplying the necessary energy. An example is shown in Figure 4
for k = 0.4. We consider a system oscillating initially about minimum I under the action of external
perturbations. Since k < 1/2, the second minimum S that became competitive for k = 1/2 is now the
global minimum and the energy barrier AV has decreased past the Maxwell point. If the Gibbs free
energy AE gained by the parts of the system is not sufficient to push any part up to at least point P (or
B), then the perturbed system remains in the neighborhood of point I. If, on the other hand, AE = AV
in some parts, then these parts displaced to point P can overcome barrier B and make the transition to
the new global stable state S [2,3,25-29]. Then, the two phases, I and S, coexist [31-33]. Furthermore, if
AE > AV in some perturbed parts (displaced, e.g., up to point J), then these parts no longer recognize
barrier B and collapse to the deep minimum S on a dynamical time [3,41,42].

0.1 T
0.08 \ i
J
0.06 i
0.04 P i
e ap |
<
~— or |
~
-0.02 i
-0.04 i
006 [—— k=04 ]
oo0sk| @ Preunstable [25] S |
Jeans Unstable [41]
-0.1 1 | | | . . ) )
04 02 0 02 04 06 08 1 12 14

¢

Figure 4. Bistable potential (equation (10) with k = 0.4) in which a system is displaced from equilibrium
and oscillates about the local minimum I under the action of external perturbations. If the system gets
displaced to P, it gains enough energy (AE = AV) to roll over the top of barrier B and down to the
global minimum state S, as indicated by the arrows. Thus, the system at P is “preunstable” [25] and
undergoes a first-order phase transition [2,3,26-28]). If the system gets displaced to any point of higher
energy (e.g., at ]), then it becomes dynamically (Jeans) unstable [41] (it no longer recognizes the energy
barrier at B) and collapses to the global minimum state S. If the system never gains enough energy to
overcome the barrier, then it will remain near point I until k = 0, where the barrier disappears. Then,
points I and B merge to an inflection point and the second-order phase transition to S is spontaneous
[5,26,42].
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3.4. Star-Forming Phase Transitions

Although the outcome of the above evolutionary scenarios is the same in Figure 4 (the settling
of at least parts of a system into stable state S), the dynamics is quite different. The difference was
recognized long ago in the context of star formation in giant molecular clouds, first by Whitworth [25]
and subsequently by Tohline [2,3,26-28], although the ideas had been previously explored in various
related contexts [43—45]. Whitworth [25] described a perturbed diffuse molecular cloud region (bound
by external pressure), that reaches over time [3] point P in Figure 4, as “preunstable,” a condition that
differentiates it from a region strongly compressed and displaced to point J, where it becomes Jeans
unstable [41] and subject to dynamical collapse down to the compact stellar state (point S in Figure 4).
Tohline [27] recognized that the path PIBS in Figure 4 highlights a slower phase transition (distinct
from dynamical Jeans collapse) capable of producing stars of much lower masses (albeit over much
longer timescales [3]), as compared to the famous Jeans critical mass [41], the hallmark of dynamical
star formation since 1902 and for years to come [46].

3.5. Peculiar A-Transitions

To complete the discussion of the various types of phase transitions encountered in nature, we
should mention that some phase transitions do not fit into the modern classification scheme [32,33].
Most puzzling among them are the so-called A-transitions [8,29,31-33,47,48] that may or may not
[8,32] have infinite specific heat at the critical point (e.g., at the A-point T, = 2.18 K of the superfluid
liquid *He [31-33] or at the order-disorder critical point T, = 739 K of the B-brass Cu-Zn alloy
[31,49]). Bose-Einstein condensation of an ideal Bose gas [31] and astrophysical binary fission and ring
formation [29] are also types of A-transitions, and the various types are all linked together only by
spontaneous breaking of the topology [8,29] (the symmetry may break or not, and the specific heat may
diverge or not [8,32,47-49]).

From the viewpoint of the energetics of discontinuous A-transitions, we know that a total of five
extrema (not all of them isolated) are involved in the Gibbs free-energy function [29], which places
these transitions along paths in the higher-order butterfly catastrophe [48] if the free energy is a continuous
function of the order parameter [29]. The main characteristic of the underlying potential function is an
energy barrier that progressively becomes taller as T — T, ", and then, it suddenly disappears just past
the critical point T = Tt (see, e.g., Figures 3-5 in Ref. [29]). This astonishing behavior of the free-energy
barrier in astrophysical systems exhibiting topology-breaking phase transitions [50-56] remains under
investigation to date (see Refs. [2,3,8,26-29] for more details).
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Appendix A. The Potentials of Higher-Order Catastrophes

We have carried out the derivation described in Section 2.2 for the swallowtail and butterfly
catastrophes as well. To dissociate these types of potentials from the Higgs field, we use here x for the
order parameter instead of ¢. The resulting potential functions and their phase-transition properties
are summarized below.
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Appendix A.1. Swallowtail Potentials

