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Abstract: The commonly quoted bistable Higgs potential is not a proper description of the Higgs

field because, among other technical reasons, one of its stable states acquires a negative expectation

value in vacuum. We rely on formal catastrophe theory to derive the form of the Higgs potential

that admits only one positive mean value in vacuum. No symmetry is broken during the ensuing

phase transition that assigns mass to the Higgs field; only gauge redundancy is “broken” by the

appearance of phase in the massive state, but this redundancy is not a true symmetry of the massless

field. Furthermore, a secondary, certainly amusing conclusion is that, in its high-energy state, the

field oscillates about its potential minimum between positive and negative masses; but it is doubtful

that such evanescent states can survive below the critical temperature of 159.5 GeV, where the known

particles were actually created.

Keywords: cosmology; critical phenomena; higgs production; non-equilibrium field theory; particle

astrophysics; first-order and second-order phase transitions

1. Introduction

Bistable potential wells possessing two minima separated by an energy barrier are quite common

in the natural sciences [1–6]. Despite their frequent use in descriptions of discontinuous transitions

occurring in physical, chemical, and biological systems and their intimate connections to catastrophe

theory, bifurcation theory, singularity theory, structural stability, and phase transitions [4–9], the

ensuing dynamical evolution is not understood in virtually all cases, to the point that some famous

accounts of transitions are not only technically unphysical, but they are also visibly preposterous.

The deeper reason for such absurdities is the lack of temporal variables in Landau’s phase-transition

theory and in Thom’s catastrophe theory. These theories apply only to gradient systems [1,4–6], and

the notion of time-dependent phenomena is added ad hoc by describing arbitrarily drawn paths in the

control parameter space of the cusp and higher elementary catastrophes.

For instance, Landau’s phenomenological theory of second-order phase transitions predicts the

appearance of two minima of equal depth past the critical point, although we know from experiments

that only one stable state exists below the critical temperature Tc. To work around this problem, the

theory postulates, against the odds, that an evolving system will arbitrarily choose to settle into one of

these states. Even in this hypothetical scenario, the model remains unphysical because these states

continue to evolve and change their mean values as the temperature T < Tc is lowered toward absolute

zero. So, no matter which minimum the system “chooses,” it finds itself out of equilibrium all the time;

thus, the system has to evolve again and again trying to catch up with the ever-changing equilibrium

state. In contemporary parlance, such a situation is described by the metaphor “moving the goalposts”

which has negative connotation.

Furthermore, it is well-known that an infinitesimal linear perturbation wipes out entirely Landau’s

second-order phase transition [6], which means that such transitions should not occur in nature, or
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that the theory is wrong. All these absurdities come to life because of the assumption that the system

finds itself at a local maximum of the potential as T crosses to just below Tc, where it sees two new

minima opening up as the control parameter becomes nonzero (negative, to be specific [1,5–7]). This

assumption places the system in an unstable initial state, a practice that is heavily at odds with

basic physics and with the stable stationary states that we describe in Section 2 below. It is also

mathematically puzzling how the initial potential minimum at T ≥ Tc changes directly to an isolated

maximum without passing through a degenerate inflection point (this procedure builds a priori a

discontinuity in the second derivative of the potential [1]).

The stability of the Higgs potential in particle physics [9–13] is another case in point. The

descriptions of how the Higgs field acquires mass are cursory and nonsensical at their roots: At

high energies, the massless Higgs field is supposed to be stripped of any and all features, yet it is

hypothesized to have “some high symmetry” (zero weak isospin?)1 supporting an even potential

function. This is the symmetry that will be broken in the final stationary state, when the unstable field

will conveniently ignore the negative-minimum state and it will choose against the odds to settle into

the other available state of positive vacuum expectation value (VEV). But how can such a symmetry

be broken when the potential continues to be an even function, just as prior to the transition? And

how can the system ever settle into either one of the low-energy states, when these states are not really

stationary but continue to move the goalposts (dotted curves in Figure 1) to different VEVs all the

time?
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Figure 1. Potential V(φ) = φ4 − m2φ2/2 for m = 0, 1, 2. For m 6= 0, three unphysical features are

observed: (a) The system suddenly finds itself at a local maximum. (b) Two global minima are available,

the one at φ0 < 0 with negative VEV. (c) The stable minima continue to relocate to φ0 = ±m/2 (along

the dotted curves) as m increases, throwing the system out of equilibrium all the time and preventing

its settling to a specific VEV, irrespective of which side it chooses to evolve. These features appear

because the perturbation (−m2φ2/2 + bφ) of the cusp catastrophe germ (φ4) has been overconstrained

by setting b ≡ 0.

