Preprint
Article

Understanding the Origins of Quark charges, Quantum of Magnetic Flux, Planck’s radiation constant and celestial magnetic moments with 4G model of nuclear charge

Altmetrics

Downloads

89

Views

32

Comments

0

This version is not peer-reviewed

Submitted:

30 October 2023

Posted:

31 October 2023

You are already at the latest version

Alerts
Abstract
In our previous published papers, considering 3 large atomic gravitational constants assumed to be associated with weak, strong and electromagnetic interactions, we have proposed the existence of a nuclear charge of magnitude, en=2.95e and developed a nuclear mass formula associated with strong and weak interactions having 4 simple terms and only one energy coefficient. Two important assumptions are, there exists a weak fermion of rest energy 585 GeV and strong coupling constant is the squared ratio of electromagnetic charge and nuclear charge. The aim of this paper is associated with understanding the mystery of quantum of magnetic flux, Planck’s quantum radiation constant and Reduced Planck’s constant. Proceeding further, quark charges, strong coupling constant, nuclear stability, nuclear binding energy, medium and heavy atomic X-ray levels and celestial magnetic moments can be understood in a unified approach. It may also be noted that, by considering integral nature of elementary particle masses, it seems possible to understand the discreteness of angular momentum. Considering our proposed en=2.95e=3e as a characteristic nuclear charge, it seems possible to understand the integral nature of quarks electromagnetic charge. With this idea, neutron, proton and pions decay can be understood very easily. In all the cases, up quark of charge (±2e) seems to play a crucial role with the internal transformation of down quark of charge (±e) and external observable elementary basic elementary particles. It needs further study at fundamental level.
Keywords: 
Subject: Physical Sciences  -   Nuclear and High Energy Physics

1. Introduction

According Einstein [1], unification means - finding correlations between gravity, magnetism and quantum mechanism. As per the EPR paradigm [2], quantum mechanics is having no independent existence. In this context, in a unified approach and to bring down the concepts of string theory to laboratory level, in our recent publications, we have reintroduced [3,4], quantified and established the existence of three large atomic gravitational constants assumed to be associated with weak, strong and electromagnetic interactions [5,6]. Considering the Newtonian gravitational constant and the three atomic gravitational constants, we call our model as – ‘4G model of final unification’. To understand the strong interaction and fractional quark charges, we have suggested the existence of nuclear elementary charge [7]. To understand the mystery of quantum constants, we have introduced the existence of weak fermion of rest energy 585 GeV [8,9,10]. Based on these points, we have proposed many applications in the light of ‘nuclear quantum gravity’. In this paper, we make an attempt to understand the origins of electromagnetic charge, quantum of magnetic flux and Planck’s radiation constant. Our three basic assumptions can be read as follows.
1)
There exists a characteristic electroweak fermion of rest energy, M w f c 2 584.725   GeV . It can be considered as the zygote of all elementary particles.
2)
There exists a strong interaction elementary charge ( e n ) in such a way that, its squared ratio with normal elementary charge is close to the reciprocal of the strong coupling constant.
3)
Each atomic interaction is associated with a characteristic large gravitational coupling constant.

2. Origin of the Electromagnetic Charge and Quantum of Magnetic Flux

Existence of the proposed three atomic gravitational constants can be validated vide our published papers [4,5,6,7,8,9,10,11,12,13,14,15,16,17]. We appeal the physicists to see the possibility of understanding the existence of the three atomic gravitational constants based on the failure of string theory in understanding atomic and nuclear scale results [18,19]. Let,
Electromagnetic gravitational constant= G e 2.374335 × 10 37   m 3 kg - 1 sec - 2
Nuclear gravitational constant = G n 3.329561 × 10 28 m 3 kg - 1 sec - 2
Weak gravitational constant = G W 2.909745 × 10 22   m 3 kg - 1 sec - 2
Newtonian gravitational constant = G N 6.679855 × 10 - 11   m 3 kg - 1 sec - 2 ( Our   estimation )
It may be noted that, recommended value [17] of G N 6.674030 ( 15 ) × 10 - 11   m 3 kg - 1 sec - 2 and its most recent experimental value having considerable uncertainty [20] is G N 6.821 ( 71 ) × 10 - 11   m 3 kg - 1 sec - 2 . (https://ethz.ch/en/news-and-events/eth-news/news/2022/07/eth-researchers-remeasure-gravitational-constant.html)
High energy nuclear physics point of view [17], estimated values of the nuclear charge and strong coupling constant are, e n 2.9463591 e   and   α s ( e e n ) 2 0.1151937. This approach helps in understanding the actual physical meaning of currently believed strong coupling constant. We would like to emphasize the fact that, current unified models are simply using the experimental values of electromagnetic charge and Planck’s constant without addressing their origin. Our model is shedding light on the mystery to some extent in the following way. We stress the point that, at fundamental level, especially at nuclear scale, electromagnetic charge is having a special bonding with nuclear charge. It can be expressed as,
e ( c G n m p 2 ) e n ( G w M w f 2 G n m p 2 ) e n e n 2.9464 e n 3
e e n ( c G n m p 2 ) ( G w M w f 2 G n m p 2 ) 1 2.9464 1 3
We would like to emphasize the point that, there exists a strong interconnection between fractional charge of quarks and the proposed nuclear charge [13,14,15]. It can be understood as follows. For strongly interacting elementary particles,
a)
Up, Charm and Top quark’s electromagnetic charge is + 2 3 e n + 2 e .
b)
Down, Strange and Bottom quark’s electromagnetic charge is 1 3 e n e .
c)
Quarks having an electromagnetic charge of ± 2 e and e can be called as integral charge quarks.
d)
There exists no repulsion between any two particles having same kind of nuclear charge.
For example, proton can be assumed to have one up quark pair and one anti down quark. Neutron can be assumed to have two anti down quarks and one anti up quark. Positive and negative pions can be assumed to have one Up quark and one down quark or one anti up quark and anti down quark. Neutral pions can be assumed to have one Up quark pair or one down quark pair. Thus, decay of neutrons, protons and pions can be understood very easily. For the case of neutron decay, one anti up quark transforms to one down quark and releases one electron. For the case of proton decay, one up quark transforms to one anti down quark and releases one positron. In case of charged pions, up quark plays a vital role in the decay process. For positive pion, up quark transforms positive electron or positive muon and generates a neutral pion. For negative pion, anti up quark transforms to electron or negative muon and generates a neutral pion. With reference to Up quark pair, neutral pion can decay into 2 positive particles and two negative particles. With reference to down quark pair, neutral pion can decay into one positive particle and one negative particle. We are working in this new direction. It needs a careful study. With reference to current notion of fractional quark charges we have prepared Table 1. It may be noted that, in the second column, quark charges expressed in ‘( )’ indicate their own internal decay in the third column. In all the cases, up quark of charge ( ± 2 e ) seems to play a crucial role in final decay.
With reference to strong interaction, this kind of approach helps in understanding baryons and mesons, neuron-proton short ranges pairs, nuclear binding stability and binding energy, magnetic moments of electrically neutral particles, binding of quarks and strength of strong interaction etc. We are working in this new direction for accommodating them in current quark models [13,14,15].
Proceeding further, ignoring the factor ( 1 2 ) , quantum of magnetic flux [21,22] can be addressed with,
h e e n e μ 0 4 π ( G e m e 2 )
From this relation one can understand the significance of the ratio ( e n e ) and the significance of the proposed electromagnetic gravitational constant G e . It may also be noted that, e n e 4 π 2 m e α m p . Thus, from the experimental value of ( h e ) , electromagnetic gravitational constant can be estimated.
Interesting point to be noted is that, discreteness of the observed magnetic flux can be understood with increasing number of electrons. Clearly speaking,
n ( h e ) e n e μ 0 4 π [ G e ( n . m e ) 2 ]
where n =1,2,3,.. = Number of electrons.

