Submitted:
01 November 2023
Posted:
01 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Material and Methods
A. Plasma Amyloid-β
Association between plasma Aβ and cognition
B. Plasma Total Tau and Phosphorylated Tau
Association between plasma t-tau and p-tau and cognition
Other plasma biomarkers
C. Neuronal injury: Plasma Neurofilament light
Association between plasma Nfl and cognition
D. Inflammation: Plasma Glial Fibrillary Acid Protein
Association between plasma GFAP and cognition
3. Discussion
Limitations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weintraub, S.; Wicklund, A.H.; Salmon, D.P. The Neuropsychological Profile of Alzheimer Disease. Cold Spring Harb Perspect Med 2012, 2, a006171–a006171. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, S. Neuropsychological Assessment in Dementia Diagnosis. CONTINUUM: Lifelong Learning in Neurology 2022, 28, 781–799. [Google Scholar] [CrossRef] [PubMed]
- Winblad, B.; Amouyel, P.; Andrieu, S.; Ballard, C.; Brayne, C.; Brodaty, H.; Cedazo-Minguez, A.; Dubois, B.; Edvardsson, D.; Feldman, H.; et al. Defeating Alzheimer’s Disease and Other Dementias: A Priority for European Science and Society. Lancet Neurol 2016, 15, 455–532. [Google Scholar] [CrossRef] [PubMed]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s Disease. The Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimer’s & Dementia 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, E.H.; La Joie, R.; Wolf, A.; Strom, A.; Wang, P.; Iaccarino, L.; Bourakova, V.; Cobigo, Y.; Heuer, H.; Spina, S.; et al. Diagnostic Value of Plasma Phosphorylated Tau181 in Alzheimer’s Disease and Frontotemporal Lobar Degeneration. Nat Med 2020, 26, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Niu, X.; Wang, Y.; Lv, S.; Zhou, X.; Yang, Z.; Peng, D. Plasma Tau Proteins for the Diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.K. Peripheral Fluid-Based Biomarkers of Alzheimer’s Disease. In Biomarkers in Alzheimer’s Disease; Elsevier, 2016; pp. 183–218.
- Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.J.; Visser, P.J.; Aalten, P.; Aarsland, D.; Alcolea, D.; et al. Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia. JAMA 2015, 313, 1924. [Google Scholar] [CrossRef] [PubMed]
- Pais, M. V.; Forlenza, O. V.; Diniz, B.S. Plasma Biomarkers of Alzheimer’s Disease: A Review of Available Assays, Recent Developments, and Implications for Clinical Practice. J Alzheimers Dis Rep 2023, 7, 355–380. [Google Scholar] [CrossRef]
- Milà-Alomà, M.; Suárez-Calvet, M.; Molinuevo, J.L. Latest Advances in Cerebrospinal Fluid and Blood Biomarkers of Alzheimer’s Disease. Ther Adv Neurol Disord 2019, 12, 175628641988881. [Google Scholar] [CrossRef]
- Chatterjee, P.; Pedrini, S.; Doecke, J.D.; Thota, R.; Villemagne, V.L.; Doré, V.; Singh, A.K.; Wang, P.; Rainey-Smith, S.; Fowler, C.; et al. Plasma Aβ42/40 Ratio, P-tau181, GFAP, and NfL across the Alzheimer’s Disease Continuum: A Cross-sectional and Longitudinal Study in the AIBL Cohort. Alzheimer’s & Dementia 2023, 19, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Flicker, C.; Ferris, S.H.; Reisberg, B. Mild Cognitive Impairment in the Elderly: Predictors of Dementia. Neurology 1991, 41, 1006–1006. [Google Scholar] [CrossRef] [PubMed]
- Schindler, S.E.; Bollinger, J.G.; Ovod, V.; Mawuenyega, K.G.; Li, Y.; Gordon, B.A.; Holtzman, D.M.; Morris, J.C.; Benzinger, T.L.S.; Xiong, C.; et al. High-Precision Plasma β-Amyloid 42/40 Predicts Current and Future Brain Amyloidosis. Neurology 2019, 93, e1647–e1659. [Google Scholar] [CrossRef] [PubMed]
- Janelidze, S.; Teunissen, C.E.; Zetterberg, H.; Allué, J.A.; Sarasa, L.; Eichenlaub, U.; Bittner, T.; Ovod, V.; Verberk, I.M.W.; Toba, K.; et al. Head-to-Head Comparison of 8 Plasma Amyloid-β 42/40 Assays in Alzheimer Disease. JAMA Neurol 2021, 78, 1375. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Wu, X.; Wu, W.; Yi, J.; Liang, X.; Ding, S.; Zheng, L.; Luo, J.; Gu, H.; Zhao, Q.; et al. Plasma Biomarker Profiles and the Correlation with Cognitive Function across the Clinical Spectrum of Alzheimer’s Disease. Alzheimers Res Ther 2021, 13, 123. [Google Scholar] [CrossRef]
- Sun, Q.; Ni, J.; Wei, M.; Long, S.; Li, T.; Fan, D.; Lu, T.; Shi, J.; Tian, J. Plasma β-Amyloid, Tau, Neurodegeneration Biomarkers and Inflammatory Factors of Probable Alzheimer’s Disease Dementia in Chinese Individuals. Front Aging Neurosci 2022, 14. [Google Scholar] [CrossRef]
- Sapkota, S.; Erickson, K.; Harvey, D.; Tomaszewski-Farias, S.E.; Olichney, J.M.; Johnson, D.K.; Dugger, B.N.; Mungas, D.M.; Fletcher, E.; Maillard, P.; et al. Plasma Biomarkers Predict Cognitive Trajectories in an Ethnoracially and Clinically Diverse Cohort: Mediation with Hippocampal Volume. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Tsai; Liang; Lee; Su; Lin; Chu; Tsai; Lin; Lin; Yang Associations between Plasma Biomarkers and Cognition in Patients with Alzheimer’s Disease and Amnestic Mild Cognitive Impairment: A Cross-Sectional and Longitudinal Study. J Clin Med 2019, 8, 1893. [CrossRef] [PubMed]
- Pereira, J.B.; Janelidze, S.; Stomrud, E.; Palmqvist, S.; van Westen, D.; Dage, J.L.; Mattsson-Carlgren, N.; Hansson, O. Plasma Markers Predict Changes in Amyloid, Tau, Atrophy and Cognition in Non-Demented Subjects. Brain 2021, 144, 2826–2836. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Lin, R.-R.; Huang, H.-F.; Xue, Y.-Y.; Tao, Q.-Q. Microglial Activation, Tau Pathology, and Neurodegeneration Biomarkers Predict Longitudinal Cognitive Decline in Alzheimer’s Disease Continuum. Front Aging Neurosci 2022, 14. [Google Scholar] [CrossRef]
- Chen, T.-B.; Lai, Y.-H.; Ke, T.-L.; Chen, J.-P.; Lee, Y.-J.; Lin, S.-Y.; Lin, P.-C.; Wang, P.-N.; Cheng, I.H. Changes in Plasma Amyloid and Tau in a Longitudinal Study of Normal Aging, Mild Cognitive Impairment, and Alzheimer’s Disease. Dement Geriatr Cogn Disord 2019, 48, 180–195. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-L.; Liang, C.-S.; Yang, C.-P.; Lee, J.-T.; Ho, T.-H.; Su, M.-W.; Lin, G.-Y.; Lin, Y.-K.; Chu, H.-T.; Hsu, Y.-W.; et al. Indicators of Rapid Cognitive Decline in Amnestic Mild Cognitive Impairment: The Role of Plasma Biomarkers Using Magnetically Labeled Immunoassays. J Psychiatr Res 2020, 129, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Chouliaras, L.; Thomas, A.; Malpetti, M.; Donaghy, P.; Kane, J.; Mak, E.; Savulich, G.; Prats-Sedano, M.A.; Heslegrave, A.J.; Zetterberg, H.; et al. Differential Levels of Plasma Biomarkers of Neurodegeneration in Lewy Body Dementia, Alzheimer’s Disease, Frontotemporal Dementia and Progressive Supranuclear Palsy. J Neurol Neurosurg Psychiatry 2022, 93, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Lucas, M.; Allué, J.A.; Sarasa, L.; Fandos, N.; Castillo, S.; Terencio, J.; Sarasa, M.; Tartari, J.P.; Sanabria, Á.; Tárraga, L.; et al. Clinical Performance of an Antibody-Free Assay for Plasma Aβ42/Aβ40 to Detect Early Alterations of Alzheimer’s Disease in Individuals with Subjective Cognitive Decline. Alzheimers Res Ther 2023, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Cullen, N.C.; Leuzy, A.; Janelidze, S.; Palmqvist, S.; Svenningsson, A.L.; Stomrud, E.; Dage, J.L.; Mattsson-Carlgren, N.; Hansson, O. Plasma Biomarkers of Alzheimer’s Disease Improve Prediction of Cognitive Decline in Cognitively Unimpaired Elderly Populations. Nat Commun 2021, 12, 3555. [Google Scholar] [CrossRef] [PubMed]
- Giudici, K.V.; de Souto Barreto, P.; Guyonnet, S.; Li, Y.; Bateman, R.J.; Vellas, B. Assessment of Plasma Amyloid-β 42/40 and Cognitive Decline Among Community-Dwelling Older Adults. JAMA Netw Open 2020, 3, e2028634. [Google Scholar] [CrossRef] [PubMed]
- Aschenbrenner, A.J.; Li, Y.; Henson, R.L.; Volluz, K.; Hassenstab, J.; Verghese, P.; West, T.; Meyer, M.R.; Kirmess, K.M.; Fagan, A.M.; et al. Comparison of Plasma and <scp>CSF</Scp> Biomarkers in Predicting Cognitive Decline. Ann Clin Transl Neurol 2022, 9, 1739–1751. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.J.; Ho, S.; Jeong, J.H.; Park, K.H.; Kim, S.; Wang, M.J.; Choi, S.H.; Yang, D.W. Impacts of Baseline Biomarkers on Cognitive Trajectories in Subjective Cognitive Decline: The CoSCo Prospective Cohort Study. Alzheimers Res Ther 2023, 15, 132. [Google Scholar] [CrossRef] [PubMed]
- Simrén, J.; Leuzy, A.; Karikari, T.K.; Hye, A.; Benedet, A.L.; Lantero-Rodriguez, J.; Mattsson-Carlgren, N.; Schöll, M.; Mecocci, P.; Vellas, B.; et al. The Diagnostic and Prognostic Capabilities of Plasma Biomarkers in Alzheimer’s Disease. Alzheimer’s & Dementia 2021, 17, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Ashton, N.J.; Janelidze, S.; Mattsson-Carlgren, N.; Binette, A.P.; Strandberg, O.; Brum, W.S.; Karikari, T.K.; González-Ortiz, F.; Di Molfetta, G.; Meda, F.J.; et al. Differential Roles of Aβ42/40, p-Tau231 and p-Tau217 for Alzheimer’s Trial Selection and Disease Monitoring. Nat Med 2022, 28, 2555–2562. [Google Scholar] [CrossRef]
- Saunders, T.S.; Pozzolo, F.E.; Heslegrave, A.; King, D.; McGeachan, R.I.; Spires-Jones, M.P.; Harris, S.E.; Ritchie, C.; Muniz-Terrera, G.; Deary, I.J.; et al. Predictive Blood Biomarkers and Brain Changes Associated with Age-Related Cognitive Decline. Brain Commun 2023, 5. [Google Scholar] [CrossRef]
- Wang, J.; Gao, L.; Liu, J.; Dang, L.; Wei, S.; Hu, N.; Gao, Y.; Peng, W.; Shang, S.; Huo, K.; et al. The Association of Plasma Amyloid-β and Cognitive Decline in Cognitively Unimpaired Population. Clin Interv Aging 2022, Volume 17, 555–565. [Google Scholar] [CrossRef]
- Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s Disease: Current Status and Prospects for the Future. J Intern Med 2018, 284, 643–663. [Google Scholar] [CrossRef]
- Mattsson, N.; Zetterberg, H.; Janelidze, S.; Insel, P.S.; Andreasson, U.; Stomrud, E.; Palmqvist, S.; Baker, D.; Tan Hehir, C.A.; Jeromin, A.; et al. Plasma Tau in Alzheimer Disease. Neurology 2016, 87, 1827–1835. [Google Scholar] [CrossRef]
- Pase, M.P.; Beiser, A.S.; Himali, J.J.; Satizabal, C.L.; Aparicio, H.J.; DeCarli, C.; Chêne, G.; Dufouil, C.; Seshadri, S. Assessment of Plasma Total Tau Level as a Predictive Biomarker for Dementia and Related Endophenotypes. JAMA Neurol 2019, 76, 598. [Google Scholar] [CrossRef]
- Teunissen, C.E.; Verberk, I.M.W.; Thijssen, E.H.; Vermunt, L.; Hansson, O.; Zetterberg, H.; van der Flier, W.M.; Mielke, M.M.; del Campo, M. Blood-Based Biomarkers for Alzheimer’s Disease: Towards Clinical Implementation. Lancet Neurol 2022, 21, 66–77. [Google Scholar] [CrossRef]
- Mielke, M.M.; Hagen, C.E.; Xu, J.; Chai, X.; Vemuri, P.; Lowe, V.J.; Airey, D.C.; Knopman, D.S.; Roberts, R.O.; Machulda, M.M.; et al. Plasma Phospho-tau181 Increases with Alzheimer’s Disease Clinical Severity and Is Associated with Tau- and Amyloid-positron Emission Tomography. Alzheimer’s & Dementia 2018, 14, 989–997. [Google Scholar] [CrossRef]
- Ashton, N.J.; Puig-Pijoan, A.; Milà-Alomà, M.; Fernández-Lebrero, A.; García-Escobar, G.; González-Ortiz, F.; Kac, P.R.; Brum, W.S.; Benedet, A.L.; Lantero-Rodriguez, J.; et al. Plasma and CSF Biomarkers in a Memory Clinic: Head-to-head Comparison of Phosphorylated Tau Immunoassays. Alzheimer’s & Dementia 2023, 19, 1913–1924. [Google Scholar] [CrossRef]
- Fossati, S.; Ramos Cejudo, J.; Debure, L.; Pirraglia, E.; Sone, J.Y.; Li, Y.; Chen, J.; Butler, T.; Zetterberg, H.; Blennow, K.; et al. Plasma Tau Complements CSF Tau and P-tau in the Diagnosis of Alzheimer’s Disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 2019, 11, 483–492. [Google Scholar] [CrossRef]
- Zetterberg, H.; Wilson, D.; Andreasson, U.; Minthon, L.; Blennow, K.; Randall, J.; Hansson, O. Plasma Tau Levels in Alzheimer’s Disease. Alzheimers Res Ther 2013, 5, 9. [Google Scholar] [CrossRef]
- Janelidze, S.; Bali, D.; Ashton, N.J.; Barthélemy, N.R.; Vanbrabant, J.; Stoops, E.; Vanmechelen, E.; He, Y.; Dolado, A.O.; Triana-Baltzer, G.; et al. Head-to-Head Comparison of 10 Plasma Phospho-Tau Assays in Prodromal Alzheimer’s Disease. Brain 2023, 146, 1592–1601. [Google Scholar] [CrossRef]
- Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G.E.; Leuzy, A.; et al. Discriminative Accuracy of Plasma Phospho-Tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324, 772. [Google Scholar] [CrossRef]
- Ashton, N.J.; Pascoal, T.A.; Karikari, T.K.; Benedet, A.L.; Lantero-Rodriguez, J.; Brinkmalm, G.; Snellman, A.; Schöll, M.; Troakes, C.; Hye, A.; et al. Plasma P-Tau231: A New Biomarker for Incipient Alzheimer’s Disease Pathology. Acta Neuropathol 2021, 141, 709–724. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, L.; Dong, C. The Performance of Plasma Phosphorylated Tau231 in Detecting Alzheimer’s Disease: A Systematic Review with Meta-analysis. European Journal of Neuroscience 2023, 58, 3132–3149. [Google Scholar] [CrossRef]
- Karikari, T.K.; Pascoal, T.A.; Ashton, N.J.; Janelidze, S.; Benedet, A.L.; Rodriguez, J.L.; Chamoun, M.; Savard, M.; Kang, M.S.; Therriault, J.; et al. Blood Phosphorylated Tau 181 as a Biomarker for Alzheimer’s Disease: A Diagnostic Performance and Prediction Modelling Study Using Data from Four Prospective Cohorts. Lancet Neurol 2020, 19, 422–433. [Google Scholar] [CrossRef]
- Weigand, A.J.; Ortiz, G.; Walker, K.S.; Galasko, D.R.; Bondi, M.W.; Thomas, K.R. APOE Differentially Moderates Cerebrospinal Fluid and Plasma Phosphorylated Tau181 Associations with Multi-Domain Cognition. Neurobiol Aging 2023, 125, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Chen, J.; Du, Z.-L.; Weng, H.; Zhang, Y.; Li, R.; Jia, Z.; Sun, M.; Jiang, J.; Wang, F.-Z.; et al. Plasma P-Tau181 Level Predicts Neurodegeneration and Progression to Alzheimer’s Dementia: A Longitudinal Study. Front Neurol 2021, 12. [Google Scholar] [CrossRef]
- Smirnov, D.S.; Ashton, N.J.; Blennow, K.; Zetterberg, H.; Simrén, J.; Lantero-Rodriguez, J.; Karikari, T.K.; Hiniker, A.; Rissman, R.A.; Salmon, D.P.; et al. Plasma Biomarkers for Alzheimer’s Disease in Relation to Neuropathology and Cognitive Change. Acta Neuropathol 2022, 143, 487–503. [Google Scholar] [CrossRef]
- Groot, C.; Cicognola, C.; Bali, D.; Triana-Baltzer, G.; Dage, J.L.; Pontecorvo, M.J.; Kolb, H.C.; Ossenkoppele, R.; Janelidze, S.; Hansson, O. Diagnostic and Prognostic Performance to Detect Alzheimer’s Disease and Clinical Progression of a Novel Assay for Plasma p-Tau217. Alzheimers Res Ther 2022, 14, 67. [Google Scholar] [CrossRef]
- Marks, J.D.; Syrjanen, J.A.; Graff-Radford, J.; Petersen, R.C.; Machulda, M.M.; Campbell, M.R.; Algeciras-Schimnich, A.; Lowe, V.; Knopman, D.S.; Jack, C.R.; et al. Comparison of Plasma Neurofilament Light and Total Tau as Neurodegeneration Markers: Associations with Cognitive and Neuroimaging Outcomes. Alzheimers Res Ther 2021, 13, 199. [Google Scholar] [CrossRef]
- Rajan, K.B.; Aggarwal, N.T.; McAninch, E.A.; Weuve, J.; Barnes, L.L.; Wilson, R.S.; DeCarli, C.; Evans, D.A. Remote Blood Biomarkers of Longitudinal Cognitive Outcomes in a Population Study. Ann Neurol 2020, 88, 1065–1076. [Google Scholar] [CrossRef]
- Moscoso, A.; Grothe, M.J.; Ashton, N.J.; Karikari, T.K.; Lantero Rodríguez, J.; Snellman, A.; Suárez-Calvet, M.; Blennow, K.; Zetterberg, H.; Schöll, M.; et al. Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease. JAMA Neurol 2021, 78, 396. [Google Scholar] [CrossRef]
- Saloner, R.; VandeVrede, L.; Asken, B.M.; Paolillo, E.W.; Gontrum, E.Q.; Wolf, A.; Lario-Lago, A.; Milà-Alomà, M.; Triana-Baltzer, G.; Kolb, H.C.; et al. Plasma Phosphorylated Tau-217 Exhibits Sex-specific Prognostication of Cognitive Decline and Brain Atrophy in Cognitively Unimpaired Adults. Alzheimer’s & Dementia 2023. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.R.; Bangen, K.J.; Edmonds, E.C.; Weigand, A.J.; Walker, K.S.; Bondi, M.W.; Galasko, D.R. Objective Subtle Cognitive Decline and Plasma Phosphorylated Tau181: Early Markers of Alzheimer’s Disease-related Declines. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 2021, 13. [Google Scholar] [CrossRef]
- Snellman, A.; Ekblad, L.L.; Ashton, N.J.; Karikari, T.K.; Lantero-Rodriguez, J.; Pietilä, E.; Koivumäki, M.; Helin, S.; Karrasch, M.; Zetterberg, H.; et al. Head-to-Head Comparison of Plasma p-Tau181, p-Tau231 and Glial Fibrillary Acidic Protein in Clinically Unimpaired Elderly with Three Levels of APOE4-Related Risk for Alzheimer’s Disease. Neurobiol Dis 2023, 183, 106175. [Google Scholar] [CrossRef]
- Mattsson-Carlgren, N.; Salvadó, G.; Ashton, N.J.; Tideman, P.; Stomrud, E.; Zetterberg, H.; Ossenkoppele, R.; Betthauser, T.J.; Cody, K.A.; Jonaitis, E.M.; et al. Prediction of Longitudinal Cognitive Decline in Preclinical Alzheimer Disease Using Plasma Biomarkers. JAMA Neurol 2023, 80, 360. [Google Scholar] [CrossRef]
- Baldacci, F.; Lista, S.; Manca, M.L.; Chiesa, P.A.; Cavedo, E.; Lemercier, P.; Zetterberg, H.; Blennow, K.; Habert, M.-O.; Potier, M.C.; et al. Age and Sex Impact Plasma NFL and T-Tau Trajectories in Individuals with Subjective Memory Complaints: A 3-Year Follow-up Study. Alzheimers Res Ther 2020, 12, 147. [Google Scholar] [CrossRef]
- Rübsamen, N.; Maceski, A.; Leppert, D.; Benkert, P.; Kuhle, J.; Wiendl, H.; Peters, A.; Karch, A.; Berger, K. Serum Neurofilament Light and Tau as Prognostic Markers for All-Cause Mortality in the Elderly General Population—an Analysis from the MEMO Study. BMC Med 2021, 19, 38. [Google Scholar] [CrossRef]
- Petzold, A. Neurofilament Phosphoforms: Surrogate Markers for Axonal Injury, Degeneration and Loss. J Neurol Sci 2005, 233, 183–198. [Google Scholar] [CrossRef]
- Ashton, N.J.; Janelidze, S.; Al Khleifat, A.; Leuzy, A.; van der Ende, E.L.; Karikari, T.K.; Benedet, A.L.; Pascoal, T.A.; Lleó, A.; Parnetti, L.; et al. A Multicentre Validation Study of the Diagnostic Value of Plasma Neurofilament Light. Nat Commun 2021, 12, 3400. [Google Scholar] [CrossRef]
- Mattsson, N.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol 2017, 74, 557. [Google Scholar] [CrossRef]
- Mattsson, N.; Cullen, N.C.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol 2019, 76, 791. [Google Scholar] [CrossRef]
- Gerards, M.; Schild, A.-K.; Meiberth, D.; Rostamzadeh, A.; Vehreschild, J.J.; Wingen-Heimann, S.; Johannis, W.; Martino Adami, P.; Onur, O.A.; Ramirez, A.; et al. Alzheimer’s Disease Plasma Biomarkers Distinguish Clinical Diagnostic Groups in Memory Clinic Patients. Dement Geriatr Cogn Disord 2022, 51, 182–192. [Google Scholar] [CrossRef]
- Sánchez-Valle, R.; Heslegrave, A.; Foiani, M.S.; Bosch, B.; Antonell, A.; Balasa, M.; Lladó, A.; Zetterberg, H.; Fox, N.C. Serum Neurofilament Light Levels Correlate with Severity Measures and Neurodegeneration Markers in Autosomal Dominant Alzheimer’s Disease. Alzheimers Res Ther 2018, 10, 113. [Google Scholar] [CrossRef]
- Preische, O.; Schultz, S.A.; Apel, A.; Kuhle, J.; Kaeser, S.A.; Barro, C.; Gräber, S.; Kuder-Buletta, E.; LaFougere, C.; Laske, C.; et al. Serum Neurofilament Dynamics Predicts Neurodegeneration and Clinical Progression in Presymptomatic Alzheimer’s Disease. Nat Med 2019, 25, 277–283. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Lee, W.-J.; Wang, S.-J.; Fuh, J.-L. Levels of Plasma Neurofilament Light Chain and Cognitive Function in Patients with Alzheimer or Parkinson Disease. Sci Rep 2018, 8, 17368. [Google Scholar] [CrossRef]
- He, L.; Morley, J.E.; Aggarwal, G.; Nguyen, A.D.; Vellas, B.; de Souto Barreto, P.; Vellas, B.; Guyonnet, S.; Carrié, I.; Brigitte, L.; et al. Plasma Neurofilament Light Chain Is Associated with Cognitive Decline in Non-Dementia Older Adults. Sci Rep 2021, 11, 13394. [Google Scholar] [CrossRef]
- Osborn, K.E.; Khan, O.A.; Kresge, H.A.; Bown, C.W.; Liu, D.; Moore, E.E.; Gifford, K.A.; Acosta, L.M.Y.; Bell, S.P.; Hohman, T.J.; et al. Cerebrospinal Fluid and Plasma Neurofilament Light Relate to Abnormal Cognition. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 2019, 11, 700–709. [Google Scholar] [CrossRef]
- Hall, J.R.; Johnson, L.A.; Peterson, M.; Julovich, D.; Como, T.; O’Bryant, S.E. Relationship of Neurofilament Light (NfL) and Cognitive Performance in a Sample of Mexican Americans with Normal Cognition, Mild Cognitive Impairment and Dementia. Curr Alzheimer Res 2021, 17, 1214–1220. [Google Scholar] [CrossRef]
- Mielke, M.M.; Syrjanen, J.A.; Blennow, K.; Zetterberg, H.; Vemuri, P.; Skoog, I.; Machulda, M.M.; Kremers, W.K.; Knopman, D.S.; Jack, C.; et al. Plasma and CSF Neurofilament Light. Neurology 2019, 93, e252–e260. [Google Scholar] [CrossRef]
- Bangen, K.J.; Thomas, K.R.; Weigand, A.J.; Edmonds, E.C.; Clark, A.L.; Solders, S.; Delano-Wood, L.; Galasko, D.R.; Bondi, M.W. Elevated Plasma Neurofilament Light Predicts a Faster Rate of Cognitive Decline over 5 Years in Participants with Objectively-defined Subtle Cognitive Decline and MCI. Alzheimer’s & Dementia 2021, 17, 1756–1762. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, L.; Nelson, N.W.; Mielke, M.M.; Yu, F. Plasma Neurofilament Light and Future Declines in Cognition and Function in Alzheimer’s Disease in the FIT-AD Trial. J Alzheimers Dis Rep 2021, 5, 601–611. [Google Scholar] [CrossRef]
- Darmanthé, N.; Tabatabaei-Jafari, H.; Cherbuin, N. Combination of Plasma Neurofilament Light Chain and Mini-Mental State Examination Score Predicts Progression from Mild Cognitive Impairment to Alzheimer’s Disease within 5 Years. Journal of Alzheimer’s Disease 2021, 82, 951–964. [Google Scholar] [CrossRef] [PubMed]
- van Arendonk, J.; Wolters, F.J.; Neitzel, J.; Vinke, E.J.; Vernooij, M.W.; Ghanbari, M.; Ikram, M.A. Plasma Neurofilament Light Chain in Relation to 10-Year Change in Cognition and Neuroimaging Markers: A Population-Based Study. Geroscience 2023. [Google Scholar] [CrossRef]
- Chatterjee, P.; Goozee, K.; Sohrabi, H.R.; Shen, K.; Shah, T.; Asih, P.R.; Dave, P.; ManYan, C.; Taddei, K.; Chung, R.; et al. Association of Plasma Neurofilament Light Chain with Neocortical Amyloid-β Load and Cognitive Performance in Cognitively Normal Elderly Participants. Journal of Alzheimer’s Disease 2018, 63, 479–487. [Google Scholar] [CrossRef]
- Khalil, M.; Pirpamer, L.; Hofer, E.; Voortman, M.M.; Barro, C.; Leppert, D.; Benkert, P.; Ropele, S.; Enzinger, C.; Fazekas, F.; et al. Serum Neurofilament Light Levels in Normal Aging and Their Association with Morphologic Brain Changes. Nat Commun 2020, 11, 812. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Chen, K.-L.; Ou, Y.-N.; Cao, X.-P.; Chen, S.-D.; Cui, M.; Dong, Q.; Tan, L.; Yu, J.-T. Neurofilament Light Chain Plasma Concentration Predicts Neurodegeneration and Clinical Progression in Nondemented Elderly Adults. Aging 2019, 11, 6904–6914. [Google Scholar] [CrossRef]
- Nyberg, L.; Lundquist, A.; Nordin Adolfsson, A.; Andersson, M.; Zetterberg, H.; Blennow, K.; Adolfsson, R. Elevated Plasma Neurofilament Light in Aging Reflects Brain White-matter Alterations but Does Not Predict Cognitive Decline or Alzheimer’s Disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 2020, 12. [Google Scholar] [CrossRef]
- Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Steinhäuser, C.; Volterra, A.; Carmignoto, G.; Agarwal, A.; et al. Reactive Astrocyte Nomenclature, Definitions, and Future Directions. Nat Neurosci 2021, 24, 312–325. [Google Scholar] [CrossRef]
- Pereira, J.B.; Janelidze, S.; Smith, R.; Mattsson-Carlgren, N.; Palmqvist, S.; Teunissen, C.E.; Zetterberg, H.; Stomrud, E.; Ashton, N.J.; Blennow, K.; et al. Plasma GFAP Is an Early Marker of Amyloid-β but Not Tau Pathology in Alzheimer’s Disease. Brain 2021, 144, 3505–3516. [Google Scholar] [CrossRef]
- Ferrari-Souza, J.P.; Ferreira, P.C.L.; Bellaver, B.; Tissot, C.; Wang, Y.-T.; Leffa, D.T.; Brum, W.S.; Benedet, A.L.; Ashton, N.J.; De Bastiani, M.A.; et al. Astrocyte Biomarker Signatures of Amyloid-β and Tau Pathologies in Alzheimer’s Disease. Mol Psychiatry 2022, 27, 4781–4789. [Google Scholar] [CrossRef]
- Oeckl, P.; Halbgebauer, S.; Anderl-Straub, S.; Steinacker, P.; Huss, A.M.; Neugebauer, H.; von Arnim, C.A.F.; Diehl-Schmid, J.; Grimmer, T.; Kornhuber, J.; et al. Glial Fibrillary Acidic Protein in Serum Is Increased in Alzheimer’s Disease and Correlates with Cognitive Impairment. Journal of Alzheimer’s Disease 2019, 67, 481–488. [Google Scholar] [CrossRef]
- Bellaver, B.; Ferrari-Souza, J.P.; Uglione da Ros, L.; Carter, S.F.; Rodriguez-Vieitez, E.; Nordberg, A.; Pellerin, L.; Rosa-Neto, P.; Leffa, D.T.; Zimmer, E.R. Astrocyte Biomarkers in Alzheimer Disease. Neurology 2021, 96, e2944–e2955. [Google Scholar] [CrossRef]
- Asken, B.M.; VandeVrede, L.; Rojas, J.C.; Fonseca, C.; Staffaroni, A.M.; Elahi, F.M.; Lindbergh, C.A.; Apple, A.C.; You, M.; Weiner-Light, S.; et al. Lower White Matter Volume and Worse Executive Functioning Reflected in Higher Levels of Plasma GFAP among Older Adults with and Without Cognitive Impairment. Journal of the International Neuropsychological Society 2022, 28, 588–599. [Google Scholar] [CrossRef]
- Chatterjee, P.; Vermunt, L.; Gordon, B.A.; Pedrini, S.; Boonkamp, L.; Armstrong, N.J.; Xiong, C.; Singh, A.K.; Li, Y.; Sohrabi, H.R.; et al. Plasma Glial Fibrillary Acidic Protein in Autosomal Dominant Alzheimer’s Disease: Associations with Aβ-PET, Neurodegeneration, and Cognition. Alzheimer’s & Dementia 2023, 19, 2790–2804. [Google Scholar] [CrossRef]
| Author | Population | Study | Neuropsychological test | Correlated |
| Xiao et al., 2021 | Mixed sample | cross-sectional | MMSE; single-domain composites | Yes (Aβ42, Aβ42/Aβ40) |
| Sun et al., 2022 | Mixed sample | cross-sectional | MMSE; Story recall; CDT | Yes (Aβ42/Aβ40) |
| Sapkota et al., 2022 | Mixed sample | longitudinal | Single-domain composites | Yes (Aβ42/Aβ40) |
| Tsai et al., 2019 | Mixed sample | cross-sectional longitudinal |
MMSE MMSE |
No (Aβ42/Aβ40) |
| Pereira et al., 2021 | Mixed sample | longitudinal | MMSE | No (Aβ42/Aβ40) |
| Chen et al., 2022 | Mixed sample | longitudinal | MMSE, AdasCog13 | No (Aβ42/Aβ40) |
| Chen et al., 2019 | AD AD and MCI MCI |
cross-sectional cross-sectional longitudinal |
Single and multi-domain composites Multi-domain composites Single-domain composites |
Yes (Aβ42) Yes (Aβ42) Yes (Aβ42/Aβ40) |
| Tsai et al., 2020 | Amnestic MCI CU |
longitudinal longitudinal |
MMSE MMSE |
Yes (Aβ42) No (Aβ42) |
| Chouliaras et al., 2022 | MCI with positive AD biomarkers | cross-sectional and longitudinal | ACE-R | Yes (Aβ42/Aβ40) |
| Pascual-Lucas et al., 2023 | CU | cross-sectional | The Face-Name Associative Memory Exam | Yes (Aβ42/Aβ40) |
| Cullen et al., 2021 | CU | longitudinal | PACC | Yes (Aβ42/Aβ40) |
| Giudici et al., 2020 | CU | longitudinal | Multi-domain composite | Yes (Aβ42/Aβ40) |
| Aschenbrenner al., 2022 | CU | longitudinal cross-sectional |
Multi-domain composite Multi-domain composite |
Yes (Aβ42/Aβ40) No(Aβ42/Aβ40) |
| Hong et al., 2023 | CU | longitudinal | Verbal Learning Test scores; TMT | Yes (Aβ42/Aβ40) |
| Simrén et al., 2021 | CU | longitudinal | MMSE | No (Aβ42/Aβ40) |
| Ashton et al., 2022 | CU | longitudinal | MMSE, PACC | No (Aβ42/Aβ40) |
| Saunders et al., 2023 | CU | longitudinal | WAIS-III subtests | No (Aβ42/Aβ40) |
| Wang et al., 2022 | CU | longitudinal | MMSE | Yes (Aβ42) No (Aβ42/Aβ40) |
| CU, Cognitively Unimpaired,; MCI, Mild Cognitive Impairment; AD, Alzheimer’s disease; Mini-Mental State Examination (MMSE); Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADASCog), Auditory Verbal Learning Test (AVLT); Clock Drawing Test (CDT); Word List Learning (WLL); Trail Making Test (TMT); Modified Rey-Osterrieth Complex Figure Test (MROCFT); Addenbrooke’s Cognitive Examination Revised version (ACE-R); Preclinical Alzheimer's Cognitive Composite (PACC); Wechsler Adult Intelligence Scale (WAIS) | ||||
| Author | Population | Study | Neuropsychological test | Correlated |
| Tsai et al., 2019 | Mixed sample MCI and AD |
cross-sectional longitudinal |
MMSE MMSE |
Yes (p-tau181; t-tau) Yes (t-tau); No (p-tau) |
| Karikari 2020 | Mixed sample | Cross-sectional longitudinal |
MMSE | Yes (p-tau181) |
| Xiao et al., 2021 | Mixed sample | cross-sectional | MMSE, single-domain composites | Yes (p-tau181; t-tau) |
| Wang et al., 2022 | Mixed sample MCI with positive AD biomarkers AD |
cross-sectional longitudinal |
MMSE; MoCA, ADNI single- domain composites ADNI-memory composite |
Yes (p-tau181) |
| Sun et al. 2022 | Mixed sample | cross-sectional | Story Recall, CDT | Yes (p-tau181; t-tau) |
| Weigand et al. 2023 | Mixed sample | cross-sectional | AVLT | Yes (p-tau181) |
| Pereira et al. 2021 | Mixed sample | longitudinal | MMSE | Yes (p-tau181, p-tau217) |
| Chen et al. 2022 | Mixed sample | longitudinal | Adas-Cog13 | Yes (p-tau181) |
| Smirnov et al. 2022 | Mixed sample | longitudinal | DRS | Yes (p-tau181; p-tau231) |
| Tsai et al. 2020 | Mixed sample | longitudinal | MMSE | No (p-tau181; t-tau) |
| Groot et al. 2023 | Mixed sample | longitudinal | MMSE | Yes (p-tau217) |
| Pase et al. 2019 | Mixed sample | Cross-sectional | HVOT, Logical memory, Paired Associate Learning, Visual reproductions, TMT | Yes (t-tau) |
| Marks et al. 2021 | Mixed sample | Cross-sectional longitudinal |
AVLT, Logical Memory (WMS-R) AVLT, Logical Memory, TMT, Digit Symbol (WAIS-R) |
Yes (t-tau) |
| Sapkota et al. 2022 | Mixed sample | longitudinal | Single-domain composites | Yes (t-tau) |
| Rajan et al. 2020 | Mixed sample | longitudinal | Multi-domain composite | Yes (serum t-tau) |
| Smirén et al. 2021 | AD | Cross-sectional longitudinal |
MMSE MMSE |
Yes (p-tau181) |
| Saloner et al 2023 | MCI CU |
Longitudinal longitudinal |
single-domain composites CVLT |
Yes (p-tau217) |
| Chouliaras et al 2022 | MCI and AD | longitudinal | ACE-R | Yes (p-tau181) |
| Moscoso et al 2021 | CU MCI and AD |
Longitudinal Longitudinal |
PACC ADASCog |
Yes (p-tau181) Yes (p-tau181) |
| Thomas et al 2021 | CU | Longitudinal | PACC, CDR-SOB, FAQ | Yes (p-tau181) |
| Saunders et al 2023 | CU | Longitudinal | WAIS-III subtests | Yes (p-tau181) |
| Ashton et al 2022 | CU | Longitudinal | MMSE, PACC, RAVL | Yes (p-tau217) |
| Cullen et al 2021 | CU | Longitudinal | PACC | Yes (p-tau217) |
| Mattsson-Carlgren et al 2023 | CU | Longitudinal | MMSE, PACC | Yes (p-tau217) |
| Snellman et al. 2023 | CU | Cross-sectional | MMSE | No (p-tau181) |
| Baldacci et al 2020 | CU | Cross-sectional Longitudinal |
MMSE, FCSRT MMSE |
No (t-tau) Yes (t-tau) |
| Rübsamen et al 2021 | CU | Cross-sectional | Single-domain composite | No (t-tau) |
| CU, Cognitively Unimpaired,; MCI, Mild Cognitive Impairment; AD, Alzheimer’s disease; Mini-Mental State Examination (MMSE); MoCA, Montreal Cognitive Assessment; ADNI, Alzheimer’s Disease Neuroimaging Initiative Auditory Verbal Learning Test (AVLT); Clock Drawing Test (CDT);) Trail Making Test (TMT); Addenbrooke’s Cognitive Examination Revised version (ACE-R); Preclinical Alzheimer's Cognitive Composite (PACC); Clinical Dementia Rating Scale (CDR)- Sum Of Boxes (CDR-SOB), Functional Assesment Questionnaire (FAQ); Hooper Visual Organization Test (HVOT); Dementia Rating Scale (DRS); California Verbal Learnig Test (CVLT); Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADASCog), Wechsler Adult Intelligence Scale (WAIS), Wechsler Memory Scale (WMS), Free and Cued Selective Reminding Test (FCSRT) | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