All of the above descriptions should have been taken with a large grain of salt because, after all, an

infinitesimal linear perturbation at T = Tc eliminates the second-order phase transition altogether. This

occurs because Landau’s assumption of a “higher symmetry” in the initial state [1] alters arbitrarily

the perturbation2 (−m2φ2/2 + bφ) attached to Thom’s cusp catastrophe germ (φ4; [4]); as a result, one

1 In contrast, Landau [1] was not thinking about isospin or null quantities when he formulated his theory. To him, symmetries
were visible in the arrangement of atoms in a crystal or in the (mis)alignment of magnetic moments in magnetic materials

2 In all fairness to Landau [1], Thom’s catastrophe theory [4] did not exist in Landau’s time, so he did not know that his
Taylor expansion of the potential was not formally correct near the degenerate critical point. In fact, he was apparently
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control parameter is eliminated (b = 0; [6]) and the drawn ad hoc evolutionary path {m, b = 0} in

the control parameter space (m, b) becomes incorrect and irreparable—even if an infinitesimal b 6= 0

perturbation is brought back in. The reason for this structural instability is that m and b are related

along the transition path, thus, the value of b cannot be chosen independently. The proof is given in

Section 2.1 below using polynomial theory.

The resulting overconstrained (b = 0) potential with one remaining control parameter, V(φ) =

φ4 − m2φ2/2, is illustrated in Figure 1. The phase-transition path highlighted by the dotted curves is

unphysical for the reasons discussed above; thus, naturally occurring phase transitions (of first and

second order) require a different mathematical approach. We undertake this task for the Higgs field in

Section 2, and we discuss our results for the various types of phase transitions in Section 3. For the sake

of completeness of the methodology, the two higher-order elementary catastrophes (the swallowtail

and the butterfly) are also analyzed in this work, and their results are collected in Appendix A.

2. Derivation of the Higgs Potential from Catastrophe Theory

In cosmology and particle physics, the scalar Higgs field is massless and featureless at the very

high energies occurring right after the big bang [9,10,14–17]. When the universe cools down to a critical

temperature of Tc = 159.5 ± 1.5 GeV [16,17], the electroweak phase transition takes place [9–11,16–20].

Lattice monte-carlo simulations indicate that the cross-over of the Higgs field is smooth but fast, lasting

for only ∼ 5 GeV [16,17] during which the field settles down to a nonzero (positive) VEV of v = 246.22

GeV, where it has remained until the present time. This value of the Higgs VEV is a natural constant

[20], and it is responsible for the corresponding particle, the Higgs boson, acquiring its observed mass

(125.25 GeV; [21–24]).

There are two methods by which we can derive the scalar Higgs potential at all temperatures

and observe the phase transition to the massive Higgs boson. The first derivation is more tedious and

requires more steps, but it is also transparent in justifying the various assumptions being made; it

further shows that the Higgs potential obeys Thom’s theorem [4] for the cusp catastrophe. The second

derivation is an astute shortcut, but it is opaque and reveals no details; this formulation hides the

influence of catastrophe theory, so it could have been carried out at the time that Landau [1] presented

his phase-transition theory. We summarize both methods below.

2.1. Method 1: Relying on Catastrophe Theory and Stable Isolated States

For the Higgs potential V(φ) to generally exhibit three isolated extrema, its derivative V′ must

have the form

V′(φ; a, b, c) = 4(φ + a)(φ + b)(φ + c) , (1)

where a, b, c are interrelated control parameters to be constrained below. Then V′(φ0) = 0 gives the

extrema φ0 = −a,−b,−c. Integrating equation (1), we find that

V(φ; a, b, c) = φ4 +
4

3
(a + b + c) φ3 + 2 (ab + bc + ca) φ2 + (4abc) φ , (2)

where the integration constant has been dropped. In the neighborhood of the critical point of the germ

V = φ4, the Taylor expansion does not have a cubic term or terms higher than O(φ4). These terms

are eliminated by Thom’s inhomogeneous linear transformation and his nonlinear transformation,

respectively [4–6]. Thus, we must set

a + b + c = 0 , (3)

lucky to get the rest of the perturbation (Aη2) right when he correctly eliminated the cubic term (Cη3 ≡ 0), albeit based on
an inconclusive argument (that, for C 6= 0, the curve of phase transitions degenerates to a single point in the (P, T) plane,
where P is pressure); the counterargument is that functions A(P, T) and C(P, T) may have the same zeroes [5] and/or that
C ∝ A.
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in which case we obtain the canonical form

V(φ; a, b) = φ4 − 2
(

a2 + ab + b2
)

φ2 − 4ab (a + b) φ , (4)

with the extrema located at φ0 = −a,−b, (a + b). Note that if we arbitrarily choose b = 0, then we

obtain Landau’s [1] potential with extrema at φ0 = 0,±a (see also Section 2.2.2 below). This choice

is unjustifiable, and we are not going to adopt it. Instead, we shift V(φ) by a to the right, in order to

place the first listed extremum at φ0 = 0. The shift transforms the cusp-catastrophe function (4) to

V(φ; a, b) = φ4 − 4aφ3 + 2 (a − b) (2a + b) φ2 , (5)

where an additive constant has been dropped (eliminated by a vertical shift). In this function, the

extrema have been shifted to φ0 = 0, (a − b), (2a + b). We shall see that φ0 = 0 corresponds to a

local minimum of V(φ; a, b) and we are prepared to assume that the massless Higgs field occupies

this minimum while waiting for a more stable state to open up and become accessible. The subject

of accessibility of a new global minimum is very important in this regard; it is discussed further in

Section 3 below.

