Preprint
Article

Certain Results on Subclasses of Analytic and Bi-Univalent Functions Associated with Coefficients Estimates and Quasi-Subordination

Altmetrics

Downloads

102

Views

36

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

06 November 2023

Posted:

07 November 2023

You are already at the latest version

Alerts
Abstract
The purpose of the present paper is to introduce and investigate new subclasses of analytic function class of bi univalent function defined in open unit disk connected with a linear q-convolution operator, which are associated with the quasi-subordination. We find coefficients estimate |h_2 |,|h_3 | for functions in these subclasses. Several known and new consequences of these results are also pointed out.
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis

MSC:  30C45; 30C50

1. Introduction

The theor y of q-calculus pla y s an important rôle in man y areas of mathematical ph y sical and engineering scienc e s. Jackson (see [11] and [10]) was th e first to have s o me applicati o ns of the q-calculus and introduc e d the q-analogue of the classical derivati v e and integral o perators (see also [30]).
Let A be the class of analytic functions T in an open unit disk U = { ε C : | ε | < 1 } of the form:
T ε = ε + j = 2   a j ε j ,         (   ε   U ) . ( 1.1 )
and satisfying the normalization conditions (see [ 1 ] ): T 0 = T ' 0 1 = 0
Assume that U denotes the class of all functions in A defined by (1.1), which are univalent in U .
Th e well-known Koebe-One Quarter Theorem [ 5 ] states that the imag e of the op e n unit disk U under each univalent functi o n in a disk with the radius     1 4 . Thus, every univalent functi o n T has an inv e rse T   1 , such that
T 1 ( T ε ) = ε           , ( z U ) ,
and
T ( T 1 ( ς ) ) = ς           ( ς < r 0 T ; r 0 ( T ) 1 4 ) .
In fact, the inverse function   ξ = T 1 is given by
ξ ς = ς a 2 ς 2 + ( 2 a 2 2 a 3 ) ς 3 ( 5 a 2 2 5 a 2 a 3 + a 4 ) ς 4 + . ( 1.3 )
= ς + n = 2 A n ς n
The function T A is said to be bi-univalent in U if   b o t h T and   i t s i n v e r s e T   1   are univalent functions in U given by (1.1).
The class of bi-univalent functions was introduced by Lewin [ 14 ] and proved that a 2 1.51 for the function of the form (1.1). Subsequently, Brannan and Clunie [ 3 ] conjectured that   a 2 2 . Later Netanyahu i n   [ 17 ] proved that max T a 2 = 4 3 . Also sev e ral authors studi e d class e s of bi-unival e nt analytic functi o ns a n d f o und estimat e s of th e coefficie n ts   a 2   and   a 3   for functi o ns in th e se classes [ For two analytic functi o ns T a n d ξ ,     T is quasi-sub o rdinate to ξ ,   w ritten as follo w s:
T ε q ξ ε ε   U ( 1.3 )
if the r e e x ist analytic functions h ε a n d k ε , w ith h z 1 , k 0 = 0 a n d k ε < 1 , ε U , su c h that
T ε = h ( ε ) ξ k ε ,   ε U .
Note that if ( h ε = 1 ) , then T ε = ξ k ε , hance T ε ξ ε   z U . If ξ b e univalent in U , t h e n   T ξ if and only if T 0 = ξ 0 and T U ξ U .
For the functions T , ρ   U defined by
T ε = j = 1   a j ε j   and   ρ ε = j = 1   h j ε j   ε   U ,