The swallowtail catastrophe V(x) has the germ x° and a perturbation of O(x3). The x* term is
missing, so the sum of the zeroes of the derivative V’(x) is zero. Then, one of the zeroes —a, —b, —c, —d
becomes —d = a + b + ¢ and V’(x) takes the form

V' =5(x+a)(x+b)(x+c)(x—a—-b—c). (A1)
Shifting V' by a to the right and setting one of its zeroes to xg = 1 (i.e., 2a + b + ¢ = 1), we find that
V' =5x(x—1)(x —k)(x—¢), (A2)

where k =a—b and ¢ = 3a+ b — 1. Integrating equation (A2) with respect to x, we find the potential
function

5 5 5
Vix)=x"— iR 1)x* + g(ke+k+£)x~°’ — 5(ke)xz. (A3)

We see now that the choice of xp = 1 has limited the control space to only two independent parameters
(k, ). This choice, which has been overlooked for generations, is necessary to create and define another
stable state, so that we can apply this potential to actual physical systems. (The initial stable state
created by the shift is also fixed at xg = 0.) We must say at this point that any arbitrary paths drawn in
the deceiving general three-dimensional swallowtail control space are meaningless, in the sense that
physical systems do not evolve unconstrained along such paths that move the goalposts (see Section 1).

We also choose the extremum xg = k to be between 0 and 1, that is, to serve as an energy barrier
between the two stable states. Thus, 0 < k < 1, allowing for N = 3 possible k locations in the interval
k € [0,1] (0, 1, and in-between). Now, ¢ can be located anywhere on the x-axis, so there are N = 17
possible locations for the pair (k, £). Of those, the extrema xy = 0, 1 are local minima in only one case in
which ¢ < 0 (N = 3 cases, if we also count the degeneracies k = 0, 1). Therefore, only the case ¢ < 0 is
of interest to phase transitions along the path {k =1 — 0}. Now, the isolated extremum xy = ¢ < 0 is
always a local maximum, and it can vary just as k varies within its own interval. But variation of ¢
does not change the qualitative properties of the transition, so we can assume here for demonstration
purposes that ¢ is a negative constant along the considered transition path. In a physical system,
however, the variation of ¢ will have to be determined from the physical parameters of the system
itself.

Phase Transitions.—An illustration with constant / = —1 (fixed) is shown in Figure Al. The
transition proceeds on the right half of this diagram just as it does for the cusp potential in the main
text. The second-order critical point appears for k; = 0 (the inflection point at xy = 0 on the magenta
curve). The first-order critical point appears for k; = 8/15 (two equal-depth minima on the green
curve), as determined from the equation

5¢(—-3

1= 075" (A4)

for £ = —1 (note that k; — 1/2 as ¢ — oo, and the cusp catastrophe is fully recovered).
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Figure A1l. Swallowtail potential functions for the phase-transition path {k = 1 — 0}. Parameter k
controls the location of the right barrier which disappears for k; = 0. Parameter ¢ controls the left
barrier, which we have fixed at xy = —1 for simplicity. The left barrier becomes shorter as £ — 0~.
A system that somehow is induced to overcome this barrier before it manages to settle to the xy =1
minimum will fall apart.

Left Energy Barrier—Point £ = —1 marks the location of another energy barrier on the left side of
the diagram, and this barrier may be important in some applications concerned with systems falling
apart: Assuming that a system (initially executing small-amplitude oscillations about xg = 0) can
somehow be induced to climb over the top of this barrier (before it settles to the stable minimum
xo = 1), then this system is doomed; it will certainly be destroyed since there is no other minimum of
the potential available in the region x < £. This path is however of no interest in customary applications
of the swallowtail catastrophe, in which researchers are studying phase transitions terminating at
stable states [4-7,57-59], such as xyp = 1 in Figure A1.

Appendix A.2. Butterfly and Triple-Point Potentials

The butterfly catastrophe V(x) has the germ x° and a perturbation of O(x*). The x° term
is missing, so the sum of the zeroes of the derivative V’(x) is zero. Then, one of the zeroes
—a,—b,—c, —d, —e becomes —e = a + b+ ¢ +d and V'(x) takes the form

V' =6(x+a)(x+b)(x+c)(x+d)(x—a—b—c—d). (A5)

Shifting V' by a to the right and setting one of its zeroes to xg = 1 (i.e., 24 + b+ ¢ +d = 1), we find that
V' =6x(x —1)(x —k)(x — £)(x —m), (A6)

where k=a—-0b, { =a—c, and m =3a+ b+ c — 1. Integrating equation (A6) with respect to x, we

find the potential function

Vix) = 20— 8&k+l+m+1)x5+3[(k({+m+1)+lm+ L+ m]|x* (
A7)
-2

[(k(¢m + €+ m) + m]x® 4 3(kém)x? .

We see now that the choice of xg = 1 has limited the control space to only three independent parameters
(k, £,m). Once again, this choice, which has been overlooked for generations, is necessary to create
and define the second stable state, so that we can apply this potential to actual physical systems. (The
initial stable state created by the shift is also fixed at xo = 0.) We reiterate that arbitrary paths drawn in
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the deceiving general four-dimensional swallowtail space are meaningless because physical systems
do not evolve unconstrained along such paths that move the goalposts (see Section 1).