Next, we fix the third listed extremum to always be located at φ0 = 1 by convention. Then, we set

b = 1 − 2a , (6)

and equation (5) takes the form

V(φ; a) = φ4 − 4aφ3 + 2 (3a − 1) φ2 . (7)

The extrema are now located at φ0 = 0, (3a − 1), 1. When φ0 = 1 is a global minimum, it represents the

massive state of the Higgs field, and when this minimum becomes accessible at a critical point in the

control parameter plane (a, b), the field will make the transition to a nonzero VEV (v = φ0 = 1). The

phase-transition path is described by equation (6). Thus, the path is an oblique line that does not cross

the apex a = b = 0 of the separatrix.

In a final step, we redefine the location of the second listed extremum φ0 = 3a − 1 by adopting

k ≡ 3a − 1 . (8)

This definition gives us a better handle on the location of this extremum. We want it to correspond to a

local maximum (the location of an energy barrier that obstructs the phase transition for all k ∈ (0, 1].

As such, k should be located between the other two extrema, viz.

0 ≤ k ≤ 1 , (9)

and then equation (7) is rewritten in the final form

V(φ; k) = φ4 − 4

3
(k + 1) φ3 + (2k) φ2 . (10)

Looking at this potential function, it is hard to imagine that it satisfies Thom’s cusp-catastrophe

theorem [4], but it does. Equation (10) is equivalent to the cusp-catastrophe potential (4) shifted by a to

the right, where a = (k + 1)/3 and b = (1 − 2k)/3.
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The Higgs potential (10) is plotted across the transition path {k = 1 → 0} in Figure 2. The critical

points (φ0, V(φ0)) of the potential V(φ; k) are

φ0 = 0, V(0) = 0 ;

φ0 = k, V(k) = k3(2 − k)/3 ;

φ0 = 1, V(1) = (2k − 1)/3 .

(11)

Thus, the height of the energy barrier is ∆V = k3(2 − k)/3 and 0 ≤ ∆V ≤ 1/3. For k ≤ 1/2, once at the

top of the barrier, a system will dissipate an amount of energy equal to ∆E = (1 − k)3(1 + k)/3 during

its settling to the global minimum on the right side. This amount is maximized at the critical point

k = 0 for which ∆Emax = 1/3.
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Figure 2. Cusp catastrophe in the potential V(φ; k) (equation (10)) with 0 ≤ k ≤ 1 placing the energy

barrier between the other two extrema. The phase transition path is described by {k = 1 → 0}. A

system initially located at (0, 0) may undergo a phase transition to φ0 = 1 only when this state becomes

the global minimum (for 0 < k < 1/2) and (quantum tunneling aside) only if a finite perturbation

provides the free energy required for climbing over the top of the intervening energy barrier. The

critical point of the phase transition occurs for k = 0, when the diminishing barrier finally disappears,

and the system moves spontaneously to φ0 = 1. For k < 0 (dashed curve), a new local minimum opens

up at φ < 0, but the system remains at the global minimum φ0 = 1 for all kmin < k < 0, where kmin

represents the state at absolute zero—here, as usual, we think of k as proportional to the temperature

difference (T − Tc).

For k = 1/2, where the two minima have equal depth, the barrier height is ∆V = 1/16, and an

equal amount of energy, if gained from external perturbations, will be dissipated away (∆E = 1/16)

during the transition from the top of the barrier to one of the two stable states. The k = 1/2 stage is

important because it is the first instance along the evolutionary path {k = 1 → 0} where another stable

state (φ0 = 1) becomes available to a system located at φ0 = 0, although, barring a sufficiently strong

nonlinear perturbation, the new state is not dynamically accessible because of the intervening barrier

[25–29]. In Section 3,we discuss the types of viable phase transitions along the latter path segment

{k = 1/2 → 0}, where the energy barrier continues to diminish with decreasing k.

2.2. Method 2: Implementing a Shortcut

An alternative derivation of equation (10) that dispenses with details and formalities is as follows.

We return to equation (1) for the derivative V′(φ), which we copy here for convenience:

V′(φ; a, b, c) = 4(φ + a)(φ + b)(φ + c) . (12)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 October 2023                   doi:10.20944/preprints202310.2001.v1

https://doi.org/10.20944/preprints202310.2001.v1


6 of 17

Following Landau’s assumption (Cφ3 ≡ 0; [1]), we eliminate the quadratic term from V′, in which case

the sum of the three zeros is set to zero and c = −a − b:

V′(φ; a, b) = 4(φ + a)(φ + b)(φ − a − b) . (13)

We shift φ by a to the right to place one extremum always at φ0 = 0:

V′(φ; a, b) = 4φ(φ − a + b)(φ − 2a − b) . (14)

We constrain the control parameters by 2a + b = 1 (or by a − b = 1) to place another extremum always

at a fixed location φ0 = 1:

V′(φ; a) = 4φ(φ − 1)(φ − 3a + 1) . (15)

We redefine −3a + 1 by equation (8) to simplify the location of the the remaining extremum:

V′(φ; k) = 4φ(φ − 1)(φ − k) . (16)

Integrating with respect to φ, we obtain the form (10) for V(φ; k).