the convoluti o n of T and ρ denot e d by T * ρ is
T * ρ ε = j = 1   a j h j ε j = ρ * T ε                         ε   U .
To start with, we recall the follo w ing differential and integral operators. For 0 < q < 1 , El-Deeb et al.   [ 8,24 ] defined the q-c o nvolution operator (see also [ 10 ] ) for T * ρ by
Q q T * ρ ε = Q q ε + j = 2   a j h j ε j
T * ρ ε T * ρ q ε ε 1 q = 1 + j = 2 j q   a j h j ε j 1 , ε   U ,
where
j q = 1 q j 1 q = 1 + j = 1 j 1 q j , 0 q = 0 . 1.4
We used the linear operator Y ρ ζ , q : A A acco r ding to El-Deeb et al. [ 8 ]   ( s e e a l s o [ 25 ] ) for and ζ > 1 , 0 < q < 1 . If
Y ρ ζ , q T ε * I q ζ + 1 ε = ε Q q T * ρ ε , ε   U ,
where   I q ζ + 1 is given by
I q ζ + 1 ε = ε + j = 2 ζ + 1 q , ε 1 ε 1 q !   ε j , ε   U ,
then
Y ρ ζ , q T ε = ε + j = 2 j q ! ζ q , ε 1 a j h j   ε j   ζ > 1 , 0 < q < 1 , ε   U .                                     1.5
Using the operator Y ρ ζ , q , we define a new operator as follows:
Q ρ , σ , ϑ ζ , q , 0 T ε = Y ρ ζ , q T ε
Q ρ , σ , ϑ ζ , q , 1 T ε = σ ϑ ε 3 Y ρ ζ , q T ε ' ' ' + 1 + 2 σ ϑ ε 2 Y ρ ζ , q T ε ' ' + ε Y ρ ζ , q T ε ' ( 1.6 )
Q ρ , σ , ϑ ζ , q , n T ε =
σ ϑ ε 3 Y ρ ζ , q , n 1 T ε ' ' ' + 1 + 2 σ ϑ ε 2 Y ρ ζ , q , n 1 T ε ' ' + ε Y ρ ζ , q , n 1 T ε '
= ε + j = 2 j 2 n σ ϑ j 1 + 1 n j q ! ζ q , ε 1 a j h j   ε j
Q ρ , σ , ϑ ζ , q , n T ε = ε + j = 2 ψ j h j   ε j   ζ > 1 , 0 < q < 1 , ϑ 0   , σ > 0   , σ ϑ   , n N O 0 a n d   ε U , ( 1.7 )
where
ψ j = j 2 n σ ϑ j 1 + 1 n j q ! ζ q , ε 1 a j   ,  
and by 10   ,let 0 < q < 1 and j q is defined by j q = 1 q j 1 q = 1 + j = 1 j 1   q j   , 0 q = 0 .
The q - number shift factorial is giv e n b y  
j q ! = j q   j 1 q . . . 2 q   1 q ,     i f     j = 1 , 2,3 , , 1 ,                                                               i f   j = 0 ,
From the d e finition r e lation ( 1.5 ) , w e   get
i ζ + 1 q     Q ρ , σ , ϑ ζ , q , n T ε = ζ q     Q ρ , σ , ϑ ζ + 1 , q , n T ε + q ζ ε Q q Q ρ , σ , ϑ ζ + 1 , q , n T ε , ε U ; ( 1.8 )
i i R ρ , σ , ϑ ζ , n T ε = lim q 1 Q ρ , σ , ϑ ζ , q , n T ε = ε + j = 2 j 2 n σ ϑ j 1 + 1 n j q ! ζ q , ϵ 1 a j h j ε j ( 1.9 )
The q generalized Pochhammersymbol is defined by ζ q , ϵ 1 = q ( ζ + ϵ 1 ) q ( ζ ) , ϵ 1 N ,   ζ N .
For, q 1 , then ζ q , ϵ 1 reduces to ( ζ ) ϵ 1 = ( ζ + ϵ 1 ) ( ζ ) .
Remark(1.1): 
W e find the foll o wing special cases for the o perator   Q ρ , σ , ϑ ζ , q , n   by c o nsidering sev e ral particular cases f o r the coefficients a j and n :
(i)
P u t t i n g a j = 1 , ϑ = 0 a n d n = 0 into this operator, we obtain the operator Q T R c a l B q α defined by Srivastava et al. [ 23 ] ;
(ii)
Putting a j = 1 j   Γ ( ρ + 1 ) 4 j 1 j 1 ! Γ ( r + ρ )   ( ρ > 0 ) , ϑ = 0 and n = 0 in this operator, we obtain the operator N p , q σ defined by El-Deeb and Bulboac˘a [ 9 ] and El-Deeb [ 8 ] ;
(iii)
Putting a j = τ + 1 τ + j r ( r > 0 ,   τ   0 ) , ϑ = 0 and n = 0 in this operator, we obtain the operator M τ , q σ , r defined by El-Deeb and Bulboac˘a [ 24 ] and Srivastava and El-Deeb [ 25 ] ;
(iv)
P u tting   a j = ς j 1 j 1 ! ϱ ς ( ς > 0) and n = 0 in this operator, we obtain the q-analogu e of Poisson   o perator Ι q ϑ , ς defin e d by El-Deeb et al. [ 8 ] ;