We choose again k € [0, 1] to provide an energy barrier between the minima xy = 0,1. Based
on the analysis in Section A.1, we also limit this investigation to ¢ < 0.° Then, there are N = 23
possible locations of the new extremum m, of which only N = 3 are worthy of further consideration
(because xp = 0,1 are local minima), all of them having m < 0. Now, equation (A7) shows that ¢ and
m are interchangeable parameters. If we choose ¢ = m, then the two extrema merge into a degenerate
inflection point (at x < 0) of no particular interest. But if ¢ # m, then another barrier appears at
xg = max (¢, m) and a new local minimum opens up at xop = min(¢,m). These two cases are illustrated
in Figures A2 and A3, respectively, where the locations of £, m < 0 were fixed without loss of generality.
We note that the left barrier at xg = ¢ < 0 in Figure A3 becomes shorter as £ — 0.

Butterfly (¢ = m) ‘
-1.5 -1 -0.5 0 0.5 1 1.5
x

Figure A2. Butterfly potential functions for the phase-transition path {k =1 — 0} with { =m = —1.
Parameter k controls the location of the barrier, which disappears for k = 0. Parameters £,m < 0
control extrema that develop in the x < 0 region. In the £ = m case shown here, the extrema degenerate
to an inflection point at xyp = —1. The height of this inflection point decreases as { = m — 0.

]‘31,1ttel'ﬂ.\‘,’ (¢ +#£ m‘)

Figure A3. As in Figure A2, but for butterfly potentials with ¢ # m and a second barrier at x < 0 which
we have fixed at £ = —1 for simplicity. The two extrema in the region x < 0 are now isolated, and a
new local minimum opens up at xg = m = —3/2 (again, fixed for simplicity). The height of the left
barrier decreases as { — 07

6 So,notall butterfly phase-transition paths are covered in the present investigation.
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Phase Transitions.—In Figures A2 and A3, the phase transitions proceed on the right halves of
these diagrams, just as they do for the cusp potential in the main text. The second-order critical point
appears for ky = 0 in both figures. The first-order critical points appear for k = kj, as determined from
the equation

_ 50m—3(0+m)+2
YT 100m =50 +m)+3°

(A8)

Triple point—In the diagram of Figure A3, the two minima do not have the same depth for any
value of k € [0,1] because of the arbitrary choices for ¢ and m. So, there is no triple point along this
phase-transition path. Then, it is easy to recognize that the control parameters (k, ¢, m) must be related
for a triple point to appear in the potential (A7). Their relationships are expressed by the conditions
that

V()=V(1)=0. (A9)

Here, { and m are interchangeable parameters, so we chose the third minimum to be located at xy = .
The V = 0 equal-depth conditions (A9) then require that

(=—-1and m=—k=—-1/3, (A10)

where now k and m are interchangeable (but we break the symmetry by choosing 0 < k < 1, as usual).
It is easy to prove then that V(x) at the triple point is an even function of x, and this is why the third
minimum (xo = ¢ or m) must be located at xy) = —1. In fact, the potential V(x) at the triple point takes
the simple form

V(x) = x%—2x* 442

x2(x2 —1)2. (A1)

This reduced butterfly potential that exhibits a triple point (i.e., three minima of equal depth) is
illustrated in Figure A4, where we chose k > 0 and £ = —1. The choice m = —1 is of course an
alternative, and then the labels ¢ and m switch places in Figure A4. With the equal-depth minima set
at xg = 0, £1, then the extrema x( = k, m represent energy barriers of equal height.

Butterfly Triple Point

Figure A4. Triple point of a butterfly potential with ¢ # m. The potential is now an even function
(equation (A11)) with no independent control parameter (equation (A10)). With xy = k chosen to lie in
(0, 1) to provide a barrier, then interchangeable parameters ¢, m < 0 provide the locations of the two
isolated extrema on the left side (i.e., xo = £ and xg = m).

Finally, for an evolutionary path {k = 1 — 0} that exhibits a triple point, the following general
relations hold along the path:
{ =3km and m = —k; (A12)
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so, only one of the control parameters (k, £, m) of the butterfly turns out to be independent. The triple
point occurs for { = —1 along this path which, in terms of ¢, is described by {¢{ = —3 — 0} and
terminates at the second-order critical point ¢ = 0. Figure A5 provides an illustration of this phase
transition. The control parameters of the potential function (A7) have been reduced to functions of k
by using the relations (A12), viz. £ = —3k? and m = —k, and then k is the only independent parameter
along the evolutionary path.

0.4 T
Butterfly

(Triple Point)

0.3

— k=13 | 1
—— k=0.50 [
k=0.42 ‘ ’
— k=0 }
0.5 0 0.5 1 15
x

Figure A5. As in Figure A3, but for an evolutionary path {k = 1 — 0} (equivalently, {{ = —3 — 0}) in
the butterfly catastrophe that exhibits a triple point for £ = —1 and k = —m = 1/+/3 (green curve).
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