2.2.1. Utilizing a Familiarity Heuristic

Perhaps surprisingly, the steps taken in the shortcut above can all be avoided by utilizing a

familiarity heuristic [30].

The final result can be written down in just two steps, without proof or investigation of its

validity, by simply recalling that we are interested in static potentials which we can use to demonstrate

phase transitions. Such potentials must generally exhibit three extrema, two fixed minima (φ0 = 0, 1)

representing the initial and final stationary states, and a maximum representing an obstacle or barrier

that separates the two states. Therefore, equation (16) can be written down ab initio, and then it can be

integrated to yield the potential V(φ; k) shown in equation (10).

The problem with this extremely fast, albeit heuristic approach is, of course, that we cannot then

formally justify the potential obtained by intuition and familiarity with nature’s phase transitions [1–3].

This problem is solved by the lengthy derivation given in Section 2.1 above.

2.2.2. Looking Back to Landau’s Theory of Phase Transitions

By contrast, Landau’s phase-transition theory can be formulated in the same context

(equations (12)-(16)) as follows.

Control parameter c is replaced by −(a + b) in equation (12) to eliminate the φ2 term (no cubic

term in the potential). Then, b is set to zero in equation (13) (in disagreement with catastrophe theory

that was not known at that time), resulting in the overconstrained form

V′(φ; a) = 4φ(φ2 − a2) . (17)

Integrating with respect to φ, we obtain the final form

V(φ; a) = φ4 − 2a2φ2 , (18)

which is depicted in Figure 1 for a = 0, 0.5, 1 (corresponding to m = 0, 1, 2; here, a = m/2). As was

discussed in Section 1 and summarized in the caption of Figure 1, these potential curves do not form

an evolutionary path in the control parameter plane (a, b) with varying values of the remaining control

parameter {|a| = 0 → 0.5 → 1 → · · · }.
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3. Discussion of Phase Transitions

3.1. The Higgs Phase Transition

For the purposes of our discussion, we rewrite the canonical potential function (4) of the Higgs

field in Thom’s equivalent form of a cusp catastrophe, viz.

V(φ) = φ4 + Aφ2 + Bφ , (19)

where the control parameters (A, B) are functions of two of the roots (a, b) of V′(φ) = 0, viz. A ≡
−2(a2 + ab + b2) and B ≡ −4ab(a + b). The third root c is not independent, i.e., c = −(a + b)

(equation (3)). If we set any one of these three roots to zero, then B = 0 and the perturbation of the

germ φ4 takes a specialized even form that cannot describe quantitatively any phase transition since

the phenomenon occurs naturally for general perturbations of no particular symmetry. Moreover,

B = 0 fixes the maximum of the bistable potential V(φ) to point (0, 0), where the system finds itself

at the onset of the phase transition. Thus, the system is unstable and has no choice but to evolve.

This setup is clearly problematic.3 Physical reasoning [2–4,7–9,15–17,25–29] formally requires that the

system be located at a stable minimum of the potential at all times before the second-order critical

point Tc is reached, and that this minimum become degenerate for T = Tc (i.e., an inflection point)

and progressively a (no longer relevant) local maximum for T < Tc, as in Figure 2 (the case T < Tc

corresponds to the k = −0.25 curve). This figure also shows the physical reason for the occurrence

of the second-order phase transition for k = 0: the energy barrier that separates the two stable states

diminishes as T → T +
c (k → 0+) and disappears altogether for T = Tc; in fact, it is the merging of this

maximum with the minimum at φ0 = 0 that makes the critical point T = Tc degenerate. This smooth

process makes sense, as the minimum that initially hosts the system switches gradually, first to an

inflection point, and then to a maximum.

The control parameters A and B do not vary independently along the evolutionary path. Therefore,

setting B = 0 for all values of A in equation (19) (as in Landau’s theory) is prohibited. This can be

proven as follows: Using equations (6) and (8), we express the control parameters (A, B) of the canonical

cusp catastrophe (19) as functions of k, viz.

A = −2

3

(

k2 − k + 1
)

, (20)

and

B = − 4

27
(2k − 1) (k + 1) (k − 2) ; (21)

we can see that B = 0 in k ∈ [0, 1] only for a single point, k = 1/2, for which A = −1/2.4 Now,

eliminating k between these two equations, we find that the control parameters (A, B) are related along

the path {k = 1 → 0} by

4(A + 2)2(2A + 1) + 27B2 = 0 , (22)

where A∈ [−2/3, −1/2] and B∈ [−8/27, 8/27]. This curve effectively constrains the evolutionary

path in the (A, B) plane; the constraint reveals the presence of an integral of motion (i.e., a conserved

quantity) during the evolution, as was determined in astrophysical first-order and second-order phase

transitions [26–29].