(v)
Putting a j = 1 , ϑ = 0 in this operator, w e obtain the operat o r Q T R c a l B ϑ , σ δ , q , n defined as follows:
B ϑ , σ δ , q , n Ϝ = ε + j = 2 j 2 n σ ϑ j 1 + 1 n j q ! ζ q , ε 1 h j   ε j ; ( 1.10 )
(vi)
Putting a j = 1 j   Γ ( ρ + 1 ) 4 j 1 j 1 ! Γ ( r + ρ )   ( ρ > 0 ) in this operat o r, we obtain the op e rator N ς , p , q σ , n defined as follows:
N ς , p , q σ , n Ϝ = ε + j = 2 j 2 n σ ϑ j 1 + 1 n j q ! ζ + 1 q , ε 1 1 j   Γ ( ρ + 1 ) 4 j 1 j 1 ! Γ ( r + ρ ) h j   ε j                             = ε + j = 2 φ j h j   ε j , ( 1.11 )
where
φ j = j 2 n σ ϑ j 1 + 1 n j q ! ζ q , ε 1 1 j   Γ ( ρ + 1 ) 4 j 1 j 1 ! Γ ( r + ρ ) , ( 1.12 )
(vii)
Putting   a j = τ + 1 τ + j r ( r > 0 ,   τ   0 ) in this operator, we o btain the operator M τ , θ , q σ , n , r   defin e d as follows:
  M τ , θ , q σ , n , r Ϝ = ε + j = 2 j 2 n σ ϑ j 1 + 1 n τ + 1 τ + j r j q ! ζ + 1 q , ε 1 h j   ε j .                            
Ma and Minda have giv e n a unifi e d treatment of various subclass c o nsisting of starlike and convex functi o ns for either on e of the quantities   ε T ' ε T ε or 1 + ε T ε T ε is sub o rdinate to a m o re general super o rdinate functi o n. The   S * ϕ   introduc e d by Ma and Minda   15   consists of function T A s a t i s f y i n g ε T ' ε T ε ϕ z , z U and corresp o nding class k ϕ of conv e x functions T A s a t i s f y i n g 1 + ε T ε T ε ϕ z , z U , Ma and Minda   15 , where ϕ is ana l y tic and univalent functi o n with positive real part in the unit disc U, satisfying   ϕ ( 0 ) = 1 , ϕ ' ( 0 ) > 0 and ϕ U is a starlike region with the respect to 1 and s y mmetric with the re s pect to the real axis. The functi o ns in the classes   S * ϕ and K ( ϕ   ) ,   are called starlike of Ma-Minda type or convex of Ma-Minda type respectivel y . By   S U * ϕ and K U ϕ   , we den o te to bi-starlike of Ma-Minda type and bi-convex of Ma-Minda type respectively. 15 .   In this investigation,   w e assume that
ϕ ε = 1 + B 1 ε + B 2 ε 2 + B 3 ε 3 + ,     B 1 > 0 . ( 1.13 )
and
h ε = h 0 + h ε + h 2 ε 2 + h 3 ε 3 + . ( 1.14 )
The aim of this pap e r is to introduce n e w subclasses of the class   U and d e termine estimates of bounds on the c o efficient h 2   a n d h 3   and for the functi o ns in above subclass e s.
In [3] (see also [35,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38]), c e rtain subclasses of the bi-unival e nt analytic functi o ns class B w ere introduced and non-sharp estimat e s on the first two c o efficients h 2   a n d h 3 were found. The object of the present pap e r is to introduce two ne w subclasses as in Definiti o ns 2.1 and 3.1 of the functi o n class B using the lin e ar q-convolution operat o r and determine estimat e s of the coefficients   h 2   a n d h 3 for the functi o ns in these new subclasses of the functi o n class.
Lemma (1.1)[8]: 
Let p ( ε ) P ,then   | p i | 2 for each   i where P is the family of all fun c tions p , anal y tic in 𝔘, for w hich R e ( p ( ε ) ) > 0 , ( ε U ) , w here
p z = 1 + p 1 ε + p 2 ε 2 + p 3 ε 3 + .

