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Abstract: In recent decades, microwave photonic channelization has developed rapidly. 

Characterized by low loss, high versatility, large instantaneous bandwidth, and immunity to 

electromagnetic interference, microwave photonic channelization techniques coincides with the 

requirements of modern radar and electronic warfare for receivers. The advanced microresonator-

based optical frequency combs are promising platforms for the research of the photonic channelized 

receivers, which take full advantage of multicarrier and large bandwidth, and accelerate the 

integration process of microwave photonic channelized receivers. In this paper, we review the 

research progress and trends in microwave photonic channelization, focusing on schemes that 

utilize integrated microcombs. Finally, we discuss the potentials of microcomb-based RF 

channelization, as well as the challenges and limitations, and provide routes and perspectives for 

future developments in the context of on-chip silicon-based photonics 

Keywords: microwave photonics; optical microcombs; optical signal processing  

 

I. Introduction 

IDEBAND microwave signal receivers are used in a wide variety of modern electronic 

warfare systems, deep space tracking and telecommunications applications. Channelized 

reception refers to dividing the spectrum of the target signal, especially in the radio frequency (RF), 

microwave and millimeter wave bands, into different subchannels to achieve synchronous reception 

[1] [2] [3] [4] [5] [6] [7]. In general, the receiver’s bandwidth, sensitivity, spectral resolution, and real-

time processing speed are more demanding for complex signals with multiple formats, wide 

spectrums, and overlapping time domains in the electromagnetic environment. At first, the RF signal 

was demodulated by a superheterodyne receiver, but it would have been subject to the image 

frequency interference [8]. Subsequently, channelized receivers based on the electrical filter bank 

were proposed to channelize the signal in the frequency domain, but receiving high-frequency 

broadband signals often involves multi-stage frequency conversion, and massive filters, mixers and 

local oscillators (LOs) introduce electromagnetic interference. Although high-frequency electronic 

devices have been developed, they are eventually limited by analog-to-digital/digital-to-analog 

converters (ADCs / DACs), resulting in a receiver operation bandwidth of only a few GHz, which 

cannot meet modern requirements. The microwave photonic channelized receivers map the 

wideband signal to the optical domain, and then divide it into multiple narrowband subchannels for 

parallel reception and processing, breaking through the limitation of traditional electronic 

bottlenecks and realizing the operating bandwidths from GHz to tens of GHz. In addition, benefiting 

from high dynamic range, low power consumption, reconfigurability, and immunity to 

electromagnetic interference, photonic-assisted channelization has experienced unprecedented 

growth over the past two decades. 

W
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Initially, channel division was achieved using surface acoustic wave (SAW) phased array 

diffraction [9], fiber Bragg gratings, and Fabry-Perot (FP) etalons. To reduce the system volume, the 

researchers proposed to integrate two Bragg gratings with a FP etalon [10]. Optical frequency combs 

(OFCs) were introduced as multi-wavelength LOs, which greatly increased channel numbers. 

Generally, optical fiber four-wave mixing (FWM) or time lens are exploited for spectrum spreading 

to create an optical frequency comb [11] [12], and then the RF signal is broadcast to each comb, 

immediately followed by channel segmentation by periodic filters. From this, dual coherent optical 

combs were proposed [13], where one works for multicasting RF signals and the other acts as LOs, 

and then both are fed into the in-phase/quadrature (I/Q) coherent demodulator simultaneously. 

Spectral slicing can be performed using the vernier effect (a subtle difference in the frequency spacing 

of two combs), eliminating the need for optical filters. Obviously, the stability and accuracy of the 

filter are not specified, which reduces the complexity of the system. In recent years, wavelength 

scanning has been achieved by external laser source injection locking [14], acousto-optic frequency 

shifters (AOFS) [15], and optical switches [16]. Each wavelength marks a specific RF channel, which 

is then received serially by a low-speed photodetector. Practically, this scheme is limited in terms of 

the number of channels and the receiving speed.  

As is well known, OFCs can provide massive equally spaced wavelength channels, which can 

be employed as the multicarrier modulation, or combined with another similarly spaced comb to 

compose a dual OFC. Thus the development of optical frequency comb made a certain progress in 

channelized receiving schemes for broadband signals [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27]. 

Recently, the novel OFCs based on microresonators have been produced by the Kerr effect in the 

high-Q resonators [28] [29] [30] [31] [32]. Extensive microcomb lines with the FSR ranging from tens 

of GHz to THz greatly increase the number of channels and operating bandwidth. It overcomes the 

problems of previous platforms, such as the low repetition frequency of mode-locked fiber combs 

and the limited number of electro-optic combs and promotes the development of channelization 

towards large bandwidth, low power consumption and integration. 