3 Landau’s theory has also been criticized and found inadequate from several other perspectives by Huang ([31]; §§ 17.1, 17.4),
Pippard ([32]; Chapter 9), and Stanley ([33]; § 10.4).

4 The point k = 1/2 or (A, B) = (−1/2, 0) is where the evolutionary path {k = 1 → 0} crosses the B-axis in the control
parameter plane (see Figure 3 below).
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Figure 3 shows the (A, B) plane of the cusp potential (19) and the evolutionary path {k = 1 → 0}
that lies entirely within the separatrix (the fold curve 8A3 + 27B2 = 0) and terminates at the critical

point k = 0, where the phase transition occurs spontaneously. (Note the degenerate inflection point

at φ0 = 0 in the inset of the Higgs potential V(φ; 0).) For k = 0, the coordinates are (A, B) =

(−2/3, −8/27). Because this point also lies on the separatrix, this is the first demonstration of the

so-called “delay convention” [3–6,34] in a second-order phase transition. Except that the delay down to

k = 0 does not occur by convention here, it is a calculated outcome in the evolution of V(φ; k) depicted

in Figure 2. This brings the discussion to the other convention5 commonly used in catastrophe theory,

the so-called “Maxwell convention” [3,6,25,34] used in first-order phase transitions.
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Figure 3. The evolutionary path {k = 1 → 0} on the control parameter plane (A, B) of the cusp

catastrophe, where A and B are the coefficients seen in equations (4) and (19). The insets are borrowed

from the potential curves V(φ; k) of Figure 2. The separatrix 8A3 + 27B2 = 0 is shown in blue color.

3.2. The Maxwell Convention and Chemical Reactions

The Maxwell convention singles out the point with k = 1/2 in the middle of the path shown in

Figure 3 as a viable phase-transition point because the two minima seen in the V(φ; 0.5) inset have the

same depth [34,35]. This is utter speculation that came about because a system was thought to already

be at the top of the energy barrier. From the top, both minima are accessible with equal probabilities

of transition, and the two stable states coexist. This setup and assumptions are basically the same

as in the Higgs field which can also transition to the two stable states (one with negative VEV) with

equal probability, according to Landau’s theory [1]. But, as we explained above, placing a system

at a local maximum at the transition point is unphysical; so, we proceed to describe and clarify the

evolution of nonspontaneous first-order phase transitions and Maxwell’s rule under the action of

external perturbations in the control parameter plane of Figure 3.

Maxwell’s rule [35] (the basis for the Maxwell convention) identifies the point (k = 1/2) along the

path {k = 1 → 0} in Figure 3 in which the two stable minima attain equal depths. The system initially

occupies the left minimum and, as the evolution proceeds along the segment {k = 1/2 → 0}, it cannot

generally access the other stable state because of the intervening energy barrier. Thus, Maxwell’s

rule simply captures the first instance that another stable state becomes available, but not necessarily

accessible. Only external perturbations can induce such a nonspontaneous transition of system parts

and sectors for k ≤ 1/2, if they are sufficiently strong, and then the two phases will coexist. Thus,

5 Recall that catastrophe theory is applicable only to gradient systems [6], so it does not account for time, and qualitative
conventions have been invented to describe actual time evolution before and after a phase transition (or “catastrophe”).
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chances are that such a discontinuous transition of sectors may occur at a value smaller than k = 1/2

because the barrier height decreases along the segment (Figure 2). This is precisely what takes place

in the chemical reactions that use catalysts [36–40]; catalysts lower the so-called activation energy

barrier, thereby increasing the reaction rates (i.e., they induce a first-order phase transition in parts of

the reactants), without actually being consumed. Lowering the energy barrier is a mechanism used

in catalyzed chemical reactions. An alternative mechanism is to perturb the reactants by supplying

excess heat. In this pathway, the barrier remains intact, but the reactants absorb the energy, and more

constituents go over the top of the barrier to the other state that hosts the products of the reaction.

3.3. Overcoming the Energy Barrier

The above chemical reaction mechanisms fit rigorously into our framework of first- and

second-order phase transitions (Figures 2 and 3). A spontaneous reaction occurs when there is

no barrier (k = 0); and a catalyzed reaction or a heat-driven barrier jump occurs for k ≤ 1/2, but only

under the action of perturbations supplying the necessary energy. An example is shown in Figure 4

for k = 0.4. We consider a system oscillating initially about minimum I under the action of external

perturbations. Since k < 1/2, the second minimum S that became competitive for k = 1/2 is now the

global minimum and the energy barrier ∆V has decreased past the Maxwell point. If the Gibbs free

energy ∆E gained by the parts of the system is not sufficient to push any part up to at least point P (or

B), then the perturbed system remains in the neighborhood of point I. If, on the other hand, ∆E = ∆V

in some parts, then these parts displaced to point P can overcome barrier B and make the transition to

the new global stable state S [2,3,25–29]. Then, the two phases, I and S, coexist [31–33]. Furthermore, if

∆E > ∆V in some perturbed parts (displaced, e.g., up to point J), then these parts no longer recognize

barrier B and collapse to the deep minimum S on a dynamical time [3,41,42].