3. Origin of the Planck’s Radiation Constant

The mysterious and the famous Planck’s radiation constant seems to have its root connected with the proposed nuclear charge. It can be expressed as,
h ( e n 2 4 π ε 0 c ) ( G e m e 2 c ) e n e ( e 2 4 π ε 0 c ) ( G e m e 2 c )
This relation seems to be very simple having a deep inner meaning associated with number of electrons or number of oscillators as described in quantum theory of light [23]. Similar to the Planck’s constant, one may be interested in understanding the origin of the famous Reduced Planck’s constant. It can be addressed as,
m e G n m p G e m e c
m e G n m p G e m e c ( G e G w G n ) m p m e c   [ ( e m e ) ÷ ( e n m p ) ] G n m p m e c ( e e n ) G n m p 2 c
Magnetic moment of electron can be expressed as,
μ e e 2 m e ( e G n m p 2 c ) ( e G e m e 2 c ) e G n m p G e m e 2 c   [ ( e m e ) ÷ ( e n m p ) ] ( e G n m p 2 c ) [ ( e m e ) ÷ ( e n m p ) ] μ p
Qualitatively, μ e μ p Specific   charge   of   electron   having   charge   e Specific   charge   of   proton   having   charge   e n
This is a very good and very strong application of the proposed nuclear charge. Quantitatively, ratio of actual magnetic moment of electron to Bohr magneton seems to be, [ 1 + ( α 2 π ) ] [ 1 + ( e 2 4 π ε 0 h c ) ] [ 1 + ( e e n e 2 4 π ε 0 G e m e 2 ) ] 1.00116141. This can be compared with actual ratio 1.001159653. This coincidence clearly demonstrates the potential applications in estimating the electron anomalous magnetic moment. Quantitatively, e n e 4 π 2 m e α m p . By substituting this expression in the above and considering electron’s anomalous magnetic moment, electromagnetic gravitational constant can be estimated. Here we would like to stress the point that, by considering the ratio e 2 4 π ε 0 G e m e 2 , electron, muon and tau masses can be fitted accurately [14].

4. Origin of Celestial Magnetic Moments

Considering the above concepts and relations, any celestial body’s magnetic dipole moment [24,25] can be understood with a relation of the form,
μ C e l ( M C e l M w f ) ( μ w f   Or   μ p   Or   μ e )
where,
M C e l Mass   of   any   celestial   body .   μ C e l   Magnetic   moment   of   celestial   body . μ w f Magnetic   moment   of   proposed   weak   fermion e 2 M w f 8.105 × 10 30   J / tesla . μ p Magnetic   moment   of   proton e n 2 m p 1.4875 × 10 26   J / tesla . μ e Magnetic   moment   of   electron e 2 m e 9.274 × 10 24   J / tesla .
Considering the average density, average temperature, average radius, conductivity and other properties of any celestial body, its possible lower, mean and upper limits of magnetic moments can be approximated as,
( μ C e l ) l o w e r ( M C e l M w f ) ( μ w f )
( μ C e l ) m e a n ( M C e l M w f ) ( μ p )
( μ C e l ) u p p e r ( M C e l M w f ) ( μ e )
Here important observation is that, ( M C e l M w f ) i.e, ratio of mass of celestial object to the mass of proposed weak fermion seems to play a key role. To some extent, it supports our fist assumption in a macroscopic approach. It may be noted that, considering the mean value associated with proton magnetic moment, Earth’s estimated magnetic moment is 8.1 × 10 22   J / Tesla . It is very close to the actual value. With reference to magnetic moments of proton and electron, μ p μ e m p M w f . Thus, by modifying relation (11), Earth’s magnetic moment can be fitted with a relation,
μ E a r t h ( M E a r t h m p ) ( m p M w f ) μ p ( M E a r t h m p ) ( μ p 2 μ e ) 7.7 × 10 22   J / Tesla .
With further study, there is a scope for understanding the celestial magnetism in terms of elementary particles magnetic moments as well as arrangement of atoms and internal structure of celestial bodies.

5. Discussion on Interaction Strength and Large gravitational Coupling Constants at Atomic Level

The fundamental question to be answered is – What is final unification in physics? One line answer is – To understand the observed four interactions in a unified approach. In this context, in our paper published in 2015 [7]- by considering ‘gravity’ as the basic controlling mechanism and considering ( c 4 / G N ) as the ultimate force of all interactions, we have suggested a simple mechanism for understanding the interaction strengths associated with the three atomic interactions based on the operating force ratio. Ultimate interaction strength can be defined as 1. In case of black holes [26], operating force [27] is ( c 4 / 4 G N ) and interaction strength is [ ( c 4 / 4 G N ) / ( c 4 / G N ) ] 0.25. It can be called as “Schwarzschild interaction strength” [17]. Thinking in this way, for the three atomic interactions, interaction strength can be defined as follows. At atomic scale,
For weak interaction, [ ( c 4 / G w ) / ( c 4 / G N ) ] G N / G w 2.294 × 10 33 .
For nuclear or strong interaction, [ ( c 4 / G n ) / ( c 4 / G N ) ] G N / G n 2.0 × 10 39 .
For electromagnetic interaction, [ ( c 4 / G e ) / ( c 4 / G N ) ] G N / G e 2 . 811 × 10 48 .
Based on these values, at atomic scale, it seems logical to say that, based on ( c 4 / G N )
a)
Interaction range is inversely proportional to interaction strength.
b)
Effective magnitude of the operating gravitational constant is, G x G N Interaction   strength
Considering the above concepts and relations, we have developed a very novel model having wide range of applications starting from elementary particles to celestial objects. For example, mass of a black hole having a mass density equal to nuclear mass density can be expressed as, M B H ( G n G N ) 3 / 2 m n 9.37   Solar   masses . It needs a review at fundamental level.

6. Discussion on Discreteness Associated with Quantum Nature at Atomic Level

Here it seems important to discuss on the relation, c G w M w f 2 assumed to be associated with quantum mechanics. We would like to suggest the point that, c is a compound quantum constant and is having no independent existence. It is an outcome of electroweak gravity [11]. Clearly speaking,
1)
Proposed weak fermion and proposed weak gravitational constant play a key role in quantifying c .
2)
‘Numbering nature’ of elementary particles seems to be the root cause of origin of discreteness in microscopic physics.
3)
Discreetness of can be understood with,
n 2 . G w ( n . M w f ) 2 c
where n =1,2,3,.. = Number of M w f .
4)
Based on relation (7) and considering ( G n m p , G e m e ) as characteristic inherent constants, Bohr’s discrete angular momentum of electron [28] can be understood with,
n . G n m p G e m e c × ( n . m e )
where n =1,2,3,.. = Number of electrons or number of hydrogen atoms.