In this paper, we present a comprehensive review of the recent advances in microcomb-based 

RF channelization. The paper is organized as follows. Section II introduces the basic principles of 

microwave photonic channelization and summarizes the related research into the following four 

categories: optical filter bank, multi-wavelength laser sources, dual optical frequency combs and 

frequency shifting/scanning. We devote recent advances in optical frequency combs and microcomb 

in terms of generation methods, nonlinear dynamics, fabrication processes, material platforms and 

applications in Section III. Focusing on the development of microcombs in microwave photonics, 

microcomb-assisted photonic channelization schemes are discussed. Section IV addresses the 

prospects for microwave photonic channelization. Photonic integrated circuits (PICs) for RF photonic 

channelizers are presented along with mature silicon-based photonic devices fabrication process and 

mainstream integration techniques, as well as current challenges and limitations. Finally, Section V 

summarizes the unprecedented advantages of microcomb-based RF channelization in terms of size, 

weight, and power (SWaP) reduction, and predicts that high-performance, chip-scale photonic 

channelized microsystems will revolutionize existing application scenarios. 

II. General Approaches 

Microwave photonic channelization is designed to modulate RF signals into the optical domain, 

then use the abundant spectral resources in the optical domain and exploits optical approaches to 

split the broadband RF signal into multiple sub-narrowband signals for receiving and processing. As 

a result, this configuration overcomes the bandwidth limitations of ADCs/DACs, increasing the 

receiver’s equivalent bandwidth and facilitating subsequent digital signal processing (DSP). In 

general, RF channelization schemes can be divided into four categories based on their main technique 

used to slice the broad spectrum: optical filter bank [9] [10] [33] [34] [35] [36] [37] [38] [39], multi-

wavelength laser source [40] [41] [11] [42] [43] [12] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53], dual 

optical frequency combs [54] [13] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] and 

frequency shifting/scanning [69] [70] [16] [71] [15] [72] [14]. 
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The principles of the approaches are illustrated in Figure 1; the experimental setups of 

representative technologies are shown in Figure 2; and Figure 3 shows a timeline of the evolution of 

RF channelizers, mainly in the past two decades. Detailed introductions of photonic RF 

channelization techniques are elaborated below. 

 

Figure 1. Schematic diagrams of different microwave photonic channelized receiver schemes. (a) 

Optical filter bank. (b-c) Multi-wavelength laser sources. (d) Dual optical frequency combs. (e) 

Frequency shifting/scanning. Figures are adapted from [40] [41] [13] [69]. 

A. Optical Filter Bank 

As shown in Figure1 (a), the first scheme is to modulate the RF signal onto a single optical carrier 

and feed it into a spectrally dense optical filter bank. Thereafter, the broadband RF spectrum is 

divided into multiple subchannels in the optical domain and then down-converted to RF domain by 

photodetectors to obtain RF spectral slices, realizing multi-channel reception simultaneously.  

The implementation of the optical filter bank can be achieved via devices such as: acousto-optic 

crystals [9], diffraction gratings [41], fiber Bragg gratings [10] [34], Fabry-Perot filters [35] [39], 

arrayed waveguide grating [36], dual-polarization dual-parallel Mach-Zehnder modulator [37] or 

commercial waveshaper [38]. Initially, researchers proposed a channelization technique based on the 

surface acoustic wave, which diffracts the RF signal into waves with different spatial angles as they 

propagate through a phased array, resulting in 20 channels with 5 MHz channel spacing covering the 

155 MHz-255 MHz band [9]. Later, the FP etalon was introduced to slice broadband RF signals, but 

the channel equalization was not ideal [39]. Phase-shifted chirped Bragg gratings, characterized by a 

transmission notch with different center wavelengths, were used to physically separate different RF 

spectral components [34]. Furthermore, the integration of a Bragg grating FP etalon and a hybrid 

Fresnel lens formed an optical channelization device to spatially separate the modulated microwave 

signals [10]. This solution provides 40 channels at 1 GHz bandwidth while compressing the system 

size. 

This method features straightforward architectures and requires only one optical carrier, 

although it is not without challenges. First, the channelized receivers’ performances (such as spectral 

slice resolution, bandwidth, adjacent channel leakage, and so on) are subject to the frequency 

response of the optical filters, thus which should feature narrow and flat passbands, steep roll-offs, 

and precise center wavelengths—challenging to implement in practice as the number of channels are 

relatively large. Second, due to the presence of insertion loss, the power attenuation of the optical 

signal after passing through a series of optical filters cannot be ignored. 
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B. Multi-wavelength Laser Sources 

As shown in Figure1 (b), in the second photonic RF channelization scheme, the RF signal is first 

modulated by a set of equally spaced carriers (i.e., multi-wavelength laser sources) to obtain multiple 

replicas in the optical domain. Then narrowband optical filters with different center frequencies are 

used to split the signal into a series of subchannels.  

So far, multi-wavelength laser sources can be provided by discrete laser arrays [50] [73] [46] and 

optical frequency combs [12] [44] [48] [49] [51] [40] [11], which produce multiple copies of the signal 

after broadcasting. In [73], four discrete lasers provide different wavelengths to form a four-channel 

receiver, and it is obvious that this approach can only achieve a limited number of channels, which 

is not conducive to high-capacity broadband communications. Later, OFCs were proposed, which 

can be realized by a variety of mechanisms, including fiber nonlinear effects [40] [11], time lens [12] 

[44] [47] [52] [49] [51] and mode-locked laser [42] [53]. For instance, multi-wavelength optical carriers 

have been achieved via the four-wave mixing (FWM) effect in highly nonlinear fibers [40]. Optical 

combs generated by cascaded electro-optic modulators are also widely used for RF channelization 

[12] [44]. OFCs are particularly attractive because it usually requires only one laser source and the 

comb spacing is tunable, making the receiving bandwidth flexible and reconfigurable. However, the 

above schemes for generating OFCs require many bulky discrete components, are difficult to 

integrate monolithically, and perform mediocrely in channel number and spectral resolution. At 

present, integrated microresonators are emerging as a more advanced platform that produces 

microcombs with larger free spectral ranges (FSRs) and complementary metal-oxide-semiconductor 

(CMOS) compatibility, making them an excellent choice for chip-scale photonic channelized receivers 

[74] [75].  

In addition, spectral slicing can be performed by stimulated Brillouin gain spectrum [46], 

wavelength division multiplexers (WDMs) [49], optical delay lines [42], FP etalons [11] [43] [12] [45] 

[52], free-space diffraction elements [41] and microresonators [74] [75], which act similarly to the 

periodic filters. As Figure1 (c) illustrates, the optical carriers (modulating the RF signal) and the LO 

combs are simultaneously incident at different angles onto the diffraction grating, which performs 

the spectral-to-spatial conversion, resulting in spectral separation and the formation of different 

channels. Each comb line is coupled with the corresponding sliced narrowband optical signal, which 

is then fed to the photodetector array for photoelectric conversion. We note that, for the approach 

based on optical delay lines, multiple tunable LOs can be generated from the beatnotes of the chirped 

pulses and their delays, which allows different frequencies to be down-converted without external 

signal sources; in addition, the number of channels can be improved by adding delay lines [42]. Later, 

a channelization scheme was proposed to introduce different fiber delays and attenuations to each 

subchannel, resulting in a designed magnitude response of each subchannel and enabling 

simultaneous spectrum slicing and sampling [53]. 

In summary, the multi-wavelength source method generally adopts coherent reception, which 

can preserve the phase information of the original RF signal, and is beneficial for the instantaneous 

spectrum analysis. Although we note that, it still requires various types of optical filters and faces the 

problems such as filter-to-filter frequency alignment and sensitivity to environment, resulting in low 

RF sensing accuracy and insufficient inter-channel suppression ratio. 

C. Dual Optical Frequency Combs 

Dual optical frequency combs have been one of the most widely studied channelization schemes 

to date. As Figure1 (d) depicts, two combs with slightly different FSRs (generally generated by 

cascaded electro-optic modulators [13] [59] [61] [62] [63] [64] [67] and microresonators [60]). One is 

used as carriers to multicast broadband RF signal, and the other serves as LOs, which is applied to 

probe the modulated RF components. The dual-comb vernier effect enhances the frequency 

sensitivity of the channelization and reduces the bandwidths requirements of the subsequent 

electronic devices. Each comb line corresponds to a channel, with the channel bandwidth equal to the 

frequency difference between the two combs. The two branches are mixed and fed into I/Q coherent 

detection, where the LO and the adjacent signal comb beat to obtain the corresponding RF 
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components. Finally, the channelized spectrum is stitched together to recover the original broadband 

RF signal [47] [61]. 

 

Figure 2. Microwave photonic channelized receivers based on different techniques. Figures are 

adopted from [9] [35] [34] [10] [11] [12] [42] [13] [57] [60] [70] [15] [14]. 

In 2012, Xie et al. proposed a microwave photonic channelization technique based on a pair of 

electro-optic modulated OFC and coherent detection (i.e., I/Q demodulation) [13]. Since then, there 

have been numerous studies of similar structures. We know that the adoption of I/Q coherent 

detection at the receiving end can address the loss of RF signal phase information problem caused by 

the square-law detection of photodetectors (PDs). However, after I/Q coherent detection, the 

frequency components on the left and right of the LO are downconverted to the baseband (the desired 

signal is the useful signal, and the one symmetrical to the useful signal about the LO is image 

frequency) Typically, a Hartley structure image-reject mixer is introduced to achieve large 

instantaneous bandwidth and large in-band interference suppression [54] [59] [66] [71]. There are also 

some studies focusing on improving the performances of channelizer through spectrum stitching [61] 

and polarization multiplexing [66]. In addition, a dual optical comb can also be a pair of microcombs 

[60], or a microcomb and an electric comb [65], usually using the same continuous-wave (CW) pump 

to ensure coherence between them. 

In conclusion, the dual-comb channelization scheme eliminates the need for optical filters, and 

the channel bandwidth (i.e., comb spacing) and channelized spectral resolution (FSR difference 

between the dual combs) can be flexibly adjusted. Importantly, coherent detection maintains a high 

signal-to-noise ratio (SNR). However, channel number is limited by the spectrum bandwidth of the 

optical comb, and massive comb lines require multiple electro-optic modulators, phase shifters, 

amplifiers, and microwave sources, which increases system complexity. 

D. Frequency Shifting/Scanning 

In recent years, channelization schemes based on LO frequency shifting/scanning have been 

proposed, typically using acousto-optic frequency shifters (AOFS) [15] and injection locking [69] [14]. 

As shown in Figure 1(e), a broadband RF signal is first modulated onto an optical carrier, while the 

LO comb is generated by electro-optic modulation. The external lasers are then injected into the LO 

comb to amplify the power of a single comb line. This wavelength is selected as a probe and fed into 

the coherent detection along with the modulated signal, and as the injection-locked LO comb line is 
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changed, each portion of the modulated signal is sequentially down-converted to the intermediate 

frequency (IF) for subsequent digital processing. 

In addition to the injection locking mentioned above, the LO frequency shifting can also be 

implemented by AOFS, where the shifted signal is fed to the I/Q coherent receiver along with the 

modulated signal, and finally the broadband RF signal is split into six subchannels for output [15]. In 

some studies, the round-trip time of the cyclic frequency-shifting loop was varied by controlling the 

duration of a single pulse through the optical switch to ensure that each frequency is within the 

appropriate time window, similar to wavelength scanning, to achieve multiple RF channels serial in 

the time domain [16]. Since there was an inherent frequency difference between the modulated RF 

signal and the frequency-shifted LO signal, the individual subchannels can be separated and down-

converted to IF using I/Q coherent detection. 

 

Figure 3. Timeline showing the development of photonic-assisted channelization. 

Single-carrier frequency-shifted channelization eliminates the need for ultra-narrow filters or 

coherent dual combs, simplifying the spectrum slicing process and allowing a relatively simple 

system architecture for real-time RF measurements. However, the number of channels is usually fixed 

and limited by the operating bandwidth of the frequency shifter or the wavelength scanning 

bandwidth. 

More recently, researchers continue to focus on the optical combs, which are used to generate 

multiple optical carriers or local oscillators for RF signals broadcasting and frequency conversion, 

thus continuously improving the performance of microwave photonic channelization. 

III. Microcomb For Photonic Channelization 

The optical frequency comb behaves as a sequence of equally spaced, phase-coherent modes in 

the frequency domain. Since it was first introduced, it has been regarded as the most effective tool 

for spectral measurement and has driven the rapid development of the spectroscopy and precision 

measurement. Meanwhile, offering a large number of equally-spaced wavelength channels within 

relatively compact footprints, OFCs are also promising light sources for microwave photonic 

channelization applications [80].  

Mode-locked fiber combs are one of the most widely used OFCs [21] [81] [27] [82] in applications 

including precision metrology [83], frequency stabilization [84], optical frequency synthesis [85] and 

others. However, subject to the relatively long cavity (generally implemented by optical fibers), the 

spacing of comb lines generally on the order of MHz, which imposes limitations on the Nyquist 

bandwidth for RF spectra procession/channelization. 
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Another OFC scheme based on cascaded electro-optic modulators [18] [86] can offer flat comb 

lines with large spacings up to tens of GHz, and agile center wavelengths and repetition rates. 

However, the use of external microwave sources and high-power RF amplifiers (needed to obtain 

broader bandwidths) can significantly increase the cost and complexity of the system, unfavorable 

for mass production and generic applications. 

Benefiting from advances in micro- and nanofabrication technologies, the researchers have 

innovated in the physical mechanisms of optical frequency comb generation as well as 

microresonator materials and process platforms. In 2003, a silica toroid-shaped microdisk with a 

quality (Q) factor of 1.25×108 was fabricated for the first time through mature semiconductor 

photolithography and etching processes [87]. The following year, optical parametric oscillations 

("microcomb prototype") were observed in the above microcavity [88]. Later, by further increasing 

the optical input power, a cascaded four-wave mixing effect was excited in the monolithic toroidal 

microresonator to form broadband equally spaced optical frequency combs [29]. Since then, the 

strictly microcombs was born. The dissipative Kerr soliton was soon proposed [89], which overcame 

the drawback of poor coherence of the previous optical combs. Octave-spanning microcombs 

covering the visible, near-infrared and mid-infrared bands have recently been obtained by dispersion 

engineering, combining χ(2) and χ(3) effects and dual pumping [90] [91] [92] [93] [94] [95] [96] [97], 

extending the bandwidth for f-2f self-reference technique and metrology.  

For photonic RF channelization, microcombs bring many unique advantages, including high 

repetition rates, small footprints, low power consumption and CMOS-compatible fabrication 

processes for mass production. Specifically, photonic RF channelizers’ operating bandwidth (i.e., the 

Nyquist zone) is equal to half of the comb spacing and represents the maximum microwave 

frequency that can be processed without interference from adjacent wavelength channels. Therefore, 

the large FSRs of microcombs (ranging from tens of GHz to THz) enable channelization/processing 

of broadband RF signals.  

According to the Lugiato-Lefever equation (LLE), microcomb generation results from a double 

balance between dispersion and nonlinearity as well as loss and parametric gain [101]. When the 

pump sweeps rapidly from the blue detuning of a resonance to the red side, the cascaded FWM effect 

occurs in the resonator, accompanied by an evolution from the primary comb, secondary comb, 

modulation instability comb to soliton comb [93]. The matching of pump power and frequency 

detuning is critical for the formation of stable soliton combs. Later, many soliton states have been 

observed, such as bright soliton [93], soliton crystal [102], soliton molecule [103] [104], breathing 

soliton [105] [106], dark soliton [107], Stokes soliton [108], soliton Cherenkov radiation [109], and so 

on. Moreover, various physical phenomena have also been discovered, such as avoided mode 

crossing [110], Raman self-frequency shift [111], and second harmonic generation [112] [113] [114], 

which greatly enrich the nonlinear dynamics of microresonators. 

Low-noise coherent microcombs exhibit essential for practical applications. Whereas, the main 

problem is the limitation of the thermo-optic effect. Currently, many schemes have been 

demonstrated to essentially stabilize the pump light at the red detuning of the resonance, such as fast 

frequency tuning [89], "power kicking" [98] [99], thermal tuning [100], auxiliary laser heating [101], 

etc. The above approaches are suitable for different application scenarios. As we know, the pump 

scanning to the red detuning of the resonance will reach the single-soliton state, at which point the 

intracavity power decreases. To obtain a steady single-soliton microcomb, one idea is to introduce 

auxiliary light on the blue side of the resonance to increase the auxiliary light power, thereby 

maintaining the thermal balance of the microcavity. 

Microresonators are mainly fabricated from fused silica [29], SiN [102], MgF2 [89] [103], diamond 

[104], Hydex glass [105], LiNbO3 [106] [107], AlGaAs [108] [109] [110], D-SiN [111], GaP [112], Ta2O5 

[113], AlN [114] [115], SiC [116], GaN [117] and graphene nitride [118], as Figure 4 (a) shows. They 

are manifested in various forms such as microdisks [119], microrods [120], microspheres [121], 

microtoroids [87] and microrings, etc. As for crystalline resonators， such as CaF2 [122] [123], MgF2 

[124] and fused silica exhibit ultra-high Q factor of 108-1010. For monolithic integrated microcombs, 

Si3N4, Hydex glass, LiNbO3 and other materials are widely applied on chip, limited by waveguide 
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transmission losses, Q values range from 105 to 107. These features have high Kerr nonlinearity and 

low propagation loss, and are compatible with CMOS platforms. However, microcomb generation 

requires an external laser source and discrete optical and electrical components which does not 

significantly reduce system complexity. Heterogeneous integration is expected to solve the above 

longstanding problems [125], and studies have been conducted to heterogeneously integrate indium 

phospide/silicon (InP/Si) semiconductor lasers and SiN microcombs on monolithic silicon substrates 

to realize laser soliton microcombs. Subsequently, a parallel optical data link and a highly 

reconfigurable microwave photonic filter were also demonstrated on the aluminium-gallium-

arsenide-on-insulator (AlGaAsOI) platform with a high third-order nonlinear coefficient 

(n2≈ 2.6 × 10−17 m2W−1) and a Q factor >2 million [126]. Therefore, the turnkey dark-pulse comb requires 

a rather low threshold at the few-milliwatts level, which can be provided by a DFB laser chip. The 

state-of-the-art heterogeneously integrated III-V lasers and microresonators have inspired 

researchers to move more applications to on-chip, promising full integration of optical systems in the 

future.  

As shown in Figure 4 (b), dissipative Kerr microcombs have already enabled advances in 

massive coherent optical communications [78], light detection and ranging (LiDAR) [127], 

spectroscopy [76] [77], atomic clocks [128], astronomical spectrographs calibration [129], optical 

neural network [130] and microwave photonics [131] [132] [133]. Here, we discuss the microwave 

photonics applications based on integrated microcombs, as Figure4 (c) illustrates. A microwave 

photonic system generally consists of a laser source, a modulator, a signal processing unit, and a 

photodetector. Specifically, the microcomb serves as a multi-wavelength laser source, which 

promotes the development of integrated microwave photonics. Research in microwave photonics has 

focused on signal processing (including microwave signal generation [134] [135], photonic RF filters 

[136] [137], Hilbert transformers [138], etc. ), phased-array antennas [139] [140] and channelizers [74] 

[75]. The signal processing typically involves flattening the generated microcombs, feeding them into 

a modulator to broadcast microwave signals, and then introducing different time delays for each 

comb by a spool of dispersive fiber. The optical comb lines are reshaped by assigning the designed 

weights, which after photodetection can produce arbitrary transfer functions such as photonic filters, 

Hilbert transformers and differentiators. Compared to electro-optic frequency combs or mode-locked 

fiber combs, microcombs feature a much larger mode spacing (hundreds of GHz), corresponding to 

a larger Nyquist operating bandwidth (half the FSR of a microresonator). In addition, coherent combs 

yield low phase noise photonic microwave oscillators [141] [142] and frequency synthesizers [143] 

[144] [145]. For the phased-array antennas, the microcombs are used as true time delay lines (81 

channels in the C-band) for modulating microwave signal copies at each wavelength, and then 

dispersion is introduced by the single-mode fiber (SMF) to generate the time-delay difference 

between adjacent channels [140]. Finally, a programmable optical filter and a wavelength division 

multiplexer (WDM) are used to separate each channel, and the microwave signals with different 

delays are fed to the antenna array after photodetection, thus realizing the arbitrary beam patterns. 

Another typical application of the microcombs is RF photonic channelization, where a broadband 

microwave signal is modulated on both sides of the comb lines, then sliced through a narrowband 

filter bank such as a high-Q microresonator (the FSR is slightly different from the active one), and 

finally sent to the photodetection. Dual-coherent microcombs can also perform a similar effect to 

obtain the amplitude and phase information of the microwave signal. 
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Figure 4. (a) Microresonator material platforms, including fused silica [29], silicon nitride [103], MgF2 

[91] [104], diamond [105], Hydex glass [106], lithium niobate [107] [108], aluminum gallium arsenide 

[109] [110] [111], deuterated silicon nitride [112], gallium phosphide [113], tantalum pentoxide [114], 

aluminium nitride [115] [116], silicon carbide [117], gallium nitride [118], graphene nitride [119]. (b) 

Applications based on microcombs, including coherent communications [78], light detection and 

ranging (LiDAR) [129], spectroscopy [76] [77], optical atomic clock [130], astromical spectrometer 

calibration [131], optical neural network [132] and microwave photonics [134]. (c) Microwave 

photonic classical applications based on microcombs, including signal processing [136] [137] [138] 

[139] [140], phase array antennas [141] [142] and channelization [74] [75]. Figures are adapted from 

[29] [103] [91] [105] [106] [107] [109] [112] [113] [114] [115] [117] [118] [119] [78] [129] [76] [130] [131] 

[132] [134]. 

In previous work [74], we used an active nonlinear MRR to generate broadband comb spectra 

with a 200 GHz spacing, and then flattened the 20 Kerr comb channels on the C-band (limited by the 

bandwidth of the waveshaper in this experiment, there are actually more than 60 channels on the 

C+L band) with a programmable optical filter. As shown in Figure 5(a), we introduced a 

spectrometer-waveshaper feedback control path, in which the microcomb power is first detected by 

an optical spectrum analyzer and then compared to an ideal (i.e., equal) value, generating an error 

signal that is fed back into the waveshaper for cyclic comb shaping. The input RF signal is then 

multicast onto each comb using a phase modulator. Next, the RF signals on each wavelength channel 

are spectrally sliced by every fourth resonance of a passive MRR with an FSR of 49 GHz and a Q 

factor of 1.55×106. The RF channelization resolution is 1.04 GHz, compatible with state-of-the-art 

ADCs. Later, the 20 channels and the transmission spectrum of the passive MRR was measured, 

noting that the relative offset between the optical comb and every fourth resonance varies from 3.89 

to 88.65 GHz, so that the channelized RF bandwidth was close to 90 GHz. The two are linearly fitted 

to obtain the channelized RF frequency step of 4.43 GHz per channel. We experimentally 

demonstrated the RF performance at four wavelengths in 20 channels, corresponding to four RF 
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frequencies from 1.7 to 19.0 GHz—close to the limit of our device (up to 20 GHz). However, with only 

four channels operating simultaneously, the channelized RF step is too large, resulting in 

discontinuities in the received RF signal and limiting the overall instantaneous bandwidth (the 

product of the number of channels and the slicing resolution). Finally, these "gaps" are compensated 

by thermally tuning the passive MRR. 

 

Figure 5. Previous work based on microcomb [74] [75]. 

Later, we further improved this scheme [75]. As shown in Figure 5(b), using two MRRs with 

nearly matched FSRs (~ 49 GHz), and the active MRR generates a soliton crystal comb providing up 

to 92 channels (C-band), and the passive one is used as a periodic band-notch filter. Utilizing the 

Vernier effect between the two, the broadband RF spectrum was sliced at a high resolution of 121.4 

MHz to achieve continuous channelization with an RF channelization step of 87.5 MHz/channel. 

Finally, we experimentally verified an instantaneous RF operating bandwidth of 8.08 GHz—more 

than 22 times higher than the previously reported bandwidth, and achieved RF channelization up to 

17.55 GHz with the aid of thermal tuning. Similarly, we measured the 92 optical combs and passive 

MRRs transmission spectra (containing both TE and TM polarization resonances), and extracted that 

the total operating bandwidths of the TE and TM resonances are 8.4 GHz and 3.8 GHz, respectively. 

And the RF channelization steps for each channel are 89.5 MHz (TE) and 41.4 MHz (TM), respectively. 

After passive MRR, the RF spectrum is divided into multiple segments transmitted on different 

channels, which are demultiplexed and detected separately and the results of 92 parallel RF channels 

are measured by the vector network analyzer, as shown in Figure 6. This microcomb-based approach 

is a significant step toward the full integration of photonic receivers into modern RF systems, offering 

the advantages of massively parallel channels, high resolution and well suited for broadband signal 

detection and processing.  
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Figure 6. Previous work based on microcomb [75]. 

Based on the scheme [75], a programmable arbitrary transfer function RF filter was implemented 

by adding a second-stage microcomb shaping and using a single PD to combine channelized RF 

components during photodetection [146], as shown in Figure 7. We measured the flattened 

microcomb of 80 channels and the transmission spectrum of the passive MRR, and fitted to obtain a 

channelized RF frequency step at 66.6 MHz/channel, covering the sliced RF frequencies from 2.8 to 

8.0 GHz. As shown in Figure 8, the RF filter operating bandwidth extends from 1.17 GHz to 4.64 GHz 

with a resolution of 117 MHz as the channel number increases from 20 to 80. The high-resolution 

photonic RF filters have been demonstrated by utilizing an RF bandwidth scaling method based on 

the integrated Kerr microcomb. 

 

Figure 7. Previous work based on microcomb [146]. 

 

Figure 8. Previous work based on microcomb [146]. 

IV. Outlooks of monolithic integration 

High-bandwidth, multi-channel, high-resolution, fully on-chip integration and turnkey 

operation are becoming the trend for next-generation microwave photonic channelized receivers 

[133] [147] [148] [149] [150] [151]. In the current advanced demonstration of microcomb 

channelization, only the micro-ring resonator is chip-scale as a stand-alone integrated device, while 

the other components are discrete devices [74] [75]. Therefore, it is important not only to develop the 

integration of individual device units, but also to facilitate their integration on the same platform to 
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realize photonic integrated circuits (PICs) [152] [153] [154]. Over the years, many PICs based on 

various waveguide materials such as silicon-on-insulator (SOI) [155], silicon nitride (SiN) [156], 

indium phosphide (InP) [157], lithium niobate (LiNbO3), aluminum nitride (AlN) [158] and silicon 

carbide (SiC) [159] have been investigated in academia and industry. Among these, silicon is the most 

widely used waveguide material. Silicon-based photonics has the benefit of CMOS process 

compatibility and the potential to enable monolithic integration of silicon-based electronics and 

photonics with high quality, low cost, and high throughput with the assistance of the mature 

manufacturing processes. The fact that silicon has been considered an "electrical" rather than an 

"optical" material [160]. This is its own limitation, that is, as an indirect energy bandgap 

semiconductor material, silicon requires the participation of phonons to fulfill the momentum 

conservation, making it a very inefficient light source. Not only that, the silicon lattice has central 

symmetry, and there is almost no electro-optical effect. Thus, it seems that silicon material is not a 

good choice either as a light source or an electro-optical modulator or photodetector [161]. Other 

waveguide materials can overcome some of the drawbacks of silicon, but they are potentially limited 

in other ways, and the dominant solution is silicon-based multi-material fusion. This allows each 

material to perform optimally for its photonic component without compromising the functionality of 

other components in the system. The goal remains to realize silicon photonic devices on a chip, co-

packaged with integrated lasers that interface directly with the silicon chip for a variety of advanced 

applications [126]. Over time, three integration processes have emerged: hybrid integration, 

heterogeneous integration, and fully monolithic integration [162] [163]. These are briefly described 

below. 

A. Hybrid Integration 

Hybrid integration is an integration process that typically combines two or more PIC or photonic 

device chips with different functions from different material technologies in a single package [153] 

[162] [148] [164] [163]. The advantage is the ability to test and characterize the devices to be integrated 

before the integration, and to easily select the components to be integrated into photonic circuits on 

a case-by-case basis without having to consider the compatibility of device materials. In particular, 

the hybrid integration of fully processed III-V devices on silicon and silicon nitride PICs has solved 

the problem of silicon not emitting light, enabling structures such as lasers, modulators and even 

photodetectors [165] [166] [167] [168] [169] [170] [147]. However, most hybrid integrated III-V/SiN 

photonic devices still require one-to-one alignment (i.e., light waves from different substrates must 

be aligned at their respective interfaces to improve the efficiency of inter-chip optical coupling), 

which limits large-scale production and packaging, resulting in with lower efficiency and improved 

reliability. 

B. Heterogeneous Integration 

Heterogeneous integration is an integration process that refers to the technology of combining 

different materials (devices) on a single substrate through wafer bonding, typically in the early- to 

mid-stages of PIC chip fabrication [153] [162] [164] [163]. The heterogeneous integration of silicon-

based and III-V devices has been a hot topic over the past few years [126] [161] [171] [172] [149]. 

Unpatterned III-V thin films are integrated onto pre-processed silicon photonic wafers and the 

devices are then lithographed over the entire wafer scale. Due to the mismatch between the effective 

modal indices of active gain materials (e.g., InP, GaAs, etc.) and passive waveguides (ultra-low loss 

SiN), Si is typically used as an interlayer to bridge the modal refractive indices. The seamless 

integration of the two through the multimodal hopping mechanism takes advantage of their 

respective strengths to realize a versatile heterogeneous integrated III-V/SiN platform that does not 

need to rely on an external light source. Heterogeneous integration moves the manufacturing process 

from the chip level to the auto wafer level, provides high alignment accuracy and low loss when 

switching between different waveguide materials, and improves the reliability and integration 

density, making it suitable for high-volume production and applications. However, heterogeneous 
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integration does not allow performance testing of each component in advance, placing more stringent 

requirements on the wafer bonding process to improve throughput. 

C. Fully Monolithic Integration 

Fully monolithic integration is the solution to the lack of a core light source for silicon-based 

integrated circuits. It involves the integration of III-V gain materials on a silicon substrate by direct 

epitaxial growth [153] [162] [164]. In addition, the entire process does not involve the bonding of 

materials, which is suitable for large-scale growth and high-volume production, reduces the cost of 

the integrated system, and provides a very broad application prospect. However, due to the polarities, 

lattice constants and thermal expansion coefficients mismatch between the III-V materials and silicon 

materials, direct growth of III-V materials on silicon can lead to threading dislocations, stacking faults, 

misfit dislocations and antiphase domains (APDs), which seriously affects the operating performance 

and lifetime of devices [164] [173]. To address this problem, the researchers used a quantum dot 

structure that is insensitive to APDs and dislocation defects to produce a long-lived, high-

performance laser (operating near 1.3 um), which is expected to be the core light source for photonic 

circuits [174] [175] [176] [168].  

However, we must recognize that fully monolithically integrated silicon-based photonic circuits 

and devices are still in their infancy, and there is much to be done for future research. Heterogeneous 

integration, on the other hand, is a relatively mature technology that can diversify the functionality 

of a single chip while maintaining the original device and process dimensions. Lately, some exciting 

work has been carried out by researchers using multilayer monolithic integration and heterogeneous 

integration in concert [151]. It can be said that silicon-based monolithic heterogeneous integration 

will open a new way for the development of microelectronics, optoelectronics and microsystem 

technologies in the post-Moore era.  

D. Integration of Photonic RF channelizers 

Here, we propose several perspectives for the future of channelized receivers based on the 

heterogeneous integration scheme, as shown in Figure 9. The microcomb generation draws on the 

scheme and processing technology in [125], which integrates an InP/Si continuous-wave laser and a 

high-Q SiN MRR on a monolithic silicon substrate. Utilization of back-Rayleigh scattering from the 

microresonator to the laser for self-injection locking and control of the current and phase to achieve 

optimal pump-resonance detuning results in the formation of a Kerr soliton microcomb (the thermo-

optic phase tuner and electronic control circuitry are omitted from the figure). In recent years, electro-

optic modulators based on lithium niobate films [177] [178], graphene [179] [180], silicon [181] [182] 

[183] and other materials have emerged. Given the maturity of silicon photonics processes, silicon 

modulators are used here, which typically rely on the dispersion effect of free carrier plasma, and 

electro-optic bandwidths above 50 GHz have been investigated [182]. Moreover, mature silicon-

based Mach-Zender modulators (MZMs) or micro-ring modulators (MRMs) can be integrated with 

SiN photonic circuits in multiple layers [184] [169], and the ultra-low transition loss of the Si-SiN layer 

helps silicon modulators achieve high-speed and effective modulation. Channelized filtering is 

realized using an MZI waveguide mesh composed of integrated silicon-based tuning elements, and 

a reconfigurable FIR filter is implemented in combination with hardware programming [185] [186]. 

The optical signal passes through the filter unit and then enters the demultiplexer to be divided into 

independent channels, each of which is coupled to an on-chip germanium photodetector to achieve 

signal reception [187]. Such a silicon photonic integrated circuit is compatible with mature CMOS 

fabrication technology, which can take advantage of the superior performance of different materials 

and realize more new ideas to develop turnkey, high-bandwidth and scalable integrated microwave 

photonic channelizers. These devices will benefit from the advances made in microcombs generally 

and microwave applications of microcombs. [188-242] 
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Figure 9. Prospect view of heterogeneous integrated microwave photonic channelized receiver. 

V. Conclusions 

In this paper, we review the current state of the art in microwave photonic channelizers and 

discuss the advantages and shortcomings of the four technology paths, namely optical filter banks, 

multi-wavelength light sources, dual optical combs and frequency shifting/scanning. The idea is then 

presented that RF photonic channelization will move toward miniaturization and integration in the 

future. Starting with the key component, the microresonator, we introduce various microwave 

photonic applications based on microcombs. The outstanding benefits and potential applications of 

microcombs for RF photonic channelization are demonstrated in conjunction with previous studies. 

Finally, we outline the prospects for a silicon-based heterogeneous integrated RF channelized 

receiver using photonic integrated circuits and silicon photonics, aiming to create a high-bandwidth, 

low-cost and power-efficient solution to make it an attractive platform.  

Statement on Conflict of Interest: The authors declare that there are no conflicts of interest. 
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