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 4. Bistable potential (equation (10) with k = 0.4) in which a system is displaced from equilibrium

and oscillates about the local minimum I under the action of external perturbations. If the system gets

displaced to P, it gains enough energy (∆E = ∆V) to roll over the top of barrier B and down to the

global minimum state S, as indicated by the arrows. Thus, the system at P is “preunstable” [25] and

undergoes a first-order phase transition [2,3,26–28]). If the system gets displaced to any point of higher

energy (e.g., at J), then it becomes dynamically (Jeans) unstable [41] (it no longer recognizes the energy

barrier at B) and collapses to the global minimum state S. If the system never gains enough energy to

overcome the barrier, then it will remain near point I until k = 0, where the barrier disappears. Then,

points I and B merge to an inflection point and the second-order phase transition to S is spontaneous

[5,26,42].
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3.4. Star-Forming Phase Transitions

Although the outcome of the above evolutionary scenarios is the same in Figure 4 (the settling

of at least parts of a system into stable state S), the dynamics is quite different. The difference was

recognized long ago in the context of star formation in giant molecular clouds, first by Whitworth [25]

and subsequently by Tohline [2,3,26–28], although the ideas had been previously explored in various

related contexts [43–45]. Whitworth [25] described a perturbed diffuse molecular cloud region (bound

by external pressure), that reaches over time [3] point P in Figure 4, as “preunstable,” a condition that

differentiates it from a region strongly compressed and displaced to point J, where it becomes Jeans

unstable [41] and subject to dynamical collapse down to the compact stellar state (point S in Figure 4).

Tohline [27] recognized that the path PIBS in Figure 4 highlights a slower phase transition (distinct

from dynamical Jeans collapse) capable of producing stars of much lower masses (albeit over much

longer timescales [3]), as compared to the famous Jeans critical mass [41], the hallmark of dynamical

star formation since 1902 and for years to come [46].

3.5. Peculiar λ-Transitions

To complete the discussion of the various types of phase transitions encountered in nature, we

should mention that some phase transitions do not fit into the modern classification scheme [32,33].

Most puzzling among them are the so-called λ-transitions [8,29,31–33,47,48] that may or may not

[8,32] have infinite specific heat at the critical point (e.g., at the λ-point Tc = 2.18 K of the superfluid

liquid 4He [31–33] or at the order-disorder critical point Tc = 739 K of the β-brass Cu-Zn alloy

[31,49]). Bose-Einstein condensation of an ideal Bose gas [31] and astrophysical binary fission and ring

formation [29] are also types of λ-transitions, and the various types are all linked together only by

spontaneous breaking of the topology [8,29] (the symmetry may break or not, and the specific heat may

diverge or not [8,32,47–49]).

From the viewpoint of the energetics of discontinuous λ-transitions, we know that a total of five

extrema (not all of them isolated) are involved in the Gibbs free-energy function [29], which places

these transitions along paths in the higher-order butterfly catastrophe [48] if the free energy is a continuous

function of the order parameter [29]. The main characteristic of the underlying potential function is an

energy barrier that progressively becomes taller as T → T +
c , and then, it suddenly disappears just past

the critical point T = Tc (see, e.g., Figures 3-5 in Ref. [29]). This astonishing behavior of the free-energy

barrier in astrophysical systems exhibiting topology-breaking phase transitions [50–56] remains under

investigation to date (see Refs. [2,3,8,26–29] for more details).
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Appendix A. The Potentials of Higher-Order Catastrophes

We have carried out the derivation described in Section 2.2 for the swallowtail and butterfly

catastrophes as well. To dissociate these types of potentials from the Higgs field, we use here x for the

order parameter instead of φ. The resulting potential functions and their phase-transition properties

are summarized below.
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Appendix A.1. Swallowtail Potentials

The swallowtail catastrophe V(x) has the germ x5 and a perturbation of O(x3). The x4 term is

missing, so the sum of the zeroes of the derivative V′(x) is zero. Then, one of the zeroes −a,−b,−c,−d

becomes −d = a + b + c and V′(x) takes the form

V′ = 5(x + a)(x + b)(x + c)(x − a − b − c) . (A1)

Shifting V′ by a to the right and setting one of its zeroes to x0 = 1 (i.e., 2a + b + c = 1), we find that

V′ = 5x(x − 1)(x − k)(x − ℓ) , (A2)

where k ≡ a − b and ℓ ≡ 3a + b − 1. Integrating equation (A2) with respect to x, we find the potential

function

V(x) = x5 − 5

4
(k + ℓ+ 1)x4 +

5

3
(kℓ+ k + ℓ)x3 − 5

2
(kℓ)x2 . (A3)

We see now that the choice of x0 = 1 has limited the control space to only two independent parameters

(k, ℓ). This choice, which has been overlooked for generations, is necessary to create and define another

stable state, so that we can apply this potential to actual physical systems. (The initial stable state

created by the shift is also fixed at x0 = 0.) We must say at this point that any arbitrary paths drawn in

the deceiving general three-dimensional swallowtail control space are meaningless, in the sense that

physical systems do not evolve unconstrained along such paths that move the goalposts (see Section 1).

We also choose the extremum x0 = k to be between 0 and 1, that is, to serve as an energy barrier

between the two stable states. Thus, 0 ≤ k ≤ 1, allowing for N = 3 possible k locations in the interval

k ∈ [0, 1] (0, 1, and in-between). Now, ℓ can be located anywhere on the x-axis, so there are N = 17

possible locations for the pair (k, ℓ). Of those, the extrema x0 = 0, 1 are local minima in only one case in

which ℓ < 0 (N = 3 cases, if we also count the degeneracies k = 0, 1). Therefore, only the case ℓ < 0 is

of interest to phase transitions along the path {k = 1 → 0}. Now, the isolated extremum x0 = ℓ < 0 is

always a local maximum, and it can vary just as k varies within its own interval. But variation of ℓ

does not change the qualitative properties of the transition, so we can assume here for demonstration

purposes that ℓ is a negative constant along the considered transition path. In a physical system,

however, the variation of ℓ will have to be determined from the physical parameters of the system

itself.

Phase Transitions.—An illustration with constant ℓ = −1 (fixed) is shown in Figure A1. The

transition proceeds on the right half of this diagram just as it does for the cusp potential in the main

text. The second-order critical point appears for k2 = 0 (the inflection point at x0 = 0 on the magenta

curve). The first-order critical point appears for k1 = 8/15 (two equal-depth minima on the green

curve), as determined from the equation

k1 =
5ℓ− 3

10ℓ− 5
, (A4)

for ℓ = −1 (note that k1 → 1/2 as ℓ → ±∞, and the cusp catastrophe is fully recovered).
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Figure A1. Swallowtail potential functions for the phase-transition path {k = 1 → 0}. Parameter k

controls the location of the right barrier which disappears for k2 = 0. Parameter ℓ controls the left

barrier, which we have fixed at x0 = −1 for simplicity. The left barrier becomes shorter as ℓ → 0−.

A system that somehow is induced to overcome this barrier before it manages to settle to the x0 = 1

minimum will fall apart.

Left Energy Barrier.—Point ℓ = −1 marks the location of another energy barrier on the left side of

the diagram, and this barrier may be important in some applications concerned with systems falling

apart: Assuming that a system (initially executing small-amplitude oscillations about x0 = 0) can

somehow be induced to climb over the top of this barrier (before it settles to the stable minimum

x0 = 1), then this system is doomed; it will certainly be destroyed since there is no other minimum of

the potential available in the region x < ℓ. This path is however of no interest in customary applications

of the swallowtail catastrophe, in which researchers are studying phase transitions terminating at

stable states [4–7,57–59], such as x0 = 1 in Figure A1.

Appendix A.2. Butterfly and Triple-Point Potentials

The butterfly catastrophe V(x) has the germ x6 and a perturbation of O(x4). The x5 term

is missing, so the sum of the zeroes of the derivative V′(x) is zero. Then, one of the zeroes

−a,−b,−c,−d,−e becomes −e = a + b + c + d and V′(x) takes the form

V′ = 6(x + a)(x + b)(x + c)(x + d)(x − a − b − c − d) . (A5)

Shifting V′ by a to the right and setting one of its zeroes to x0 = 1 (i.e., 2a + b + c + d = 1), we find that

V′ = 6x(x − 1)(x − k)(x − ℓ)(x − m) , (A6)

where k ≡ a − b, ℓ = a − c, and m ≡ 3a + b + c − 1. Integrating equation (A6) with respect to x, we

find the potential function

V(x) = x6 − 6
5 (k + ℓ+ m + 1)x5 + 3

2

[

(k(ℓ+ m + 1) + ℓm + ℓ+ m
]

x4

− 2
[

(k(ℓm + ℓ+ m) + ℓm
]

x3 + 3(kℓm)x2 .
(A7)

We see now that the choice of x0 = 1 has limited the control space to only three independent parameters

(k, ℓ, m). Once again, this choice, which has been overlooked for generations, is necessary to create

and define the second stable state, so that we can apply this potential to actual physical systems. (The

initial stable state created by the shift is also fixed at x0 = 0.) We reiterate that arbitrary paths drawn in
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the deceiving general four-dimensional swallowtail space are meaningless because physical systems

do not evolve unconstrained along such paths that move the goalposts (see Section 1).

We choose again k ∈ [0, 1] to provide an energy barrier between the minima x0 = 0, 1. Based

on the analysis in Section A.1, we also limit this investigation to ℓ < 0.6 Then, there are N = 23

possible locations of the new extremum m, of which only N = 3 are worthy of further consideration

(because x0 = 0, 1 are local minima), all of them having m < 0. Now, equation (A7) shows that ℓ and

m are interchangeable parameters. If we choose ℓ = m, then the two extrema merge into a degenerate

inflection point (at x < 0) of no particular interest. But if ℓ 6= m, then another barrier appears at

x0 = max(ℓ, m) and a new local minimum opens up at x0 = min(ℓ, m). These two cases are illustrated

in Figures A2 and A3, respectively, where the locations of ℓ, m < 0 were fixed without loss of generality.

We note that the left barrier at x0 = ℓ < 0 in Figure A3 becomes shorter as ℓ → 0−.
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Figure A2. Butterfly potential functions for the phase-transition path {k = 1 → 0} with ℓ = m = −1.

Parameter k controls the location of the barrier, which disappears for k2 = 0. Parameters ℓ, m < 0

control extrema that develop in the x < 0 region. In the ℓ = m case shown here, the extrema degenerate

to an inflection point at x0 = −1. The height of this inflection point decreases as ℓ = m → 0−.
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Figure A3. As in Figure A2, but for butterfly potentials with ℓ 6= m and a second barrier at x < 0 which

we have fixed at ℓ = −1 for simplicity. The two extrema in the region x < 0 are now isolated, and a

new local minimum opens up at x0 = m = −3/2 (again, fixed for simplicity). The height of the left

barrier decreases as ℓ → 0−.

6 So, not all butterfly phase-transition paths are covered in the present investigation.
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Phase Transitions.—In Figures A2 and A3, the phase transitions proceed on the right halves of

these diagrams, just as they do for the cusp potential in the main text. The second-order critical point

appears for k2 = 0 in both figures. The first-order critical points appear for k = k1, as determined from

the equation

k1 =
5ℓm − 3(ℓ+ m) + 2

10ℓm − 5(ℓ+ m) + 3
. (A8)

Triple point.—In the diagram of Figure A3, the two minima do not have the same depth for any

value of k ∈ [0, 1] because of the arbitrary choices for ℓ and m. So, there is no triple point along this

phase-transition path. Then, it is easy to recognize that the control parameters (k, ℓ, m) must be related

for a triple point to appear in the potential (A7). Their relationships are expressed by the conditions

that

V(ℓ) = V(1) ≡ 0 . (A9)

Here, ℓ and m are interchangeable parameters, so we chose the third minimum to be located at x0 = ℓ.

The V ≡ 0 equal-depth conditions (A9) then require that

ℓ = −1 and m = −k = −1/
√

3 , (A10)

where now k and m are interchangeable (but we break the symmetry by choosing 0 < k < 1, as usual).

It is easy to prove then that V(x) at the triple point is an even function of x, and this is why the third

minimum (x0 = ℓ or m) must be located at x0 = −1. In fact, the potential V(x) at the triple point takes

the simple form

V(x) = x6 − 2x4 + x2

= x2(x2 − 1)2 .
(A11)

This reduced butterfly potential that exhibits a triple point (i.e., three minima of equal depth) is

illustrated in Figure A4, where we chose k > 0 and ℓ = −1. The choice m = −1 is of course an

alternative, and then the labels ℓ and m switch places in Figure A4. With the equal-depth minima set

at x0 = 0,±1, then the extrema x0 = k, m represent energy barriers of equal height.
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Figure A4. Triple point of a butterfly potential with ℓ 6= m. The potential is now an even function

(equation (A11)) with no independent control parameter (equation (A10)). With x0 = k chosen to lie in

(0, 1) to provide a barrier, then interchangeable parameters ℓ, m < 0 provide the locations of the two

isolated extrema on the left side (i.e., x0 = ℓ and x0 = m).

Finally, for an evolutionary path {k = 1 → 0} that exhibits a triple point, the following general

relations hold along the path:

ℓ = 3km and m = −k ; (A12)
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so, only one of the control parameters (k, ℓ, m) of the butterfly turns out to be independent. The triple

point occurs for ℓ = −1 along this path which, in terms of ℓ, is described by {ℓ = −3 → 0} and

terminates at the second-order critical point ℓ = 0. Figure A5 provides an illustration of this phase

transition. The control parameters of the potential function (A7) have been reduced to functions of k

by using the relations (A12), viz. ℓ = −3k2 and m = −k, and then k is the only independent parameter

along the evolutionary path.
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Figure A5. As in Figure A3, but for an evolutionary path {k = 1 → 0} (equivalently, {ℓ = −3 → 0}) in

the butterfly catastrophe that exhibits a triple point for ℓ = −1 and k = −m = 1/
√

3 (green curve).
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