7. Various Applications of the Proposed Nuclear Elementary Charge

It may be noted that,
1)
Fine structure ratio can be expressed as,
α ( e 2 4 π ε 0 c ) ( e 2 4 π ε 0 G e m e 2 ) ( e 2 4 π ε 0 G n m p m e ) e e n 4 π ε 0 G n m p 2
2)
Potential energy of electron in Bohr radius can be expressed as,
P . E B o h r α 2 m e c 2 ( e 2 4 π ε 0 G n m p 2 ) ( e n 2 4 π ε 0 G n m p 2 ) m e c 2 ( e 2 4 π ε 0 G e m e 2 ) ( e 2 4 π ε 0 ( G n m p / c 2 ) )
3)
Starting form Z=40, L-alpha X-ray transition energies (Transition: L3M5 (L α 1)) can be understood with a very simple relation,
h ν L α [ ( Z 7.2 ) 2 7.2 ] 13.6   eV   where   e n e ( e n e 1 2 ) 7.2.
See the following Table 2. For data comparison readers are encouraged to visit Wikipedia and other related web sites. Important points to be noted here are:
a)
Moseley’s [29,30] nuclear charge screening factor for L-alpha X-rays is strikingly matching with e n e ( e n e 1 2 ) 7.2. This can be considered as one best application of the proposed nuclear elementary charge in atomic physics.
b)
Strange coincidence is that, e n e ( e n e 1 2 ) ( 1 2 2 1 3 2 ) 1 7.2. It needs further study. Solving this relation, obtained e n e 2.944902596. Considering this value, all other proposed gravitational constants can be estimated. Estimated Newtonian gravitational constant is, G N 6.669957 × 10 - 11   m 3 kg - 1 sec - 2 and error is 0.0651%. Our estimated unified value is G N 6.679851 × 10 - 11   m 3 kg - 1 sec - 2 . Average value of these two is G N 6.674904 × 10 - 11   m 3 kg - 1 sec - 2 . This value is matching with the recommended value [18]. It may be a coincidence and needs a review.
4)
As expected, by considering the proposed nuclear charge, there is a scope for understanding nuclear binding energy. For Z 3   and   N Z , nuclear binding energy, can be understood with a simple relation of the form [31,32],
B E { A [ 1 + ( 0.0016 ( Z 2 + A 2 2 ) ) ] A 1 / 3 ( A s A ) 2 A s } ( B 0 10.1   MeV )
where   { Z = Proton   number   A = Mass   number   A s ( 2 Z ) + 0.0016 ( 2 Z ) 2 2 Z + 0.0064 Z 2 =   Estmated   mass   number   close   to   stable   mass   number B 0 ( e 2 8 π ε 0 ( / m p c ) ) ( e n 2 8 π ε 0 ( / m p c ) ) e n e 8 π ε 0 ( / m p c ) 10.1   MeV where   / m p c   =   Reduced   Comption   wavelength   of   proton .
Here, first term A being a representation of nuclear volume,
1) [ 1 + ( 0.0016 ( Z 2 + A 2 2 ) ) ] seems to be linked with electroweak interaction.
2) A 1 / 3 seems to be linked with nuclear radius.
3) ( A s A ) 2 A s seems to be associated with asymmetry about mean stable mass number.
4) [ 1 + ( 0.0016 ( Z 2 + A 2 2 ) ) ] can be considered as a representation of number of free nucleons and minimum number of free nucleons can be defined as 1.
Either unification point of view or understanding point of view or application point of view, important point to be noted is that, the coefficient 0.0016 seems to be a ratio of the mean mass of pions to the mean mass of electroweak bosons [18]. It can be expreessed as,
( ( m π c 2 ) 0 ( m π c 2 ) ± ( m z c 2 ) 0 ( m w c 2 ) ± ) ( 134.98 × 139.57   MeV 80379.0 × 91187.6   MeV ) 0.0016032
5) Root mean square radius of proton can be addressed with a relation of the form [33,34],
R p ( 4 π ε 0 2 e n 2 m p ) ( m p c ) 0.835   fm
This is another very important application of the proposed nuclear charge. It seems to play a vital role in nuclear experiments associated with finding the root mean square radius of proton.
6) Magnetic moment of proton can be understood with,
μ p e n 2 m p 1.49 × 10 26   J / Tesla
This is a striking application of the proposed nuclear charge and we are sure to say that, with this application science community will certainly recognize the physical existence of e n . Considering the electromagnetic charge nature of proton and neutron, their magnetic moments can be fitted with the following relations.
Let, to a very good approximation,
e n 3 e
By considering proton as a combined state of 2 e + +   e - e + , its magnetic moment can be expressed as,
μ p e n 2 m p ( 3 e ) 2 m p
By considering neutron as a combined state of e + +   e - 0 , its magnetic moment can be expressed as,
μ n ( 2 e ) 2 m n ( e n e ) 2 m n
Considering the ratio of magnetic moments of neutron and proton,
μ n μ p ( ( 2 e ) 2 m n ) ÷ ( ( 3 e ) 2 m p ) 2 m p 3 m n
Quantitatively, by considering a ratio of the form, ( 2.9464 3 ) 3 ( e n 3 e ) 3 0.9473 , experimental values can be fitted approximately as,
μ n ( e n 3 e ) 3 ( 2 e ) 2 m p 9.556 × 10 27   J . Tesla - 1
μ p ( e n 3 e ) 3 ( 3 e ) 2 m p 1.435 × 10 26   J . Tesla - 1
7) Considering the proposed nuclear charge, nuclear stability line for Z=3 to 118 can be expressed as
A s RoundOff { ( Z + ( e n e ) ) 1.2 } 1   RoundOff { ( Z + 2.9464 ) 1.2 } 1 where ,   ( e n e ) 1 / 6 1.1973 1.2
This is a direct application in understanding nuclear stability line. With even-odd corrections, it can be refined for a better fit. In a comparative study, for these estimated stable mass numbers, corresponding proton numbers can be fitted with Green’s beta stability relation [35].
Z A s 2 0.2 A s 2 A s + 200
See the following Table 3 prepared with relations (29) and (30). With even-odd corrections it can be developed further.
8) Based on the proposed relation (19) and assumption (2), we have unified binding energy coefficient is 10.1 MeV and the strong coupling constant is α s ( e / e n ) 2 0 . 1152 . Considering these two inputs, binding energy coefficients of the modern and advanced form of Myer and Swiatecki’s modified mass formula [36] can be fitted as follows. Volume and surface energy coefficients can be fitted as, a v 20.2 ( 1 2 α s ) 15.546   MeV and a s 20.2 ( 1 α s ) 17.873   MeV where e n e 4 π ε 0 ( / m p c ) 2 * B 0 20.2   MeV . Proton form factor coefficient can be fitted as f p 20.2 α s / 2   1 . 1635   MeV . Pairing energy coefficients of proton, neutron and proton-neutron can be expressed as, d n d p 2 * 20.2 α s   4 . 6541   MeV and d n p 3 * 20.2 α s 6 . 981   MeV . To comply with the assumed energy coefficients, we consider coulombic energy coefficient as 0.71 MeV. Based on the reference data, isospin coefficients of volume and surface energy terms can be fitted as ( k v , k s ) 2 [ [ ( 1 + α s ) / ( 1 α s ) ] 2 α s ] 2 0.183 ( 1 . 817 ,   2 . 183 ) . Starting from Z=6 to 118 and A=2Z to 3.5Z, for 10594 atomic nuclides’ extrapolated reference binding energy data, standard deviation is 1.13 MeV. Corresponding reference formula is,
B E { [ 1 + ( 4 k v A 2 ) | T z | ( | T z | + 1 ) ] a v * A } + { [ 1 + ( 4 k s A 2 ) | T z | ( | T z | + 1 ) ] a s * A 2 3 } + { a c * ( Z 2 A 1 / 3 ) } + { f p * Z 2 A } + E p }
where, T z 3 rd   component   of   isospin   = 1 2 ( Z N )
{ a v = 15.4963   MeV ,   a s = 17.7937   MeV k v = 1.8232 ,   k s = 2.2593 a c = 0.7093   MeV ,   f p = 1.2739   MeV d n = 4.6919   MeV ,   d p = 4.7230   MeV d n p = 6.4920   MeV }   and   { for   ( Z ,   N   )   Odd ,   E p d n N 1 / 3 + d p Z 1 / 3 + d n p A 2 / 3 for   ( Odd   Z ,   Even   N   ) ,   E p d p Z 1 / 3 for   ( Even   Z ,   Odd   N   ) ,   E p d n N 1 / 3 for   ( Even   Z ,   Even   N   ) ,   E p 0 }
See the following Table 4 for a comparative study on estimated and reference binding energies.

8. Conclusion

Einstein and Abdus Salam like great scientists spent lot of time in understanding the secrets of final unification. Even though String theory is having a great role in understating final unification program, it is failing in understanding many atomic and nuclear phenomena. In this context, by following the concepts and relations proposed in our published papers and conference proceedings, we would like to appeal the science community to see the possibility of considering relations (1) to (5) pertaining to quantum of magnetic flux and Planck’s radiation constant for a possible research in view of the existence of nuclear elementary charge, nuclear gravitational constant, electromagnetic charge and electromagnetic gravitational constant.

Acknowledgements

Author Seshavatharam is indebted to professors Shri M. Nagaphani Sarma, Chairman, Shri K.V. Krishna Murthy, founder Chairman, Institute of Scientific Research in Vedas (I-SERVE), Hyderabad, India and Shri K.V.R.S. Murthy, former scientist IICT (CSIR), Govt. of India, Director, Research and Development, I-SERVE, for their valuable guidance and great support in developing this subject.

References

  1. David Gross. Einstein and the search for Unification. Current science, 89, 12, 2034-2040, 2005.
  2. A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777, 1935.
  3. Salam A, Sivaram C. Strong gravity approach to QCD and confinement. Modern Physics Letters A. 8,4,321, 1993.
  4. Onofrio, R. On weak interactions as short-distance manifestations of gravity. Modern Physics Letters A. 28,7,1350022, 2013.
  5. Seshavatharam, U. V. S, Lakshminarayana S. Understanding the Basics of Final Unification With Three Gravitational Constants Associated With Nuclear, Electromagnetic and Gravitational Interactions. J. Nucl. Phy. Mat. Sci. Rad. A. 4, 355-373, 2017.
  6. Seshavatharam, U.V.S, Lakshminarayana S. Role of Four Gravitational Constants in Nuclear Structure. Mapana-Journal of Sciences.18,1,21, 2019.
  7. Seshavatharam, U.V.S, Lakshminarayana S. To Validate the Role of Electromagnetic and Strong Gravitational Constants via the Strong Elementary Charge. Universal Journal of Physics and Application. 9(5): 216-225, 2015.
  8. Seshavatharam U. V. S, Gunavardhana Naidu T, Lakshminarayana S. To confirm the existence of heavy weak fermion of rest energy 585 GeV. AIP Conf. Proc. 2451, 020003-1–020003-6, 2022.
  9. Seshavatharam U.V.S, Lakshminarayana S. EPR argument and mystery of the reduced Planck’s constant. Algebras, Groups, and Geometries. 36(4), 801-822, 2020.
  10. Seshavatharam U.V.S, Lakshminarayana S. 4G model of final unification – A brief report. Journal of Physics: Conference Series 2197, 012029, 2022.
  11. Seshavatharam U.V.S and Lakshminarayana S. Is reduced Planck’s constant - an outcome of electroweak gravity? Mapana Journal of Sciences. 19,1,1, 2020.
  12. Seshavatharam UVS, Lakshminarayana S. H. K. Cherop and K.M. Khanna. Three Unified Nuclear Binding Energy Formulae. World Scientific News, 163, 30-77, 2022.
  13. Seshavatharam U. V. S and Lakshminarayana S. 4G Model of Fractional Charge Strong-Weak Super Symmetry. International Astronomy and Astrophysics Research Journal, 2(1), 31-55, 2020.
  14. Seshavatharam U.V.S, Lakshminarayana S. Super symmetry in strong and weak interactions. International Journal of Modern Physics E. 19,2,263, 2010.
  15. Seshavatharam U.V.S, Lakshminarayana S. Integral charge SUSY in Strong nuclear gravity. Proceedings of the DAE Symp. on Nucl. Phys. 56, 842, 2011.
  16. Seshavatharam U.V.S and Lakshminarayana S. On the Compactification and Reformation of String Theory with Three Large Atomic Gravitational Constants. International Journal of Physical Research, 9(1), 42-48, 2021.
  17. Seshavatharam U.V.S and Lakshminarayana S. Final unification with Schwarzschild’s Interaction. Journal of Applied Physical Science International 3(1): 12-22, 2015.
  18. Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2018. Rev. Mod. Phys. 93, 025010, 2021.
  19. Mukhi, S. String theory: a perspective over the last 25 years. Classical and Quantum Gravity. 28,15, 153001, 2011.
  20. Brack, T., Zybach, B., Balabdaoui, F. et al. Dynamic measurement of gravitational coupling between resonating beams in the hertz regime. Nat. Phys. 18, 952–957, 2022.
  21. Loder, Florian & Kampf, Arno & Kopp, Thilo & Mannhart, Jochen & Schneider, C. & Barash, Yuri. Magnetic flux periodicity of h/e in superconducting loops. Nature Physics. 4. 112-115. 2008. [CrossRef]
  22. Jacak Janusz E, Magnetic flux quantum in 2D correlated states of multiparticle charged system. New J. Phys. 22, 093027, 2020.
  23. Planck, Max. On the Law of Distribution of Energy in the Normal Spectrum. Annalen der Physik. 4, 553 ff, 1901.
  24. Russell, C.T, Dougherty M.K. Magnetic Fields of the Outer Planets. Space. Sci. Rev. 152, 251–269, 2010.
  25. Hector Javier Durand-Manterola. Dipolar Magnetic Moment of the Bodies of the Solar System and the Hot Jupiters. Planetary and Space Science 57:1405-1411, 2009.
  26. Roger Penrose. Chandrasekhar, Black Holes, and Singularities. J. Astrophys. Astr. 17, 213-231,1996.
  27. G.W.Gibbons. The Maximum Tension Principle in General Relativity. Found.Phys.32:1891-1901, 2002.
  28. Niels Bohr. On the Constitution of Atoms and Molecules, Part-I. Philosophical Magazine. 26(151),1–24, 1913.
  29. Moseley Henry G. J. The High-Frequency Spectra of the Elements. Philosophical Magazine. 6(27), 703–713, 1914.
  30. Whitaker, M. A. B. The Bohr-Moseley synthesis and a simple model for atomic x-ray energies. European Journal of Physics.20(3): 213–220, 1999.
  31. Seshavatharam UVS, Lakshminarayana S. H. K. Cherop and K.M. Khanna. Three Unified Nuclear Binding Energy Formulae. World Scientific News, 163, 30-77, 2022.
  32. Seshavatharam, U.V.S, Lakshminarayana S. On the Combined Role of Strong and Electroweak Interactions in Understanding Nuclear Binding Energy Scheme. Mapana Journal of Sciences, 20(1), 1-18, 2021.
  33. Seshavatharam, U.V.S, Lakshminarayana S. 4G model of fitting RMS radius of proton. Nucleus 2022: Fundamental problems and applications. Moscow July 11–16, 2022. Book of abstracts, 88-89,2022.
  34. Dmitri E. Kharzeev. The mass radius of the proton. Phys. Rev. D 104, 054015, 2021.
  35. A. E. S. Green. Nuclear Physics. McGraw Hill Book Co. 195.
  36. Gao Z. P, Wang YJ, Lü HL et al., Machine learning the nuclear mass. NUCL. SCI. TECH. 32, 109, 2021.
Table 1. Internal and external decay modes of neutron, proton and pions .
Table 1. Internal and external decay modes of neutron, proton and pions .
Particle Integral Quark charges Internal Decay mode Decay Result
Neutron +e, +e, (-2e) -2e → -e, -e [+e, +e, (-e)] = Proton and Electron (-e)
Anti neutron -e, -e, (+2e) +2e → +e,+e [-e,-e,(+e)] = Anti proton and Positron (+e)
Proton (+2e), (-2e), +e+e, +e, -e +2e → +e,+e-2e → -e, -e [(+e), -2e, +e] = Neutron and Positron (+e)[+2e, (-e),+e] = (Baryon+2e) and (electron or muon-)Lepton+ and Gamma or Pion0Lepton- and meson+2e
Anti proton (-2e), (+2e), -e-e,-e, +e -2e → -e, -e+2e → +e,+e [(-e), +2e, -e] = Anti neutron and Electron (-e)[-2e, (+e),-e] = (baryon-2e) and (positron or muon+) Lepton- and Gamma or Pion0Lepton+ and meson-2e
Pion+ (+2e),-e +2e → +e, +e Positron or Muon+ and [(+e),-e] = Gamma or Pion0
Pion- (-2e),+e -2e → -e,-e Electron or Muon- and [(-e),+e] = Gamma or Pion0
Pion0 (+2e),(-2e); -e,+e (+e,+e),(-e,-e) -e,+e Two GammaElectron, Positron and GammaTwo electrons and Two positronsElectron and positronOne Gamma
Table 2. Estimated and experimental energy levels of L3M5 (L α 1) for Z = (40 to 94).
Table 2. Estimated and experimental energy levels of L3M5 (L α 1) for Z = (40 to 94).
Atomic number Name of the Element Estimated energy level (eV) Experimental energy level (eV) %Error
40 Zr 2033.0 2042.489 0.46
41 Nb 2158.8 2165.89 0.33
42 Mo 2288.5 2293.187 0.20
43 Tc 2421.9 2423.99 0.09
44 Ru 2559.1 2558.579 -0.02
45 Rh 2700.1 2696.775 -0.12
46 Pd 2844.8 2838.638 -0.22
47 Ag 2993.3 2984.340 -0.30
48 Cd 3145.6 3133.755 -0.38
49 In 3301.7 3286.982 -0.45
50 Sn 3461.6 3444.011 -0.51
51 Sb 3625.2 3604.756 -0.57
52 Te 3792.7 3769.38 -0.62
53 I 3963.9 3937.70 -0.67
54 Xe 4138.9 4110.088 -0.70
55 Cs 4317.6 4286.49 -0.73
56 Ba 4500.2 4466.30 -0.76
57 La 4686.5 4651.02 -0.76
58 Ce 4876.6 4840.06 -0.75
59 Pr 5070.5 5033.79 -0.73
60 Nd 5268.1 5230.239 -0.72
61 Pm 5469.6 5432.6 -0.68
62 Sm 5674.8 5635.970 -0.69
63 Eu 5883.8 5846.46 -0.64
64 Gd 6096.6 6057.37 -0.65
65 Tb 6313.1 6272.82 -0.64
66 Dy 6533.5 6495.27 -0.59
67 Ho 6757.6 6719.675 -0.56
68 Er 6985.5 6947.913 -0.54
69 Tm 7217.1 7180.113 -0.52
70 Yb 7452.6 7415.70 -0.50
71 Lu 7691.8 7655.55 -0.47
72 Hf 7934.8 7899.08 -0.45
73 Ta 8181.6 8146.17 -0.43
74 W 8432.2 8398.242 -0.40
75 Re 8686.6 8652.55 -0.39
76 Os 8944.7 8911.83 -0.37
77 Ir 9206.6 9175.18 -0.34
78 Pt 9472.3 9442.39 -0.32
79 Au 9741.8 9713.44 -0.29
80 Hg 10015.0 9988.91 -0.26
81 Tl 10292.0 10268.62 -0.23
82 Pb 10572.8 10551.60 -0.20
83 Bi 10857.4 10838.94 -0.17
84 Po 11145.8 11130.87 -0.13
85 At 11437.9 11426.94 -0.10
86 Rn 11733.9 11727.09 -0.06
87 Fr 12033.6 12031.40 -0.02
88 Ra 12337.0 12339.86 0.02
89 Ac 12644.3 12652.16 0.06
90 Th 12955.3 12967.937 0.10
91 Pa 13270.2 13290.8 0.15
92 U 13588.8 13614.87 0.19
93 Np 13911.1 13944.26 0.24
94 Pu 14237.3 14278.74 0.29
Table 3. Comparison of assumed and estimated stable mass numbers and proton numbers.
Table 3. Comparison of assumed and estimated stable mass numbers and proton numbers.
Assumed Proton number Estimated stable mass numberRelation (29) Estimated proton numberRelation (30) Assumed Proton number Estimated stable mass numberRelation (29) Estimated proton numberRelation (30)
3 7 3 61 146 61
4 9 4 62 149 62
5 11 5 63 151 63
6 13 6 64 154 64
7 15 7 65 157 65
8 17 8 66 160 66
9 19 9 67 163 67
10 21 10 68 165 68
11 23 11 69 168 69
12 25 12 70 171 70
13 27 13 71 174 71
14 29 14 72 177 72
15 31 15 73 180 73
16 33 16 74 182 74
17 35 16 75 185 75
18 37 17 76 188 76
19 40 19 77 191 77
20 42 20 78 194 78
21 44 20 79 197 79
22 46 21 80 200 80
23 49 23 81 203 81
24 51 23 82 206 82
25 53 24 83 208 83
26 56 26 84 211 84
27 58 26 85 214 85
28 60 27 86 217 86
29 63 28 87 220 87
30 65 29 88 223 88
31 68 31 89 226 89
32 70 31 90 229 90
33 73 33 91 232 91
34 75 33 92 235 92
35 78 35 93 238 93
36 80 35 94 241 94
37 83 37 95 244 95
38 85 37 96 247 96
39 88 39 97 250 97
40 90 39 98 253 98
41 93 41 99 256 99
42 95 41 100 259 100
43 98 43 101 262 101
44 100 43 102 265 102
45 103 44 103 268 103
46 106 46 104 271 104
47 108 46 105 274 105
48 111 48 106 277 106
49 113 48 107 280 107
50 116 49 108 284 109
51 119 51 109 287 110
52 121 51 110 290 111
53 124 53 111 293 112
54 127 54 112 296 113
55 130 55 113 299 114
56 132 56 114 302 115
57 135 57 115 305 116
58 138 58 116 308 117
59 140 58 117 311 118
60 143 60 118 315 119
Table 4. Comparison of estimated and reference binding energies of isotopes of Z=8, 20, 28, 50, 82 and 112.
Table 4. Comparison of estimated and reference binding energies of isotopes of Z=8, 20, 28, 50, 82 and 112.
Proton Number Neutron Number Mass Number Estimated BE (MeV) Reference BE (MeV) Diff_BE(MeV)
8 8 16 121.87 122.04 0.17
8 9 17 128.28 128.45 0.18
8 10 18 137.93 138.19 0.26
8 11 19 142.15 142.49 0.34
8 12 20 149.56 150.04 0.48
8 13 21 152.01 152.61 0.60
8 14 22 157.60 158.38 0.78
8 15 23 158.59 159.52 0.93
8 16 24 162.67 163.80 1.13
8 17 25 162.45 163.75 1.30
8 18 26 165.27 166.78 1.51
8 19 27 164.03 165.72 1.70
8 20 28 165.79 167.70 1.91
Proton Number Neutron Number Mass Number Estimated BE (MeV) Reference BE (MeV) Diff_BE(MeV)
20 20 40 341.38 341.51 0.13
20 21 41 350.93 351.01 0.08
20 22 42 363.11 363.18 0.07
20 23 43 371.26 371.31 0.05
20 24 44 382.01 382.08 0.07
20 25 45 388.91 388.98 0.07
20 26 46 398.40 398.51 0.11
20 27 47 404.17 404.31 0.14
20 28 48 412.51 412.70 0.20
20 29 49 417.26 417.50 0.24
20 30 50 424.56 424.88 0.31
20 31 51 428.40 428.77 0.37
20 32 52 434.76 435.21 0.45
20 33 53 437.76 438.29 0.52
20 34 54 443.26 443.88 0.62
20 35 55 445.50 446.20 0.70
20 36 56 450.22 451.02 0.81
20 37 57 451.76 452.65 0.89
20 38 58 455.75 456.76 1.01
20 39 59 456.65 457.75 1.10
20 40 60 459.98 461.20 1.22
20 41 61 460.29 461.61 1.32
20 42 62 463.01 464.46 1.45
20 43 63 462.78 464.33 1.55
20 44 64 464.94 466.62 1.68
20 45 65 464.20 465.99 1.79
20 46 66 465.83 467.76 1.93
20 47 67 464.63 466.67 2.04
20 48 68 465.77 467.95 2.18
20 49 69 464.13 466.43 2.29
20 50 70 464.83 467.26 2.43
Proton Number Neutron Number Mass Number Estimated BE (MeV) Reference BE (MeV) Diff_BE(MeV)
28 28 56 479.75 479.82 0.07
28 29 57 490.30 490.31 0.01
28 30 58 503.28 503.26 -0.02
28 31 59 512.69 512.64 -0.05
28 32 60 524.53 524.47 -0.06
28 33 61 532.92 532.83 -0.08
28 34 62 543.70 543.63 -0.07
28 35 63 551.13 551.05 -0.08
28 36 64 560.95 560.89 -0.06
28 37 65 567.49 567.45 -0.05
28 38 66 576.41 576.40 -0.01
28 39 67 582.14 582.15 0.01
28 40 68 590.23 590.28 0.06
28 41 69 595.20 595.29 0.09
28 42 70 602.51 602.65 0.14
28 43 71 606.78 606.97 0.18
28 44 72 613.37 613.62 0.25
28 45 73 616.99 617.28 0.30
28 46 74 622.90 623.27 0.37
28 47 75 625.90 626.33 0.42
28 48 76 631.19 631.69 0.50
28 49 77 633.62 634.19 0.57
28 50 78 638.32 638.97 0.65
28 51 79 640.21 640.93 0.72
28 52 80 644.35 645.16 0.81
28 53 81 645.75 646.63 0.88
28 54 82 649.37 650.35 0.98
28 55 83 650.29 651.35 1.05
28 56 84 653.43 654.58 1.15
28 57 85 653.90 655.14 1.23
28 58 86 656.57 657.91 1.34
28 59 87 656.63 658.05 1.42
28 60 88 658.87 660.40 1.53
28 61 89 658.53 660.15 1.62
28 62 90 660.36 662.08 1.72
28 63 91 659.65 661.46 1.82
28 64 92 661.09 663.01 1.93
28 65 93 660.02 662.04 2.02
28 66 94 661.09 663.23 2.13
28 67 95 659.69 661.92 2.23
28 68 96 660.41 662.76 2.34
28 69 97 658.69 661.14 2.44
28 70 98 659.09 661.64 2.56
Proton Number Neutron Number Mass Number Estimated BE (MeV) Reference BE (MeV) Diff_BE(MeV)
50 50 100 816.20 816.08 -0.12
50 51 101 828.32 828.13 -0.19
50 52 102 842.56 842.33 -0.23
50 53 103 853.94 853.65 -0.29
50 54 104 867.43 867.10 -0.33
50 55 105 878.10 877.73 -0.38
50 56 106 890.88 890.47 -0.40
50 57 107 900.88 900.44 -0.44
50 58 108 912.97 912.51 -0.46
50 59 109 922.34 921.85 -0.49
50 60 110 933.78 933.28 -0.50
50 61 111 942.54 942.01 -0.53
50 62 112 953.36 952.83 -0.53
50 63 113 961.54 960.99 -0.55
50 64 114 971.77 971.23 -0.54
50 65 115 979.40 978.84 -0.55
50 66 116 989.06 988.52 -0.54
50 67 117 996.16 995.61 -0.55
50 68 118 1005.29 1004.75 -0.53
50 69 119 1011.88 1011.34 -0.53
50 70 120 1020.48 1019.97 -0.51
50 71 121 1026.59 1026.08 -0.51
50 72 122 1034.70 1034.22 -0.48
50 73 123 1040.34 1039.87 -0.47
50 74 124 1047.98 1047.54 -0.44
50 75 125 1053.18 1052.76 -0.42
50 76 126 1060.36 1059.97 -0.39
50 77 127 1065.13 1064.76 -0.37
50 78 128 1071.88 1071.55 -0.33
50 79 129 1076.24 1075.94 -0.31
50 80 130 1082.57 1082.31 -0.27
50 81 131 1086.54 1086.30 -0.24
50 82 132 1092.46 1092.27 -0.19
50 83 133 1096.06 1095.89 -0.16
50 84 134 1101.59 1101.48 -0.11
50 85 135 1104.82 1104.74 -0.08
50 86 136 1109.99 1109.96 -0.03
50 87 137 1112.86 1112.88 0.01
50 88 138 1117.67 1117.74 0.07
50 89 139 1120.21 1120.32 0.11
50 90 140 1124.67 1124.84 0.17
50 91 141 1126.89 1127.10 0.21
50 92 142 1131.02 1131.29 0.27
50 93 143 1132.93 1133.24 0.31
50 94 144 1136.74 1137.11 0.38
50 95 145 1138.34 1138.77 0.42
50 96 146 1141.84 1142.33 0.49
50 97 147 1143.16 1143.69 0.54
50 98 148 1146.35 1146.96 0.61
50 99 149 1147.39 1148.05 0.66
50 100 150 1150.30 1151.03 0.73
50 101 151 1151.07 1151.85 0.78
50 102 152 1153.70 1154.55 0.85
50 103 153 1154.21 1155.11 0.91
50 104 154 1156.57 1157.54 0.98
50 105 155 1156.82 1157.86 1.03
50 106 156 1158.92 1160.03 1.11
50 107 157 1158.93 1160.10 1.17
50 108 158 1160.78 1162.02 1.24
50 109 159 1160.56 1161.86 1.30
50 110 160 1162.16 1163.54 1.38
50 111 161 1161.71 1163.15 1.44
50 112 162 1163.08 1164.60 1.52
50 113 163 1162.40 1163.98 1.58
50 114 164 1163.54 1165.20 1.66
50 115 165 1162.65 1164.38 1.73
50 116 166 1163.57 1165.38 1.81
50 117 167 1162.48 1164.35 1.87
50 118 168 1163.18 1165.13 1.95
50 119 169 1161.89 1163.90 2.02
50 120 170 1162.38 1164.48 2.10
50 121 171 1160.89 1163.06 2.17
50 122 172 1161.18 1163.44 2.25
50 123 173 1159.51 1161.82 2.32
50 124 174 1159.60 1162.01 2.40
50 125 175 1157.74 1160.21 2.47
Proton Number Neutron Number Mass Number Estimated BE (MeV) Reference BE (MeV) Diff_BE(MeV)
82 82 164 1189.55 1189.17 -0.38
82 83 165 1202.94 1202.49 -0.45
82 84 166 1218.22 1217.71 -0.51
82 85 167 1231.11 1230.54 -0.57
82 86 168 1245.88 1245.25 -0.62
82 87 169 1258.29 1257.60 -0.69
82 88 170 1272.55 1271.83 -0.73
82 89 171 1284.49 1283.71 -0.79
82 90 172 1298.28 1297.46 -0.83
82 91 173 1309.77 1308.89 -0.88
82 92 174 1323.09 1322.18 -0.91
82 93 175 1334.13 1333.17 -0.96
82 94 176 1347.01 1346.02 -0.99
82 95 177 1357.62 1356.58 -1.03
82 96 178 1370.06 1369.00 -1.06
82 97 179 1380.25 1379.15 -1.10
82 98 180 1392.26 1391.14 -1.12
82 99 181 1402.06 1400.90 -1.16
82 100 182 1413.66 1412.48 -1.17
82 101 183 1423.06 1421.85 -1.21
82 102 184 1434.26 1433.04 -1.22
82 103 185 1443.28 1442.03 -1.25
82 104 186 1454.09 1452.83 -1.26
82 105 187 1462.74 1461.46 -1.28
82 106 188 1473.18 1471.89 -1.29
82 107 189 1481.47 1480.16 -1.31
82 108 190 1491.54 1490.22 -1.32
82 109 191 1499.48 1498.14 -1.33
82 110 192 1509.19 1507.86 -1.34
82 111 193 1516.79 1515.44 -1.35
82 112 194 1526.16 1524.81 -1.35
82 113 195 1533.43 1532.07 -1.36
82 114 196 1542.46 1541.10 -1.35
82 115 197 1549.40 1548.04 -1.36
82 116 198 1558.10 1556.75 -1.36
82 117 199 1564.74 1563.38 -1.36
82 118 200 1573.12 1571.77 -1.35
82 119 201 1579.45 1578.09 -1.36
82 120 202 1587.52 1586.18 -1.34
82 121 203 1593.55 1592.21 -1.34
82 122 204 1601.32 1599.99 -1.33
82 123 205 1607.06 1605.73 -1.33
82 124 206 1614.53 1613.22 -1.31
82 125 207 1620.00 1618.69 -1.31
82 126 208 1627.18 1625.89 -1.29
82 127 209 1632.37 1631.09 -1.28
82 128 210 1639.27 1638.01 -1.26
82 129 211 1644.19 1642.94 -1.25
82 130 212 1650.82 1649.59 -1.23
82 131 213 1655.48 1654.26 -1.22
82 132 214 1661.84 1660.65 -1.19
82 133 215 1666.25 1665.07 -1.18
82 134 216 1672.35 1671.20 -1.15
82 135 217 1676.51 1675.37 -1.14
82 136 218 1682.36 1681.25 -1.11
82 137 219 1686.28 1685.18 -1.10
82 138 220 1691.88 1690.81 -1.06
82 139 221 1695.56 1694.51 -1.05
82 140 222 1700.92 1699.90 -1.01
82 141 223 1704.37 1703.37 -1.00
82 142 224 1709.49 1708.53 -0.96
82 143 225 1712.71 1711.77 -0.94
82 144 226 1717.61 1716.70 -0.91
82 145 227 1720.61 1719.73 -0.88
82 146 228 1725.28 1724.43 -0.85
82 147 229 1728.07 1727.25 -0.82
82 148 230 1732.52 1731.73 -0.78
82 149 231 1735.10 1734.34 -0.76
82 150 232 1739.33 1738.61 -0.72
82 151 233 1741.70 1741.01 -0.69
82 152 234 1745.73 1745.07 -0.65
82 153 235 1747.90 1747.28 -0.62
82 154 236 1751.72 1751.14 -0.58
82 155 237 1753.70 1753.15 -0.55
82 156 238 1757.32 1756.80 -0.51
82 157 239 1759.10 1758.62 -0.48
82 158 240 1762.52 1762.09 -0.44
82 159 241 1764.13 1763.72 -0.40
82 160 242 1767.35 1766.99 -0.36
82 161 243 1768.77 1768.45 -0.33
82 162 244 1771.81 1771.53 -0.28
82 163 245 1773.05 1772.81 -0.25
82 164 246 1775.91 1775.71 -0.20
82 165 247 1776.97 1776.81 -0.16
82 166 248 1779.65 1779.53 -0.12
82 167 249 1780.54 1780.46 -0.08
82 168 250 1783.04 1783.01 -0.03
82 169 251 1783.77 1783.77 0.01
82 170 252 1786.09 1786.15 0.06
82 171 253 1786.66 1786.75 0.09
82 172 254 1788.81 1788.96 0.15
82 173 255 1789.22 1789.40 0.18
82 174 256 1791.21 1791.44 0.24
82 175 257 1791.45 1791.73 0.28
82 176 258 1793.28 1793.61 0.33
82 177 259 1793.37 1793.74 0.37
82 178 260 1795.05 1795.47 0.42
82 179 261 1794.99 1795.45 0.46
82 180 262 1796.50 1797.02 0.52
82 181 263 1796.29 1796.85 0.56
82 182 264 1797.66 1798.27 0.61
82 183 265 1797.30 1797.96 0.66
82 184 266 1798.52 1799.23 0.71
82 185 267 1798.02 1798.78 0.75
82 186 268 1799.09 1799.90 0.81
82 187 269 1798.46 1799.31 0.85
82 188 270 1799.38 1800.29 0.91
82 189 271 1798.61 1799.56 0.96
82 190 272 1799.39 1800.41 1.01
82 191 273 1798.49 1799.55 1.06
82 192 274 1799.13 1800.25 1.12
82 193 275 1798.10 1799.26 1.16
82 194 276 1798.61 1799.83 1.22
82 195 277 1797.44 1798.71 1.27
82 196 278 1797.82 1799.14 1.33
82 197 279 1796.53 1797.90 1.37
82 198 280 1796.78 1798.21 1.43
82 199 281 1795.36 1796.84 1.48
82 200 282 1795.48 1797.02 1.54
82 201 283 1793.94 1795.53 1.59
82 202 284 1793.94 1795.58 1.65
82 203 285 1792.28 1793.98 1.70
82 204 286 1792.15 1793.91 1.76
82 205 287 1790.38 1792.19 1.81
Proton Number Neutron Number Mass Number Estimated BE (MeV) Reference BE (MeV) Diff_BE(MeV)
112 112 224 1421.72 1421.16 -0.56
112 113 225 1435.94 1435.30 -0.64
112 114 226 1451.89 1451.19 -0.70
112 115 227 1465.72 1464.95 -0.77
112 116 228 1481.27 1480.44 -0.83
112 117 229 1494.71 1493.82 -0.89
112 118 230 1509.88 1508.93 -0.94
112 119 231 1522.96 1521.95 -1.01
112 120 232 1537.74 1536.69 -1.06
112 121 233 1550.46 1549.34 -1.12
112 122 234 1564.88 1563.71 -1.16
112 123 235 1577.24 1576.02 -1.22
112 124 236 1591.30 1590.04 -1.26
112 125 237 1603.32 1602.00 -1.32
112 126 238 1617.02 1615.67 -1.36
112 127 239 1628.70 1627.29 -1.41
112 128 240 1642.06 1640.62 -1.44
112 129 241 1653.41 1651.92 -1.49
112 130 242 1666.44 1664.91 -1.53
112 131 243 1677.46 1675.89 -1.57
112 132 244 1690.16 1688.56 -1.60
112 133 245 1700.87 1699.23 -1.64
112 134 246 1713.25 1711.58 -1.67
112 135 247 1723.65 1721.94 -1.71
112 136 248 1735.71 1733.97 -1.74
112 137 249 1745.81 1744.03 -1.77
112 138 250 1757.56 1755.76 -1.80
112 139 251 1767.36 1765.53 -1.83
112 140 252 1778.81 1776.96 -1.85
112 141 253 1788.33 1786.44 -1.88
112 142 254 1799.48 1797.58 -1.90
112 143 255 1808.71 1806.78 -1.93
112 144 256 1819.58 1817.63 -1.95
112 145 257 1828.53 1826.56 -1.98
112 146 258 1839.12 1837.13 -1.99
112 147 259 1847.80 1845.78 -2.02
112 148 260 1858.11 1856.08 -2.03
112 149 261 1866.52 1864.47 -2.05
112 150 262 1876.56 1874.50 -2.06
112 151 263 1884.71 1882.63 -2.08
112 152 264 1894.48 1892.40 -2.09
112 153 265 1902.38 1900.28 -2.11
112 154 266 1911.89 1909.78 -2.11
112 155 267 1919.54 1917.41 -2.13
112 156 268 1928.80 1926.67 -2.13
112 157 269 1936.20 1934.05 -2.15
112 158 270 1945.21 1943.06 -2.15
112 159 271 1952.37 1950.21 -2.16
112 160 272 1961.13 1958.97 -2.16
112 161 273 1968.06 1965.88 -2.17
112 162 274 1976.58 1974.41 -2.17
112 163 275 1983.28 1981.09 -2.18
112 164 276 1991.56 1989.38 -2.18
112 165 277 1998.03 1995.85 -2.19
112 166 278 2006.09 2003.91 -2.18
112 167 279 2012.34 2010.15 -2.19
112 168 280 2020.16 2017.98 -2.18
112 169 281 2026.20 2024.01 -2.19
112 170 282 2033.80 2031.62 -2.18
112 171 283 2039.62 2037.43 -2.18
112 172 284 2047.01 2044.83 -2.17
112 173 285 2052.61 2050.44 -2.18
112 174 286 2059.79 2057.62 -2.16
112 175 287 2065.19 2063.02 -2.17
112 176 288 2072.15 2070.00 -2.15
112 177 289 2077.35 2075.20 -2.15
112 178 290 2084.11 2081.97 -2.14
112 179 291 2089.11 2086.98 -2.14
112 180 292 2095.67 2093.55 -2.12
112 181 293 2100.48 2098.36 -2.12
112 182 294 2106.83 2104.73 -2.10
112 183 295 2111.45 2109.36 -2.10
112 184 296 2117.61 2115.54 -2.08
112 185 297 2122.04 2119.97 -2.07
112 186 298 2128.02 2125.96 -2.05
112 187 299 2132.26 2130.21 -2.05
112 188 300 2138.04 2136.02 -2.03
112 189 301 2142.11 2140.09 -2.02
112 190 302 2147.71 2145.71 -2.00
112 191 303 2151.60 2149.61 -1.99
112 192 304 2157.01 2155.05 -1.97
112 193 305 2160.73 2158.77 -1.96
112 194 306 2165.96 2164.03 -1.93
112 195 307 2169.51 2167.59 -1.92
112 196 308 2174.57 2172.67 -1.90
112 197 309 2177.95 2176.06 -1.88
112 198 310 2182.84 2180.98 -1.86
112 199 311 2186.05 2184.20 -1.85
112 200 312 2190.77 2188.95 -1.82
112 201 313 2193.81 2192.01 -1.81
112 202 314 2198.37 2196.59 -1.78
112 203 315 2201.26 2199.50 -1.76
112 204 316 2205.65 2203.92 -1.73
112 205 317 2208.38 2206.66 -1.72
112 206 318 2212.61 2210.92 -1.69
112 207 319 2215.19 2213.52 -1.67
112 208 320 2219.26 2217.62 -1.64
112 209 321 2221.69 2220.06 -1.62
112 210 322 2225.60 2224.01 -1.59
112 211 323 2227.88 2226.31 -1.57
112 212 324 2231.64 2230.10 -1.54
112 213 325 2233.77 2232.25 -1.52
112 214 326 2237.39 2235.90 -1.49
112 215 327 2239.37 2237.90 -1.47
112 216 328 2242.84 2241.40 -1.44
112 217 329 2244.68 2243.27 -1.42
112 218 330 2248.00 2246.62 -1.38
112 219 331 2249.71 2248.35 -1.36
112 220 332 2252.89 2251.56 -1.32
112 221 333 2254.45 2253.15 -1.30
112 222 334 2257.49 2256.22 -1.27
112 223 335 2258.92 2257.68 -1.24
112 224 336 2261.82 2260.61 -1.21
112 225 337 2263.12 2261.94 -1.18
112 226 338 2265.88 2264.73 -1.15
112 227 339 2267.05 2265.93 -1.12
112 228 340 2269.68 2268.59 -1.08
112 229 341 2270.72 2269.66 -1.06
112 230 342 2273.21 2272.19 -1.02
112 231 343 2274.13 2273.13 -0.99
112 232 344 2276.49 2275.53 -0.96
112 233 345 2277.28 2276.35 -0.93
112 234 346 2279.52 2278.63 -0.89
112 235 347 2280.18 2279.32 -0.86
112 236 348 2282.29 2281.47 -0.82
112 237 349 2282.84 2282.04 -0.80
112 238 350 2284.83 2284.07 -0.76
112 239 351 2285.25 2284.52 -0.73
112 240 352 2287.12 2286.43 -0.69
112 241 353 2287.42 2286.77 -0.66
112 242 354 2289.17 2288.55 -0.62
112 243 355 2289.36 2288.78 -0.59
112 244 356 2290.99 2290.44 -0.54
112 245 357 2291.07 2290.55 -0.51
112 246 358 2292.58 2292.10 -0.47
112 247 359 2292.54 2292.10 -0.44
112 248 360 2293.94 2293.54 -0.40
112 249 361 2293.79 2293.43 -0.37
112 250 362 2295.08 2294.75 -0.32
112 251 363 2294.82 2294.53 -0.29
112 252 364 2295.99 2295.74 -0.25
112 253 365 2295.63 2295.42 -0.22
112 254 366 2296.69 2296.52 -0.17
112 255 367 2296.23 2296.09 -0.14
112 256 368 2297.18 2297.08 -0.10
112 257 369 2296.61 2296.55 -0.06
112 258 370 2297.46 2297.44 -0.02
112 259 371 2296.78 2296.80 0.02
112 260 372 2297.52 2297.58 0.06
112 261 373 2296.75 2296.85 0.09
112 262 374 2297.39 2297.53 0.14
112 263 375 2296.51 2296.69 0.17
112 264 376 2297.05 2297.27 0.22
112 265 377 2296.08 2296.33 0.26
112 266 378 2296.51 2296.81 0.30
112 267 379 2295.44 2295.78 0.34
112 268 380 2295.77 2296.16 0.38
112 269 381 2294.61 2295.03 0.42
112 270 382 2294.85 2295.31 0.47
112 271 383 2293.59 2294.09 0.50
112 272 384 2293.73 2294.28 0.55
112 273 385 2292.38 2292.97 0.59
112 274 386 2292.42 2293.05 0.63
112 275 387 2290.98 2291.65 0.67
112 276 388 2290.93 2291.65 0.72
112 277 389 2289.40 2290.15 0.75
112 278 390 2289.25 2290.06 0.80
112 279 391 2287.64 2288.48 0.84
112 280 392 2287.40 2288.29 0.89
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated