Submitted:
04 December 2023
Posted:
05 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature review
Meta-analyses of Early Clinical Trials of Genes and Cells
Recent and Ongoing Clinical Trials of Genes and Cells II
Predictive Value of Preclinical Models
Age and Atherosclerosis in Mouse CLI Models
Recent and Ongoing Preclinical Trials of Genes and NO-donors
3. Summary and conclusions
Funding
Conflicts of Interest
References
- Annex BH: Cooke, JP. New Directions in Therapeutic Angiogenesis and Arteriogenesis in Peripheral Arterial Disease. Circ Res. 2021, 128, 1944–1957. [Google Scholar] [CrossRef] [PubMed]
- Kuppuswamy S, Annex BH, Ganta VC. Targeting Anti-Angiogenic VEGF165b-VEGFR1 Signaling Promotes Nitric Oxide Independent Therapeutic Angiogenesis in Preclinical Peripheral Artery Disease Models. Cells. 2022 11, 2676.
- Ganta VC, Annex BH. Peripheral vascular disease: preclinical models and emerging therapeutic targeting of the vascular endothelial growth factor ligand-receptor system. Expert Opin Ther Targets. 2021 25, 381-391.
- Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, Norman PE, Sampson UK, Williams LJ, Mensah GA, Criqui MH. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013, 382, 1329–40.
- Rooke TW, Hirsch AT, Misra S, Sidawy AN, Beckman JA, Findeiss L, Golzarian J, Gornik HL, Jaff MR, Moneta GL, Olin JW, Stanley JC, White CJ, White JV, Zierler RE; a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013, 61, 1555–70.
- Hirsch AT, Haskal ZJ, Hertzer NR, et al. Guidelines for the Management of Patients With Peripheral Arterial Disease. Circulation. 2006, 113, 463–654.
- Iyer SR, Annex BH. Therapeutic Angiogenesis for Peripheral Artery Disease: Lessons Learned in Translational Science. JACC Basic Transl Sci. 2017, 2(5), 503–512.
- Mohler ER 3rd, Hiatt WR, Creager MA. Cholesterol reduction with atorvastatin improves walking distance in patients with peripheral arterial disease. Circulation. 2003, 108, 1481–6. [CrossRef]
- Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015, 116, 1509–26.
- Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG; TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg, 2007, 45 Suppl S, S5-67.
- Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost. 2010, 103, 696–709. [CrossRef]
- De Haro J, Acin F, Lopez-Quintana A, Florez A, Martinez-Aguilar E, Varela C. Meta-analysis of randomized, controlled clinical trials in angiogenesis: gene and cell therapy in peripheral arterial disease. Heart Vessels. 2009, 24, 321-8.
- Hammer A, Steiner S. Gene therapy for therapeutic angiogenesis in peripheral arterial disease - a systematic review and meta-analysis of randomized, controlled trials. Vasa. 2013 42, 331-9.
- Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S, Norgren L, Van Belle E; TAMARIS Committees and Investigators. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet. 2011 377, 1929-37.
- Forster R, Liew A, Bhattacharya V, Shaw J, Stansby G. Gene therapy for peripheral arterial disease. Cochrane Database Syst Rev. 2018 10, CD012058.
- Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002 360:427-35.
- Walter DH, Krankenberg H, Balzer JO, Kalka C, et al. PROVASA Investigators. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011 4, 26-37.
- Teraa M, Sprengers RW, Schutgens RE et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation. 2015 131, 851-60.
- Rigato M, Monami M, Fadini GP. Autologous Cell Therapy for Peripheral Arterial Disease: Systematic Review and Meta-Analysis of Randomized, Nonrandomized, and Noncontrolled Studies. Circ Res. 2017 120, 1326-1340.
- Xie B, Luo H, Zhang Y, Wang Q, Zhou C, Xu D. Autologous Stem Cell Therapy in Critical Limb Ischemia: A Meta-Analysis of Randomized Controlled Trials. Stem Cells Int. 2018 2018, 7528464.
- Gao W, Chen D, Liu G, Ran X. Autologous stem cell therapy for peripheral arterial disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther. 2019 10, 140.
- Pu H, Huang Q, Zhang X, Wu Z, et al. meta-analysis of randomized controlled trials on therapeutic efficacy and safety of autologous cell therapy for atherosclerosis obliterans. J Vasc Surg. 2022 75, 1440-1449.
- Beltrán-Camacho L, Rojas-Torres M, Durán-Ruiz MC. Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. Int J Mol Sci. 2021, 2021 22, 2335.
- Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, et al. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011, 20, 1629–39. [CrossRef]
- De Angelis B, Gentile P, Orlandi F, Bocchini I, Di Pasquali C, Agovino A, Gizzi C, Patrizi F, Scioli MG, Orlandi A, Cervelli V. Limb rescue: a new autologous-peripheral blood mononuclear cells technology in critical limb ischemia and chronic ulcers. Tissue Eng Part C Methods. 2015 21, 423-35.
- O'Neill KM, Campbell DC, Edgar KS, Gill EK, et al. NOX4 is a major regulator of cord blood-derived endothelial colony-forming cells which promotes post-ischaemic revascularization. Cardiovasc Res. 2020 116, 393-405.
- Hu X, Wu R, Jiang Z, et al. Leptin signaling is required for augmented therapeutic properties of mesenchymal stem cells conferred by hypoxia preconditioning. Stem Cells. 2014, 2014 32, 2702–13.
- Ma Q, Xia X, Tao Q .et al.. Profound Actions of an Agonist of Growth Hormone-Releasing Hormone on Angiogenic Therapy by Mesenchymal Stem Cells. Arterioscler Thromb Vasc Biol. 2016 36, 663-672.
- Deev RV, Bozo IY, Mzhavanadze ND, et al.. pCMV-vegf165 Intramuscular Gene Transfer is an Effective Method of Treatment for Patients With Chronic Lower Limb Ischemia. J Cardiovasc Pharmacol Ther. 2015 20, 473-82.
- Deev R, Plaksa I, Bozo I, Isaev A. Results of an International Postmarketing Surveillance Study of pl-VEGF165 Safety and Efficacy in 210 Patients with Peripheral Arterial Disease. Am J Cardiovasc Drugs. 2017 17, 235-242.
- Deev R, Plaksa I, Bozo I, et al. Results of 5-year follow-up study in patients with peripheral artery disease treated with PL-VEGF165 for intermittent claudication. Ther Adv Cardiovasc Dis. 2018 12, 237-246.
- Shigematsu H, Yasuda K, Iwai T, et al.. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 2010 17, 1152-61.
- Ylä-Herttuala, S. Gene Therapy of Critical Limb Ischemia Enters Clinical Use. Mol Ther. 2019 27, 2053. [CrossRef]
- Morishita R, Shimamura M, Takeya Y, et al. Combined Analysis of Clinical Data on HGF Gene Therapy to Treat Critical Limb Ischemia in Japan. Curr Gene Ther. 2020, 2020 20, 25–35.
- Sanada F, Fujikawa T, Shibata K, et al. Therapeutic Angiogenesis Using HGF Plasmid. Ann Vasc Dis. 2020, 2020 13, 109–115.
- Kessler JA, Shaibani A, Sang CN, et al. Gene therapy for diabetic peripheral neuropathy: A randomized, placebo-controlled phase III study of VM202, a plasmid DNA encoding human hepatocyte growth factor. Clin Transl Sci. 2021 14, 1176-1184.
- Barć P, Antkiewicz M, Śliwa B, et al. Double VEGF/HGF Gene Therapy in Critical Limb Ischemia Complicated by Diabetes Mellitus. J Cardiovasc Transl Res. 2021 14, 409-415.
- Shishehbor MH, Rundback J, Bunte M, et al. SDF-1 plasmid treatment for patients with peripheral artery disease (STOP-PAD): Randomized, double-blind, placebo-controlled clinical trial. Vasc Med. 2019 24, 200-207.
- Zaccagnini G, Gaetano C, Della Pietra L, et al. Telomerase mediates vascular endothelial growth factor-dependent responsiveness in a rat model of hind limb ischemia. J Biol Chem. 2005 280, 14790-8.
- Golledge, J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat Rev Cardiol. 2022, 2022 19, 456–474. [Google Scholar] [CrossRef]
- Han J, Luo L, Marcelina O, Kasim V, Wu S. Therapeutic angiogenesis-based strategy for peripheral artery disease. Theranostics. 2022 12(11), 5015–5033.
- Rebar EJ, Huang Y, Hickey R, et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med. 2002, 2002 8, 1427–32.
- Campia U, Gerhard-Herman M, Piazza G, Goldhaber SZ. Peripheral Artery Disease: Past, Present, and Future. Am J Med. 2019 132, 1133-1141.
- Firnhaber JM, Powell CS. Lower Extremity Peripheral Artery Disease: Diagnosis and Treatment. Am Fam Physician. 2019 99, 362-369.
- Boden J, Lassance-Soares RM, Wang H,et al. Vascular Regeneration in Ischemic Hindlimb by Adeno-Associated Virus Expressing Conditionally Silenced Vascular Endothelial Growth Factor. J Am Heart Assoc. 2016 5:e001815.
- Krishna SM, Omer SM, Golledge J. Evaluation of the clinical relevance and limitations of current pre-clinical models of peripheral artery disease. Clin Sci (Lond). 2016 130, 127-50.
- Krishna SM, Omer SM, Li J, et al. Development of a two-stage limb ischemia model to better simulate human peripheral artery disease. Sci Rep. 2020 10, 3449.
- Golledge J, Fernando ME, Armstrong DG. Current Management of Peripheral Artery Disease: Focus on Pharmacotherapy. Drugs. 2022 82, 1165-1177.
- Annex, BH. Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol. 2013, 2013 10, 387–96. [Google Scholar] [CrossRef]
- Peck MA, Crawford RS, Abularrage CJ, Patel VI, Conrad MF, Yoo JH, Watkins MT, Albadawi H. A functional murine model of hindlimb demand ischemia. Ann Vasc Surg. 2010 24, 532–7.
- Krishna SM, Omer SM, Golledge J. Evaluation of the clinical relevance and limitations of current pre-clinical models of peripheral artery disease. Clin Sci (Lond). 2016 130, 127-50.
- Lin JB, Phillips EH, Riggins TE, et al. Imaging of small animal peripheral artery disease models: recent advancements and translational potential. Int J Mol Sci. 2015 16, 11131-77.
- Lotfi S, Patel AS, Mattock K, et al. Towards a more relevant hind limb model of muscle ischaemia. Atherosclerosis. 2013, 2013 227, 1–8.
- Yan K, Zheng J, Zöllner FG, et al. A Modified Surgical Model of Hind Limb Ischemia in ApoE-/- Mice using a Miniature Incision. J Vis Exp. 2021 13, 171.
- Aref Z, de Vries MR, Quax PHA. Variations in Surgical Procedures for Inducing Hind Limb Ischemia in Mice and the Impact of These Variations on Neovascularization Assessment. Int J Mol Sci. 2019, 2019 20, 3704.
- Shaked Y, Bertolini F, Man S, et al. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell. 2005 7, 101-11.
- Bosch-Marce M, Okuyama H, Wesley JB, et al. Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res. 2007 101, 1310-8.
- Westvik TS, Fitzgerald TN, Muto A, et al. Limb ischemia after iliac ligation in aged mice stimulates angiogenesis without arteriogenesis. J Vasc Surg. 2009 49, 464–73.
- Wang J, Peng X, Lassance-Soares RM et al. Aging-induced collateral dysfunction: impaired responsiveness of collaterals and susceptibility to apoptosis via dysfunctional eNOS signaling. J Cardiovasc Transl Res. 2011 4, 779-89.
- Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997 390, 45-51.
- Fukino K, Suzuki T, Saito Y, et al. Regulation of angiogenesis by the aging suppressor gene klotho. Biochem Biophys Res Commun. 2002, 2002 293, 332–7.
- Bosch-Marce M, Okuyama H, Wesley JB, et al. Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res. 2007 101, 1310-8.
- Shimada T, Takeshita Y, Murohara T, et al. Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation. 2004 110, 1148-55.
- Libby, P. The changing landscape of atherosclerosis. Nature. 2021 592, 524–533. [CrossRef]
- Krishna SM, Omer SM, Golledge J. Evaluation of the clinical relevance and limitations of current pre-clinical models of peripheral artery disease. Clin Sci (Lond). 2016 130, 127-50.
- Krishna SM, Moxon JV, Golledge J. A review of the pathophysiology and potential biomarkers for peripheral artery disease. Int J Mol Sci. 2015, 2015 16, 11294–322.
- McDermott MM, Ferrucci L, Gonzalez-Freire M, et al. Skeletal Muscle Pathology in Peripheral Artery Disease: A Brief Review. Arterioscler Thromb Vasc Biol. 2020 40, 2577-2585.
- Burgmaier M, Schutters K, Willems B, et al. AnxA5 reduces plaque inflammation of advanced atherosclerotic lesions in apoE(-/-) mice. J Cell Mol Med. 2014 18, 2117-24.
- Xiong W, Wang X, Dai D, Zhang B, Lu L, Tao R. The anti-inflammatory vasostatin-2 attenuates atherosclerosis in ApoE-/- mice and inhibits monocyte/macrophage recruitment. Thromb Haemost. 2017 117, 401-414.
- Kahles F, Liberman A, Halim C, et al. The incretin hormone GIP is upregulated in patients with atherosclerosis and stabilizes plaques in ApoE-/- mice by blocking monocyte/macrophage activation. Mol Metab. 2018 14, 150-157.
- Xu Q, Wang J, He J, et al. Impaired CXCR4 expression and cell engraftment of bone marrow-derived cells from aged atherogenic mice. Atherosclerosis. 2011 219, 92-9.
- Qin H, Liu P, Lin S. Effects of Astragaloside IV on the SDF-1/CXCR4 Expression in Atherosclerosis of apoE(-/-) Mice Induced by Hyperlipaemia. Evid Based Complement Alternat Med. 2015 2015, 385154.
- Heidt T, Sager HB, Courties G, et al. Chronic variable stress activates hematopoietic stem cells. Nat Med. 2014 20, 754–758.
- Schmitt MM, Megens RT, Zernecke A, et al. Endothelial junctional adhesion molecule-a guides monocytes into flow-dependent predilection sites of atherosclerosis. Circulation. 2014 129, 66-76.
- Seo HS, Lombardi DM, Polinsky P, et al. Peripheral vascular stenosis in apolipoprotein E-deficient mice. Potential roles of lipid deposition, medial atrophy, and adventitial inflammation. Arterioscler Thromb Vasc Biol. 1997 17, 3593-601.
- Rodriguez-Menocal L, Wei Y, Pham SM, et al. A novel mouse model of in-stent restenosis. Atherosclerosis. 2010 209, 359-66.
- Cesar L, Suarez SV, Adi J, et al. An essential role for diet in exercise-mediated protection against dyslipidemia, inflammation and atherosclerosis in ApoE⁻/⁻ mice. PLoS One. 2011 6, e17263.
- Balestrieri ML, Lu SJ, de Nigris F, et al. Therapeutic angiogenesis in diabetic apolipoprotein E-deficient mice using bone marrow cells, functional hemangioblasts and metabolic intervention. Atherosclerosis. 2010 209, 403-14.
- Kang J, Albadawi H, Patel VI, et al. Apolipoprotein E-/- mice have delayed skeletal muscle healing after hind limb ischemia-reperfusion. J Vasc Surg. 2008 48, 701-8.
- Couffinhal T, Silver M, Kearney M, et al. Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE-/- mice. Circulation. 1999 99, 3188-98.
- Xie D, Li Y, Reed EA, Odronic S et al. An engineered vascular endothelial growth factor-activating transcription factor induces therapeutic angiogenesis in ApoE knockout mice with hindlimb ischemia. J Vasc Surg. 2006 44, 166-75.
- Lejay A, Charles AL, Georg I et al. Critical Limb Ischaemia Exacerbates Mitochondrial Dysfunction in ApoE-/- Mice Compared with ApoE+/+ Mice, but N-acetyl Cysteine still Confers Protection. Eur J Vasc Endovasc Surg. 2019 58(4), 576–582.
- Feinberg MW, Moore KJ. MicroRNA Regulation of Atherosclerosis. Circ Res. 2016, 2016 118, 703–20.
- Shan Z, Yao C, Li ZL, et al. Differentially expressed microRNAs at different stages of atherosclerosis in ApoE-deficient mice. Chin Med J (Engl). 2013 126, 515-20.
- Vogiatzi G, Oikonomou E, Deftereos S, et al. Peripheral artery disease: a micro-RNA-related condition? Curr Opin Pharmacol. 2018, 2018 39, 105–112.
- Pérez-Cremades D, Cheng HS, Feinberg MW. Noncoding RNAs in Critical Limb Ischemia. Arterioscler Thromb Vasc Biol. 2020 40, 523–533.
- Gao L, Zeng H, Zhang T, Mao C, Wang Y, Han Z, Chen K, Zhang J, Fan Y, Gu J, Wang C. MicroRNA-21 deficiency attenuated atherogenesis and decreased macrophage infiltration by targeting Dusp-8. Atherosclerosis. 2019 291, 78-86.
- Peck MA, Crawford RS, Abularrage CJ, et al. A functional murine model of hindlimb demand ischemia. Ann Vasc Surg. 2010 24, 532–7.
- Desjarlais M, Dussault S, Rivard F et al. Forced expression of microRNA-146b reduces TRAF6-dependent inflammation and improves ischemia-induced neovascularization in hypercholesterolemic conditions. Atherosclerosis. 2019 289, 73-84.
- Qun L, Wenda X, Weihong S, et al. miRNA-27b modulates endothelial cell angiogenesis by directly targeting Naa15 in atherogenesis. Atherosclerosis. 2016 254, 184-192.
- Wang J, Peng H, Timur AA, et al. Receptor and Molecular Mechanism of AGGF1 Signaling in Endothelial Cell Functions and Angiogenesis. Arterioscler Thromb Vasc Biol. 2021 41, 2756–2769.
- Li L, Chen D, Li J, Wang X, et al. Aggf1 acts at the top of the genetic regulatory hierarchy in specification of hemangioblasts in zebrafish. Blood. 2014 123, 501–8.
- Fan C, Chen Q, Wang QK. Functional role of transcriptional factor TBX5 in pre-mRNA splicing and Holt-Oram syndrome via association with SC35. J Biol Chem. 2009 284, 25653-63.
- Zhang T, Yao Y, Wang J, et al. Haploinsufficiency of Klippel-Trenaunay syndrome gene Aggf1 inhibits developmental and pathological angiogenesis by inactivating PI3K and AKT and disrupts vascular integrity by activating VE-cadherin. Hum Mol Genet. 2016 25, 5094-5110.
- Tian XL, Kadaba R, You SA, et al. Identification of an angiogenic factor that when mutated causes susceptibility to Klippel-Trenaunay syndrome. Nature. 2004 427, 640-5.
- Lu Q, Yao Y, Yao Y et al. Angiogenic factor AGGF1 promotes therapeutic angiogenesis in a mouse limb ischemia model. PLoS One. 2012 7(10):e46998.
- Wang J, Peng H, Timur AA, et al. Receptor and Molecular Mechanism of AGGF1 Signaling in Endothelial Cell Functions and Angiogenesis. Arterioscler Thromb Vasc Biol. 2021 41, 2756–2769.
- Yao Y, Li Y, Song Q, et al. Angiogenic Factor AGGF1-Primed Endothelial Progenitor Cells Repair Vascular Defect in Diabetic Mice. Diabetes. 2019 68, 1635-1648.
- Yu Y, Li Y, Peng H, et al. Angiogenic factor AGGF1 blocks neointimal formation after vascular injury via interaction with integrin α7 on vascular smooth muscle cells. J Biol Chem. 2022 298(4), 101759.
- Wang J, Peng H, Timur AA, et al. Receptor and Molecular Mechanism of AGGF1 Signaling in Endothelial Cell Functions and Angiogenesis. Arterioscler Thromb Vasc Biol. 2021 41, 2756–2769.
- Harper SJ, Bates DO. VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer. 2008 8, 880-7.
- Rennel ES, Varey AH, Churchill AJ, et al. VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo. Br J Cancer. 2009 101, 1183-93.
- Catena R, Larzabal L, Larrayoz M, et al VEGF₁₂₁b and VEGF₁₆₅b are weakly angiogenic isoforms of VEGF-A. Mol Cancer. 2010 9:320.
- Kawamura H, Li X, Harper SJ, Bates DO, Claesson-Welsh L. Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Res. 2008 68, 4683-92.
- Chamorro-Jorganes A, Araldi E, Penalva LO, et al. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol. 2011 31, 2595-606.
- Yue J, Tigyi G. Conservation of miR-15a/16-1 and miR-15b/16-2 clusters. Mamm Genome. 2010 21(1-2), 88-94.
- Spinetti G, Fortunato O, Caporali A, et al. MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res. 2013 112, 335-46.
- Yin KJ, Olsen K, Hamblin M, et al. Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia. J Biol Chem. 2012 287, 27055-64.
- Desjarlais M, Dussault S, Dhahri W, et al. MicroRNA-150 Modulates Ischemia-Induced Neovascularization in Atherosclerotic Conditions. Arterioscler Thromb Vasc Biol. 2017 37, 900-908.
- Ryan TE, Schmidt CA, Tarpey MD, et al. PFKFB3-mediated glycolysis rescues myopathic outcomes in the ischemic limb. JCI Insight. 2020 5: e139628.
- Gomes de Almeida Schirmer B, Crucet M, Stivala S, et al. The NO-donor MPC-1011 stimulates angiogenesis and arteriogenesis and improves hindlimb ischemia via a cGMP-dependent pathway involving VEGF and SDF-1α. Atherosclerosis. 2020 304:30-38.
- Loffredo L, Pignatelli P, Cangemi R, et al. Imbalance between nitric oxide generation and oxidative stress in patients with peripheral arterial disease: effect of an antioxidant treatment. J Vasc Surg. 2006 44, 525-30.
- Allen JD, Giordano T, Kevil CG. Nitrite and nitric oxide metabolism in peripheral artery disease. Nitric Oxide. 2012, 2012 26, 217–22.
- Hong FF, Liang XY, Liu W, Lv S, He SJ, Kuang HB, Yang SL. Roles of eNOS in atherosclerosis treatment. Inflamm Res. 2019 68, 429–441.
- Ismaeel A, Papoutsi E, Miserlis D, et al. The Nitric Oxide System in Peripheral Artery Disease: Connection with Oxidative Stress and Biopterins. (Antioxidants Basel). 2020 9, 590. 9,.
- Woessner M, VanBruggen MD, Pieper CF, et al. Beet the Best? Circ Res. 2018, 2018 123, 654–659.
- Kenjale AA, Ham KL, Stabler T, et al. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol 2011, 2011 110, 1582–91.
- Loffredo L, Perri L, Catasca E, et al. Dark chocolate acutely improves walking autonomy in patients with peripheral artery disease. J Am Heart Assoc. 2014 3:e001072.
- McDermott MM, Criqui MH, Domanchuk K, et al. Cocoa to Improve Walking Performance in Older People With Peripheral Artery Disease: The COCOA-PAD Pilot Randomized Clinical Trial. Circ Res. 2020 126, 589-599.
- Park SY, Pekas EJ, Headid RJ et al. Acute mitochondrial antioxidant intake improves endothelial function, antioxidant enzyme activity, and exercise tolerance in patients with peripheral artery disease. Am J Physiol Heart Circ Physiol. 2020 319, H456-H467.
- Kotalczyk A, Vallabhaneni SR, Lip GYH. Review new concepts in pharmacotherapy for peripheral arterial disease. Curr Opin Cardiol. 2021, 2021 36, 720–726.
- Omarjee L, Le Pabic E, Custaud MA, et al. Effects of sildenafil on maximum walking time in patients with arterial claudication: The ARTERIOFIL study. Vascul Pharmacol. 2019 118-119, 106563.
- Silver E, Argiro A, Hong K, Adler E. Gene therapy vector-related myocarditis. Int J Cardiol. 2023 131617.
- Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs. 2017 31, 317-334.
- Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther. 2021, 2021 29, 464–488.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