2. Coefficients Estimates for the Class f q , μ ζ , n , ρ , σ , ϑ , γ , δ , φ .

Definition (2.1)
For a function T U defined by ( 1.1 ) is said to be in the class f q ,   μ ( ζ , n , ρ , σ , ϑ , γ , δ , φ ) if the follo w ing quasi-subordinati o n conditi o ns are satisfi e d:
ε Q ρ , σ , ϑ ζ , q , n T ε ' + γ ε Q ρ , σ , ϑ ζ , q , n T ε ' ' μ γ ε ( Q ρ , σ , ϑ ζ , q , n T ε ' + δ Q ρ , σ , ϑ ζ , q , n T ε ' ' ) + 1 γ ( 1 δ Q ρ , σ , ϑ ζ , q , n T ε + δ ε Q ρ , σ , ϑ ζ , q , n T ε ' 1 q φ ε 1 , ( 2.1 )
and
ς Q ρ , σ , ϑ ζ , q , n ξ ς ' + γ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' ' μ γ ς ( Q ρ , σ , ϑ ζ , q , n ξ ς ' + δ Q ρ , σ , ϑ ζ , q , n ξ ς ' ' ) + 1 γ ( 1 δ   Q ρ , σ , ϑ ζ , q , n ξ ς + δ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' 1 q φ ς 1   , 2.2
where   γ , δ , μ 0 , 1   and Q ρ , σ , ϑ ζ , q , n T ε is defined in (1.7) and ( ε , ς U ) .
For special values to parameters   μ , δ , γ , ζ , n , ρ , σ , ϑ a n d   φ ε   ,   leads to get Known and new classes.
Remark (3.1): 
For δ = 0 , a function T U define by ( 1.7 ) is said to be in the class f q ,   μ ( ζ , n , ρ , σ , ϑ , γ , δ , φ ) if the follo w ing quasi-subordinati o n conditions are satisfi e d:
ε Q ρ , σ , ϑ ζ , q , n T ε ' + γ ε Q ρ , σ , ϑ ζ , q , n T ε ' ' μ γ Q ρ , σ , ϑ ζ , q , n T ε ' + + 1 γ Q ρ , σ , ϑ ζ , q , n T ε 1 q φ ε 1   ,        
and
ς Q ρ , σ , ϑ ζ , q , n ξ ς ' + γ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' ' μ γ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' + 1 γ Q ρ , σ , ϑ ζ , q , n ξ ς 1 q φ ς 1 ,  
where ξ is the inverse function of T and ( ε , ς U ) .
Remark (3.3): 
For δ = 1 , a functi o n T U define by ( 1.7 ) is said to be in the class f q ,   μ ( ζ , n , ρ , σ , ϑ , γ , δ , φ ) if the follo w ing quasi-subordination c o nditions are s atisfied:
ε Q ρ , σ , ϑ ζ , q , n T ε ' + γ ε Q ρ , σ , ϑ ζ , q , n T ε ' ' μ γ ε Q ρ , σ , ϑ ζ , q , n T ε ' ' + 1 γ ε Q ρ , σ , ϑ ζ , q , n T ε ' 1 q φ ε 1 ,        
and
ς Q ρ , σ , ϑ ζ , q , n ξ ς ' + γ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' ' μ γ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' ' + 1 γ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' 1 q φ ς 1 ,          
where ξ is the inverse function of T and ( ε , ς U ) .
Theorem (2.1)
If the function T belongs to the class f q ,   μ ζ , n , ρ , σ , ϑ , γ , δ , φ ,   then, we have
| h 2 | A 0   B 1   B 1 1 + 2 γ 3 μ 2 δ 1 A 0 B 1 2 ψ 3 1 + γ 2 2 μ δ 1 2 B 2 B 1 2 μ μ 1 2 μ δ 1 1 + δ ψ 2 2 A 0 B 1 2 ( 3.3 )
and
| h 3 | B 1 A 0 + A 1 1 + 2 γ 3 μ 2 δ 1 ψ 3 + A 0 2 B 1 2     4 1 + γ 2 2 μ δ 1 2 ψ 2 2       ,       B 1 > 1 ,                                                     ( 2.4 )
Proof: 
Let T f q ,   μ ζ , n , ρ , σ , ϑ , γ , δ , φ   , there e x ist two anal y tic functions   u , v   and   u , v   :   U U with   u 0 = v 0 = 0 , u ε < 1 a n d v ς 1 , for all   ε ,   ς U satisf y ing the follo w ing c o nditions.
ε Q ρ , σ , ϑ ζ , q , n T ε ' + γ ε Q ρ , σ , ϑ ζ , q , n T ε ' ' μ γ ε ( Q ρ , σ , ϑ ζ , q , n T ε ' + δ Q ρ , σ , ϑ ζ , q , n T ε ' ' ) + 1 γ ( 1 δ Q ρ , σ , ϑ ζ , q , n T ε + δ ε Q ρ , σ , ϑ ζ , q , n T ε ' 1 q h ε φ u ( ε 1 ) ,   ε U 2.5
and
ς Q ρ , σ , ϑ ζ , q , n ξ ς ' + γ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' ' μ γ ς ( Q ρ , σ , ϑ ζ , q , n ξ ς ' + δ Q ρ , σ , ϑ ζ , q , n ξ ς ' ' ) + 1 γ ( 1 δ   Q ρ , σ , ϑ ζ , q , n ξ ς + δ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' 1 q h ς φ v ( ς 1 ) ,   ς U   , ( 2.6 )
where ξ is the inverse function of T and ( ε , ς U ) .
Determine the definition of the functions   p ( ε ) and   q ( ς ) by
          p ε = 1 + u ( ε ) 1 u ( ε ) = 1 + c 1 ε 2 + c 2 ε 2 +                                                                                                           ( 2.7 )
and
q ς = 1 + v ς 1 v ς = 1 + d 1 ς 2 + d 2 ς 2 + .                                                                                             2.8
Equivalently,
  u ε : = p ε 1 p ε + 1 = 1 2 c 1 ε + c 2 c 1 2 2 ε 2 + ,                                                                           ( 2.9 )
and
v ς : = q ς 1 q ς + 1 = 1 2     b 1 ς + b 2 b 1 2 2 ς 2 + .                                                               ( 2.10 )
Applying (3.9) ,(3.10) in (3.5) and (3.6),r e spectively, we h a ve
ε Q ρ , σ , ϑ ζ , q , n T ε ' + γ ε Q ρ , σ , ϑ ζ , q , n T ε ' ' μ γ ε ( Q ρ , σ , ϑ ζ , q , n T ε ' + δ Q ρ , σ , ϑ ζ , q , n T ε ' ' ) + 1 γ ( 1 δ Q ρ , σ , ϑ ζ , q , n T ε + δ ε Q ρ , σ , ϑ ζ , q , n T ε ' 1 = h ε   φ   p ε 1 p ε + 1 1 , 2.11
and
ς Q ρ , σ , ϑ ζ , q , n ξ ς ' + γ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' ' μ γ ς ( Q ρ , σ , ϑ ζ , q , n ξ ς ' + δ Q ρ , σ , ϑ ζ , q , n ξ ς ' ' ) + 1 γ ( 1 δ Q ρ , σ , ϑ ζ , q , n ξ ς + δ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' 1 = h ς φ q ς 1 q ς + 1 1 . ( 2.12 )
Utilize ( 2.8 ) and ( 2.9 ) in the right hand s RH of the relati o ns (3.1( and (3.13), w e obtain
h ε φ p ε 1 p ε + 1 1 = 1 2 A 0 B 1 c 1 ε + 1 2 A 1 B 1 c 1 + 1 2 A 0 B 1 c 2 c 1 2 2 + A 0 B 2 4 c 1 2 ε 2 + .   ( 2.13 )
and
h ς φ q ς 1 q ς + 1 1 = 1 2 A 0 B 1 d 1 ς + 1 2 A 1 B 1 d 1 + 1 2 A 0 B 1 d 2 d 1 2 2 + A 0 B 2 4 d 1 2 ς 2 + . ( 2.14 )
B y   equalizing ( 2.11 ) , ( 2.12 ) ,(3.13) and (3.14),r e spectively ,we g e t
1 + γ 2 μ δ 1 h 2 ψ 2 = 1 2 A 0 B 1 c 1 ,                                                                                       2.15
1 + 2 γ 3 μ 2 δ 1 h 3 ψ 3 + 1 + γ 2 2 μ μ 1 1 + δ 2 μ δ 1 h 2 2 ψ 2 2
= 1 2 A 1 B 1 c 1 + 1 2 A 0 B 1 c 2 c 1 2 2 + A 0 B 2 4 c 1 2 .               ( 2.16 )
and
1 + γ 2 μ δ 1 h 2 ψ 2 = 1 2 A 0 B 1 b 1                                                                                                               ( 2.17 )
1 + γ 2 2 μ μ 1 2 μ δ 1 1 + δ + 2 1 + 2 γ 3 μ 2 δ 1 h 2 2 ψ 2 2 1 + 2 γ 3 μ 2 δ 1 h 3 ψ 3
= 1 2 A 1 B 1 d 1 + 1 2 A 0 B 1 + d 2 d 1 2 2 + A 0 B 2 4 d 1 2   .                 ( 2.18 )
From   ( 2.15 ) and ( 2.17 ) , we have
h 2 = A 0 B 1 c 1 2 1 + γ 2 μ δ 1 ψ 2 = A 0 B 1 d 1 2 1 + γ 2 μ δ 1 ψ 2                                                     ( 2.19 )
It follows that
  c 1 = d 1   ,                                                                                                                                           ( 2.20 )
and
8 1 + γ 2 2 μ δ 1 2   h 2 2 ψ 2 2 = A 0 2 B 1 2 ( d 1 2 + c 1 2 ) .                                         ( 2.21 )
Now , by summing (3.19) and (3.31), in light o f 2.19   a n d ( 2.20 ) ,we obtain
8 1 + γ 2 2 μ μ 1 2 μ δ 1 1 + δ A 0 B 1 2 ψ 2 2 + 1 + 2 γ 3 μ 2 δ 1 ψ 3 A 0 B 1 2   h 2 2  
= 2 A 0 2 B 1 3 c 2 + d 2 + 8 1 + γ 2 2 μ δ 1 2   B 2 B 1 h 2 2 ψ 2 2 ,           2.22
which implies
  h 2 2 = 2 A 0 2 B 1 3 c 2 + d 2 8 1 + 2 γ 3 μ 2 δ 1 A 0 B 1 2 ψ 3 1 + γ 2 2 μ δ 1 2 B 2 B 1 2 μ μ 1 2 μ δ 1 1 + δ A 0 B 1 2 .   2.23
Applying lemma 1.1   c i 2 , d i 2 , in (3.33) ,we get the desired result (3.3).
Next, f o r the bound on a 3 ,   by subt r acting (3.18) from ( 3.16), we obtain
4 1 + 2 γ 3 μ 2 δ 1 ψ 3 h 3 1 + 2 γ 3 μ 2 δ 1 ψ 3   h 2 2 = 2 A 1 B 1 c 1 + A 0 B 1 c 2 d 2 ( 2.24 )
By substituting (3.18) from (3.16), further computation using (3.30) and (3.31), we obtain
h 3 = 2 A 1 B 1 c 1 4 1 + 2 γ 3 μ 2 δ 1 ψ 3 + A 0 B 1 c 2 d 2 4 1 + 2 γ 3 μ 2 δ 1 ψ 3 + A 0 2 B 1 2 ( c 1 2 + d 1 2 ) 8 1 + γ 2 2 μ δ 1 2 ψ 2 2       ( 3.35 )
Appl y ing Lemma 1.1   c i 2 , d i 2 , in (3.34), we get (3.4). This completes the proof of the Theor e m 2.1 .
B y putting   δ = 0 in Theor e m (3.1), we o btain the foll o wing Corollary:
Corollary (3.1): 
If the functi o n T ε giv e n by ( 1.1 ) belong to th e class f q ,   μ ζ , n , ρ , σ , ϑ , γ , 0 , φ ,   then
| h 2 | A 0   B 1   B 1 1 + 2 γ 3 μ 1 A 0 B 1 2 ψ 3 1 + γ 2 2 μ 1 2 B 2 B 1 2 μ μ 1 2 μ 1 ψ 2 2 A 0 B 1 2
and
| h 3 | B 1 A 0 + A 1 1 + 2 γ 3 μ 1 ψ 3 + A 0 2 B 1 2     4 1 + γ 2 2 μ 1 2 ψ 2 2       .      
By putting   δ = 1 in Theorem (3.1), we obtain the following Corollary:
Corollary (3.3): 
Let T ε   giv e n by ( 1.1 ) belongs to th e class f q ,   μ ζ , n , ρ , σ , ϑ , γ , 1 , φ . Then
| h 2 | A 0   B 1   B 1 3 1 + 2 γ μ 1 A 0 B 1 2 ψ 3 1 + γ 2 2 μ 2 2 B 2 B 1 2 μ μ 1 2 μ 2 ψ 2 2 A 0 B 1 2
and
| h 3 | B 1 A 0 + A 1 3 1 + 2 γ μ 1 ψ 3 + A 0 2 B 1 2     8 1 + γ 2 μ 1 2 ψ 2 2       .  
By putting     γ = 1 in Theor e m (3.1), we have the follo w ing Corollar y :
Corollary (3.3) 
Let T ε giv e n by ( 1.1 ) belongs to th e   class f q ,   μ ζ , n , ρ , σ , ϑ , 1 , δ , φ . Then
| h 2 | A 0   B 1   B 1 3 3 μ 2 δ 1 A 0 B 1 2 ψ 3 4 2 μ δ 1 2 B 2 B 1 2 μ μ 1 2 μ δ 1 1 + δ ψ 2 2 A 0 B 1 2
and
| h 3 | B 1 A 0 + A 1 3 3 μ 2 δ 1 ψ 3 + A 0 2 B 1 2     16 2 μ δ 1 2 ψ 2 2       ,       B 1 > 1 .
By putting   γ = 0 in Theorem (3.1), we have the following Corollary:
Corollary (3.4): 
Let T ε given b y   ( 1.1 ) belongs to th e class f q ,   μ ζ , n , ρ , σ , ϑ , 0 , δ , φ .
Then   | h 2 | A 0   B 1   B 1 3 μ 2 δ 1 A 0 B 1 2 ψ 3 2 μ δ 1 2 B 2 B 1 2 μ μ 1 2 μ δ 1 1 + δ ψ 2 2 A 0 B 1 2
and
| h 3 | B 1 A 0 + A 1 3 μ 2 δ 1 ψ 3 + A 0 2 B 1 2     4 2 μ δ 1 2 ψ 2 2       ,       B 1 > 1 .

3. Coefficients Estimates for the Subclass q , δ λ , ζ , n , ρ , σ , ϑ , φ .

Definition (3.1)
A function T U defined b y   ( 1.1 ) is said to be in th e class q , δ λ , ζ , n , ρ , σ , ϑ , φ if the follo w ing quasi-subordination c o nditions are satisfi e d:
1 + 1 γ 1 δ ε Q ρ , σ , ϑ ζ , q , n T ε ' 1 λ ε + λ Q ρ , σ , ϑ ζ , q , n T ε + δ ε Q ρ , σ , ϑ ζ , q , n T ε + Q ρ , σ , ϑ ζ , q , n T ε ' λ ε Q ρ , σ , ϑ ζ , q , n T ε + Q ρ , σ , ϑ ζ , q , n T ε ' 1 q φ ε 1                       ( 3.1 )
and
1 + 1 γ 1 δ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' 1 λ ς + λ Q ρ , σ , ϑ ζ , q , n ξ ς + δ ς Q ρ , σ , ϑ ζ , q , n ξ ς + Q ρ , σ , ϑ ζ , q , n ξ ς ' λ ς Q ρ , σ , ϑ ζ , q , n ξ ς + Q ρ , σ , ϑ ζ , q , n ξ ς ' 1 q φ ς 1 ,                   ( 3.2 )
where ( 0 λ < 1 , 0 δ 1 , γ C 0   , ε ,   U ) .
F o r special values to param e ters   λ   a n d   δ , we get n e w and well-kno w n classes.
Remark (3.1): 
F o r λ = 0 ,   a function T U define by ( 1.1 ) is said to be in the class q , δ λ , ζ , n , ρ , σ , ϑ , φ   if the follo w ing quasi-subordination conditions are satisfied:
1 + 1 γ 1 δ ε Q ρ , σ , ϑ ζ , q , n T ε ' ε + δ ε Q ρ , σ , ϑ ζ , q , n T ε + Q ρ , σ , ϑ ζ , q , n T ε ' Q ρ , σ , ϑ ζ , q , n T ε ' 1 q φ z 1          
and
1 + 1 γ 1 δ ς Q ρ , σ , ϑ ζ , q , n ξ ς ' ς + δ ς Q ρ , σ , ϑ ζ , q , n ξ ς + Q ρ , σ , ϑ ζ , q , n ξ ς ' Q ρ , σ , ϑ ζ , q , n ξ ς ' 1 q φ w 1          
Theorem (3.1.)
If the functi o n T b e l o n g s t o t h e c l a s s q , δ ( λ , ζ , n , ρ , σ , ϑ , φ ) , then we have
| h 2 | γ A 0   B 1   B 1 2 1 λ ( 1 + 2 δ ) A 0 B 1 2 ψ 3 1 λ 2 1 + 3 δ A 0 B 1 2 1 + δ 2 B 2 B 1 ψ 2 2 ( 3.3 )
and
| h 3 | γ B 1 A 0 + A 1 1 λ 1 + 2 δ ψ 3 + A 0 2 B 1 2 γ 2 1 + δ 2 1 λ 2 ψ 2 2           , B 1 > 1 , ( 3.4 )
where 0 δ 1 , 0 λ 1 , γ U 0 .
Proof: 
Proceeding as in th e proof of Theorem ( 2.1 ) , we can g e t the relations as follo w s:
1 γ 1 + δ 1 λ h 2 ψ 2 = 1 2 A 0 B 1 c 1 ,                                                                                                                                                                                 ( 3.5 )
1 γ 2 1 λ 1 + 2 δ h 3 ψ 3 1 λ 1 + λ 1 + 3 δ h 2 2 ψ 2 2  
= 1 2 A 1 B 1 c 1 + 1 2 A 0 B 1 c 2 c 1 2 2 + A 0 B 2 4 c 1 2           ( 3.6 )
and
1 γ 1 + δ 1 λ h 2 ψ 2 = 1 2 A 0 B 1 b 1   ,                                                                                     ( 3.7 )
1 γ 4 1 λ 1 + 2 δ ψ 3 1 λ 1 + λ 1 + 3 δ h 2 2 ψ 2 2 2 1 λ 1 + 2 δ ψ 3 h 3
= 1 2 A 1 B 1 b 1 + 1 2 A 0 B 1 b 2 b 1 2 2 + A 0 B 2 4 b 1 2   } . ( 3.8 )
From   ( 3.5 ) and ( 3.7 ) , we obtain
c 1 = d 1 ( 3.9 )
and
h 2 = γ A 0 B 1 c 1 2 1 + δ 1 λ ψ 2 = γ A 0 B 1 b 1 2 1 + δ 1 λ ψ 2                                                                                                               ( 3.10 )
and
8 1 + δ 2 1 λ 2   h 2 2 ψ 2 2 = A 0 2 B 1 2 γ 2 ( d 1 2 + c 1 2 ) . ( 3.11 )
Now, by summing (3.6) and (3.8 )and using 3.11 we obtain
8 γ { ( 2 1 λ ( 1 + 2 δ ) ψ 3 1 λ 1 + λ 1 + 3 δ ψ 2 2 } h 2 2
= 2 A 0 B 1 c 2 + d 2 + A 0 ( B 2 B 1 ) ( c 1 2 + d 1 2 ) , ( 3.12 )
which implies
  h 2 2 = 2 A 0 2 B 1 3 c 2 + d 2 8 2 1 λ 1 + 2 δ A 0 B 1 2 ψ 3 1 λ 2 1 + 3 δ A 0 B 1 2 1 + δ 2 B 2 B 1 ψ 2 2 .           ( 3.13 )
Applying lemma 1.1   in (3.13) ,we get the desir e d result (3.3).
N e xt ,for the b o und on h 3 , by subtracting (3.6) from ( 3.8), we obtain
8 γ 1 λ ( 1 + 2 δ ) ψ 3 h 3 1 λ ( 1 + 2 δ ) ψ 3   h 2 2 = 2 A 1 B 1 c 1 + A 0 B 1 c 2 d 2
By substituting (3.18) from (3.16), further computation using (3.9) and (3.10), we obtain
h 3 = 2 γ A 1 B 1 c 1 4 1 λ ( 1 + 2 δ ) ψ 3 + γ A 0 B 1 c 2 d 2 4 1 λ 1 + 2 δ + A 0 2 B 1 2 γ 2 ( c 1 2 + d 1 2 ) 8 1 + δ 2 1 λ 2 ψ 2 2                                     ( 3.14 )
From (3.14) and (3.13), we get the desir e d result (3.4). The proof is c o mplete.
Corollary (3.1): 
If T ε q , δ ( 1 , ζ , n , ρ , σ , ϑ , φ ) defined in (1.1), then we have
| h 2 | γ A 0   B 1   B 1 2 ( 1 + 2 δ ) A 0 B 1 2 ψ 3 1 + 3 δ A 0 B 1 2 1 + δ 2 B 2 B 1 ψ 2 2
and
| h 3 | γ B 1 A 0 + A 1 1 + 2 δ ψ 3 + A 0 2 B 1 2 γ 2 1 + δ 2 ψ 2 2           , B 1 > 1 .
Corollary (3.3): 
If T ε q , 1 ( λ , ζ , n , ρ , σ , ϑ , φ ) defined in (1.1), then we have
| h 2 | γ A 0   B 1   B 1 6 1 λ A 0 B 1 2 ψ 3 1 λ 2 4 A 0 B 1 2 4 B 2 B 1 ψ 2 2
and
| h 3 | γ B 1 A 0 + A 1 3 1 λ ψ 3 + A 0 2 B 1 2 γ 2 4 1 λ 2 ψ 2 2           , B 1 > 1 .

References

  1. R.M. Ali, S.K. R.M. Ali, S.K. Lee, V. Ravichandran, and S. Supramaniam,Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett, 35(3), (3013), 344-351.
  2. A. Akgül and F.M. Sakar, A certain subclass of bi-univalent analytic functions introduced by means of the q-analogue of Noor integral operator and Horadam polynomials. Turk. J. Math. 3019, 43, 3375–3386.
  3. Brannan, J. Clunie and W.E. Kirwan, Coefficient estimates for a class of star-like functions. Canad. J. Math. 1970, 33, 476–485.
  4. D.A. Brannan and J.G. Clunie (Eds), Aspects of contemporary complex Analysis, (proceedings of the NA to advanced study institute held at the university of Durham, Durham: July 1-30,(1979),Academic press, New York and London, (1980).
  5. P. L. Duren, Univalent Functions, Springer-Verlag, New York, (1983).
  6. S. M. El-Deeb, T. Bulboac˘a and B.M. El-Matary, Maclaurin Coefficient estimates of bi-univalent functions connected with the q-derivative. Mathematics 3030, 8, 418.
  7. El-Deeb and, T. Bulboac˘a, Fekete-Szeg˝o, inequalities for certain class of analytic functions connected with q -anlogue of Bessel function. J. Egypt. Math. Soc. 3019, 37, 43.
  8. S. M. El-Deeb, Maclaurin coefficient estimates for new subclasses of bi-univalent functions connected with a q-analogue of Bessel function. Abstr. Appl. Anal. 3030, 3030, 8368951.
  9. El-Deeb, T. Bulboac ˘a, Differential sandwich-type results for symmetric functions connected with a q-analog integral operator. Mathematics 3019, 7, 1185.
  10. F. H. Jackson, On q-difference equations, Amer. J. Math., 33 (1910), 305–314. 1, 1.
  11. F.H. Jackson, On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 353–381.
  12. S. P. Goyal, and R. Kumar, Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions, Mathematica Slovaca, 65(3), (3015), 533–544.
  13. S. Kant, Coefficients estimate for certain subclasses of bi-univalent functions associated with quasi-Subordination, Journal of Fractional and Applications, vol. 9(1),(3018),195-303.
  14. M. Lewin, On a coefficient problem for bi-univalent functions,Proc. Amer. Math. Soc. 18, (1967), 63-68.
  15. W.C. Ma, and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis, Tianjin, 1993, vol. I of Lecture Notes for Analysis, International Press, Cambridge, Mass, USA, (1994), 157–169.
  16. N. Magesh, V. K. N. Magesh, V. K. Balaji and J. Yamini, Certain subclasses of bistarlike and biconvex functions based on quasi - subordination, Abstract and analysis, 3016 Art. ID3103960, 6 pages,3016.
  17. E. Netanyahu, The minimal distance of the image boynbary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal. 33, (1969), 100 – 113.
  18. C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Gottingen, Germany.(1975).
  19. B. Patil, and U. H. Naik, Estimates on initial coefficients of certain subclasses of biunivalent functions associated with quasi-subordination, Global Journal of mathematical Analysis, 5(1), 6-10, 3017.
  20. M. H.A. Risha, M.H. Annaby, M.E.H Ismail, Mansour, Z.S. Linear q-difference equations. Z. Anal. Anwend. 3007, 36, 481–494.
  21. F. Y. Ren, S. F. Y. Ren, S. Owa and S. Fukui, Some inequalities on quasi-subodrdinate functions, Bull. Austral. Math. Soc. 43(3), 317-334,991.
  22. M. S. Robertson, Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc. 76, 1-9, 1970.
  23. H.M. Srivastava, S. H.M. Srivastava, S. Khan, Q.Z Ahmad, N. Khan and S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babe¸s -Bolyai Math. 3018, 63, 419–436.
  24. S. El-Deeb and M. T. Bulboaca, Differential sandwich-type results for symmetric functions connected with a q-analog integral operator. Mathematics 3019, 7, 1185.
  25. Srivastava and, S.M. El-Deeb, A certain class of analytic functions of complex order connected with a q-analogue of integral operators. Miskolc Math. Notes 3030, 31, 417–433.
  26. H. Tang, G. H. Tang, G. Deng and S. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Ineq. Appl. 3013 Art. 317, 10 pages, 3013.
  27. P. P. Vyas and S. Kant, Certain Subclasses of bi-univalent functions associated with quasisubordination, Journal of Rajasthan Academy of Physical Sciences, 15(4), 315 - 335, Dec. 3016.
  28. Q.-H Xu, Y.-. Q.-H Xu, Y.-C Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 3013, 35, 990–994.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated