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Abstract: This work develops a new method for vector data augmentation. The proposed method
applies the Principal Component Analysis (PCA) and determines the Eigenvectors of a set of training
vectors for a Machine Learning (ML) method and uses them to generate the distilled vectors. The
training and the PCA distilled vectors have the same dimension. The user chooses the number of
vectors to be distilled and augmented to the set of training vectors. A statistical approach determines
the lowest number of vectors to be distilled such that when augmented to the original vectors the
extended set trains a ML classifier to achieve a required accuracy. Hence, the novelty of this study is,
the distillation of vectors with the PCA method and their use to augment the original set of vectors.
The advantage that comes from the novelty is that it increases the statistics of ML classifiers. To
validate the advantage, we conducted experiments with four public databases and applied four
classifiers: Neural Network, Logistic Regression, Support Vector Machine with linear and polynomial
kernels. For the purpose of augmentation, we conduct several distillations including nested (double
distillation). The latter notion means that new vectors were distilled from already distilled vectors.
We train the classifiers with three sets of vectors: original vectors; original augmented with vectors
distilled by PCA; original augmented with distilled and double distilled, by PCA, vectors. The
experimental results are presented in the paper, and they confirm the advantage that the PCA
distilled vectors increase the classification statistics of ML methods, if the distilled vectors augment
the original training vectors.

Keywords: data; distillation; augmentation; classification; machine learning

1. Introduction

A fundamental problem in the field of data classification with supervised machine learning (ML)
is the shortage and/or imbalanced training data [1,2]. For example, the training set of the public image
database ISIC2020 [3] contains only 584 malignant images and approximately 33,126 benign. Such a
large class imbalance leads to overfitting [4] which impacts the prediction accuracy of a classifier. It
holds because the model is biased toward the class with larger set of samples. In the example given
above, the ML classifier may produce a large number of False Negatives (Type 1 Error) which will
indicate a poor performance of the model.

A natural way to tackle the problem of imbalanced classes and data shortage is to fill up the gap
with additional data but in many practical cases, the process of obtaining additional real data is time
consuming and expensive. Hence, other sources and/or approaches of data generation should be
explored and used. One approach is to artificially produce data which will have the same characteristics
as the original data and after the augmenting of the training data with the artificial one the entire set
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will increase the statistical outcomes of a ML method. An approach that produces artificial data is to
apply geometric transformations on a certain part of the training images and augment the original
training set with the transformed set of images. Typical geometric image transformations are rotation,
translation, flipping [6] or cropping [7]. Another set of techniques that generate images for the purpose
of training data augmentation are Gaussian blur, image sharpening, smoothing, [5] or noise injection
[6].

In recent years, a method was developed to embed vector field (VF) into an image [8]. This method
augments the set of image features with VF features like singular points and trajectories. Augmenting
the set of features in every image of an image database increases the learning capabilities of the ML
methods and leads to the increase of its classification abilities. This claim was successfully validated
with the help of a new Sparce Representation Classification in the Quaternion Wavelet domain method
[9] and a new convolutional NN (CNN) [10]. They classified several publicly available image databases
and the corresponding image databases with embedded VFs with real [9] and complex [10] singular
points shapes as well as image databases populated with a Gaussian noise.

One may observe that the methods listed above produce new data on the base of existing data.
Also, the VF embedding methods [8,10] augment the set of image features with VF features but none of
them changes the main theme of (keep the subjects that belong to) the images, in the case of image data.

On the other hand the data distilation methods based on NNs may generate a new data or images
which do not resemble the original sets at all, but are still useful for training data augmentation.
Another useful way to generate new images on the basis of existing, for the purpose of training data
augmentation, is to use NN. In paper [11] the authors used GAN architecture to generate synthetic
images to resolve the problem of limited data availability for three different classes. For the purpose of
augmentation, the authors of paper [12] develop and implement a CNN to determine the likelihood
of an object category to be present inside a box that encompasses a given neighborhood. Further, the
method finds suitable locations on images to place new objects.

A comprehensive survey on the recent methods of data distillation, including application of NN,
is given in [13]. The authors provide detailed description of multiple data distillation techniques based
on the concept of "meta-model", "gradient”, "distribution", "trajectory” and "factorization" matching.

In the present paper we propose the novel idea to apply the PCA method for vector data
distillation from existing training data [15]. The generalized idea is to use the Eigenvectors from
the covariance matrix of the training vectors with the greatest magnitudes, as data augmenting vectors.
We conducted a set of experiments with four publicly available databases. We applied on them three
classifiers a NN, a support vector machine (SVM) and Logistic Regression. The experimental results
are shown in the paper and they confirm the advantage that augmenting the training set with PCA
distilled vectors leads to the increase of the classification statistics.

The rest of the paper is organized as follows: in its first subsection, section two describes the
new method for data distillation with the PCA, while the second subsection section three introduces a
statistical method [16] that determines lower bound of the number of distilled vectors necessary to
augmented the set of training vectors in order to provide certain accuracy of classification; section
three presents the four classifiers implemented to validate the new distillation method; next section
describes the original datasets along with the augmented vector datasets; finally, sections 5 and 6
describe our results and discuss on the novelties and the advantages of the new vectors distillation
method.

2. Vectors Distilation with Principal Component Analysis (PCA)

The PCA [14,15] is a commonly employed technique to decrease dimensionality of a given data.
It is achieved through mapping the high-dimensional dataset into a lower-dimensional space while
preserving the important features of the dataset. PCA has numerous applications to data visualization,
feature extraction, and data compression. In the present paper we propose a new application of
the PCA and employ the method to generate new data ordered from top to bottom according to its
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importance. To augment the original data, we select the most representative vectors from the top. We
apply statistical method to estimate the minimum number of vectors to be selected.

2.1. Principal Components and the Projection Matrix

Assume we are given a set of training vectors (v1,v2, .., vn)T = Dy, where v; € Rk, Hence, every
training vector v; consists of k variables, which we will call also features x;; € R forj =1,...,k and
i =1,...,n. Therefore, the matrix of the database Dy € R"*k. Then, we denote the vector of the j—th
feature with f]- € R™ and introduce it as f]- = (xlj, ..... , xnj)T. Further, we denote the mean of the j — th
feature (variable) vector f;, which is a column of Dy, with y;, and the rank of Dy with r < min{n,k}.

1. Data normalization: is the first step of the calculation and we subtract the mean of each feature
vector from the corresponding vector entries. This is done to ensure that the data is centered
around zero. It means that, the mean of every feature vector is 0. The equation for data
normalization with the help of the feature vector mean is:

Xij <= Xij — Jj, @

where Xij is the i — th feature value, where i = 1, ...., n, of the j — th feature (variable) vector, for
j=1,...,kand u jis the mean of this feature vector.

2. Covariance matrix: measures the statistical relationship between the features in the entire dataset
[15]. For this purpose we develop the equation below and calculate the Fy; entry of the features’
covariance matrix of the training data matrix Dy:

1 n
Fyj = p— Y (xij = ) (xip — p) ™. ()

i=1

It follows from Eq. 2, the covariance matrix of the Dy features is of the form:
F = {Fp]-},p =1,..,kj=1,.,k 3)

Now we calculate the Eigenvectors u;j and the Eigenvalues A; of the covariance matrix F of the
database features as follows:

Fu]- = )\jl.lj, |F — )\I| = 0, (F — )\I)llj = 0, (4)

where we denote the k X k identity with I.
3. Projection: At the present step we construct the matrix U € RX** whose columns are the
normalized Eigenvectors of the covariance matrix F of the dataset D; features:

U = [u, uy, ..., uy], (5)

where every Eigenvector u; € RX, and r is the rank of Dy. Also, let us arrange the vector columns
u; from left to right according to the decreasing Eigenvalue of the corresponding Eigenvector.
We consider the largest one of them at the left most position, if we think of the Eigenvalues as
a decreasing sequence of consecutive numbers. The matrix U is applied to project the training
dataset D¢ onto the new subspace spanned by the Eigenvectors u;,i = 1, ..., . The equation that
conducts the projection is [15]:

yi= (U'x)" =x"0, (6)

where y; € R" is the new low-dimensional representation of the i-th training sample x; € R,
where x; is a vector row in D¢y whose rank 7 < k.
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We consider that an Eigenvector is stronger than another one if the former has a bigger Eigenvalue
than the latter. Hence, we select from UT the m < r strongest components (Eigenvectors) uj, which
appear as the top m rows of the matrix. Using the strongest components, as vector columns, we
construct the matrix T € R¥*™ which transforms (maps) the original dataset D¢ into Dy € R™*™,
which we call the transformed data:

DT = D. (7)

2.2. Finding the Distilled Vectors

We conduct the inverse projection with the matrix TT € R™*K which maps the transformed data
Dt .
DiTT = Ay, ®)

into the modified original dataset Ay € R™*k such that Ay # D;. Note that the modified original
data belongs to the original kD featere space and has the same kardinality # as the initial original
data. Now, among the modified training data set A; we determine the images of the m strongest
components (Eigenvectors) we selected from UT. In order to do so, we use the consequtive numbers of
their positions in Eq.4. We call the set of m modified vectors in A; as the set of distillated vectors from
the original training vectors D;. We augment the set of initial original training vectors with the set of
distilled vectors and use the union as a training set of a ML classifier. One immediate advantage of
this kind of augmentation is to enlarge a class in case of big disproportion between two classes.

2.3. Minimum Number Training Samples (MNTS)

The present subsection provides an algorithm to determine the minimum number of training
samples [16] m needed to be distilled, out of the total number of training samples n, such that the

original samples augmented with the distilled samples train a classifier to provide an accuracy a.
MNTS

1. Assume we are looking for an accuracy a € (0, 1]. Follows that « = 1 — 4 and the confidence level
C=1—-ua/2;

2. Using the confidence level C we determine Z, /, from the standard normal distribution table [17];

3. Select the success and failure rate and denote them respectively with p and g and calculate m from

>Z ©)

Nl=

=
=

4. Consider a training set with two classes (the number of benign |B| and the number of malignant
[M|) |B| + |[M| = |S]| total number of samples.

5. Calculate %‘ =15 =@

6. my and mp are respectively the number of malignant and the number of benign distilled vectors.
my = n-cq, mg = n-cp such that my; +mp = m.

3. Classifiers Applied for Experimental Validation

In the present section we describe three classifiers we use to validate our method for distillation
and augmentation, and the advantage that comes from it. The novelty is that using the training
vectors of a ML algorithm the PCA method generates (distills) vectors which increase the classification
statistics of the ML method if the original training set is augmented with the distilled set.

3.1. Logistic Regression (LR)

Logistic Regression is a statistical technique employed to model the relation between dependent
variables. In the case of binary classification, it models the probability of an observation belonging to a
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particular class. Given a dataset with  observations and k independent variables f; € R", the logistic
regression model can be represented as:

lOglt(P(Y = 1|Dt) = .BO -+ ,Blfl + ‘Bzfz + ...+ ,kak/ (10)

where Y is the binary dependent variable with outcomes "0" or "1". Dy is the training data matrix
with n rows (samples-training vectors) and k columns (variables). By, B1, ..., B are the coefficients or
parameters estimated by the model and logit(P(Y = 1|Dy) is the natural logarithm of the odds ratio
of the probability of Y = 1 to the probability of Y = 0. The logistic function or sigmoid function is
used to convert the linear combination of independent variables f; and coefficients into a probability

between 0 and 1: .

P(Y =1|X) = TR T e 8

(11)

To evaluate the coefficients of the model, the maximum likelihood estimation algorithm [23] is
used. The goal is to maximize the likelihood of observing the dataset if the model is given. This could
be done by minimizing the negative log-likelihood:

n

L(Bo, B1, -+ — Y lyilog(pi) + (1 — y;)log(1 — p;)). (12)
i=1

Where, y; is the ground truth label for the training vector v;, while p; is the predicted probability of
Y = 1 for this vector. The parameters f; for j = 1, ..., k can be estimated using optimization algorithms
such as gradient descent [24] or Newton’s method.

3.2. Support Vector Machine (SVM)

The SVM is a useful ML tool for vectors classification [21,22]. The method was developed
and gained popularity during the nineties of the 20th century [21] and is applied mainly for binary
classification but multi-class SVMs could be built as well. Unlike the NNs which provide accurate
classification if thousands or hundreds of thousands of training samples are used, the SVMs are
effective classifiers if hundreds of training samples are available. In the present study, we employ
binary SVM to classify medical vector data. For the purpose of SVM training, we use two kinds of
data, original and original data augmented with PCA distilled data.

Following the concepts from [21,22] we define the binary SVM as the function given below and:

f(s) =sign (thiliK(si,s) + b) . (13)

In Eq. 13 the symbol /; denotes the label of the i — th training sample s;, s is the unknown sample
subject to classification, while «; is the Lagrange multiplier associated with the i — th support vector
such that }; a;l; = 0 and b = }; «; is a bias. Further, with K(s;, s) we denote the kernel of the SVM.
Examples of the most used kernels are the: linear, polynomial, radial basis function (RBF), Gaussian,
and sigmoid kernels. For the purpose of our experimental validation, of the advantage of this study,
we will use the linear and the polynomial kernels. The latter is defined below:

K(s;,8) = (1+4si's)”, (14)

where p € Z. Hence we difine a SVM with linear (SVML) kernel for p = 1 and a SVM with polynomial
(SVMP) kernal for p = 2.

3.3. Neural Network (NN)

In recent years the NN became the most used classifier because of its reliability, repeatability,
and the opportunity to highly increase the performance statistics. Note that the image is a 2D signal
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and could be presented in the form of 1D signal or as a sequence. Despite this, we could roughly
divide the NNs to those which are designed to work with images [20] and those designed to work
with signals and sequences of numbers [18,19]. A well-established representative of the first kind
is the convolutional NN (CNN)[20], while examples of the second kind include the long-short term
memory NNs (LSTM) [18,19]. The main hyperparameters of a NN consist of: architecture, input,
hidden, output layers, activation functions, loss function, optimization method, and training process.
The architecture of a NN typically consists of multiple interconnected layers, each containing a set of
neurons or nodes. The arrangement and number of layers, as well as the number of neurons in each
layer, vary depending on the specific problem and desired model complexity [18-20]. The NN model
we use consists of two hidden layers and an output layer. Each hidden layer has 512 and 256 neurons,
respectively, and uses the ReLU activation function. The output layer has 1 neuron with the Sigmoid
activation function. The equations used in the two hidden layers are described as follows:

Z1 = W1A: + Bq; A= max(O, Z1), (15)
Z, = WyAq + By; A; = max(0,Z,). (16)

Here, Wi and W, represent the matrices of weights for the first and second hidden layer
respectively, A¢ denotes the matrix of the input data. The terms B; and B, represent matrices of biases
term for the first and second hidden layers respectively. While Z and Z, denote the pre-activation
calculations of the two hidden layers. Further A; and A; represent the ReLU calculated outputs of the
first and the second layers respectively.

In what concerns the output layer that calculates the vector of predicted values we implement the
following equations:

z3 = w3 A + bs; Az = 0(z3) (17)

In Eq. (17) w3 represents the vector of weights for the output layer, b3 denotes the vector of biases,
while z3 represents the pre-activation output of the output layer, while A3 represents the vector of
predicted output calculated by Sigmoid activation function ¢.

During the training process, we apply the Adam optimizer to update the matrix and vector
parameters W1, Wy, ws, By, By, and bz. The loss function used is binary cross-entropy, and the
model’s accuracy is measured using the accuracy metric.

4. Validation Datasets and Training of the Models

4.1. Original Datasets

In the present section we describe the four datasets of feature vectors we used to validate that
augmenting the training dataset with PCA distilled vectors imroves the statistical outcomes of a ML
classifier.

®  The first one we call Skin Lesion (SL) Dataset which comprises 162 observations (samples S) of 5D
feature vectors (B, C, D, AIE\{I, Aé’l ) extracted by an active contour in [26] from skin lesion images
with a ground truth [25]. The SL dataset contains 100 benign samples (skin lesion feature vectors
labeled by B) and 62 malignant observations (labeled by M).

e The Diabetes (D) Dataset [27] consists of 768 feature vectors with a dimension 8 (8D). The vectors
are distributed in two sets labeled by P if the corresponding vector indicates Diabetes. Otherwise,
the vector is labeled by N, which means that the vector indicates NON-Diabetes. The class
P which suggests Diabetes consists of 268 vectors, while the class N contains 500 vectors of
dimension 8.


https://doi.org/10.20944/preprints202312.0821.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2023 doi:10.20944/preprints202312.0821.v1

7 of 17

e The Heart Disease (HD) Dataset [28] consists of 1025 feature vectors of dimension 13 features.
The data samples are distributed in two classes 0 = Negative(N) and 1 = Positive(P). The N
samples in the HD datasets are 499 while the P are 526.

¢ Breast Cancer (BC) Dataset [29] contains total of 569 feature vectors (observations) of dimension
30D . Out of them 347 labeled as benign-B while the remaining 212 are determined, by the medical
experts, to be malignant-M.

A read of the above databases information shows that all databases are binary. In three of the
cases, SL, D, BC the two classes are disbalanced. The benign (negative class) contains almost twice
more feature vectors than the malignant (positive) class.

4.2. Augmentation of the Original Training Data

For the validating experiments we will use the following split of the original data: 90% will be
used for training and 10% for testing. Then we will distill vectors from the selected training set and
will augment this set with the distilled vectors. Hence, we construct three kinds of augmentations. For
the purpose of distillation, we apply the method from section 2.3 to determine the minimum number
of training samples (MNTYS) to be distilled and used to augment the original training samples such
that they train a classifier to provide an accuracy of 90%. In Table 1 are present the experimental
results of classifying the 10% testing data with the three models, introduced above and, trained by the
augmented data and the same models trained by the original data.

Table 1. Comparison of Accuracy, Sensitivity, and Specificity (Skin Lesion Data).

Original skin lesion data NN LR SVML
Accuracy 88%, 79%  88%,71% 88%, 88%
Sensitivity 50% 33% 86%
Specificity 100% 81% 90%
Augmented Data 1 NN LR SVM
Accuracy 94%,75%  76%,76%  76%,76%
Sensitivity 100% 70% 70%
Specificity 86% 86% 86%
Augmented Data 2 NN LR SVM
Accuracy 82%,78%  82% ,82%  82% ,82%
Sensitivity 910/0 910/0 910/0
Specificity 60% 60% 60%

Augmented Dataset 1: Is created from the SL dataset using a testing/training split of 10%/90 %,
where we keep the proportion M/B = 0.62 same as it is in the original SL dataset. Therefore, we have
90 B, and 56 M vectors for training as well as 10 B, and 6 M for testing. Next, using PCA we distill the
26 vectors from the selected 90% (90 B, and 56 M ) training original vectors such that the proportion
M/B = 0.62 is preserved. The cardinality of the distilled vectors is 26 and is determined by the MNST
approach and consists of 16 B and 10 M. Next, we add the distilled vectors to the original 90 B and 56
M training samples. Then, we train our classifiers to learn from the augmented training set and tested
the models on the remaining 10% B and 10% M original vectors.

Augmented Dataset 2: Is for the SL dataset as well. In this augmentation we randomly select 90%
of the entire original data for training and use the remaining 10% original data for testing. It means
that in the selected training vectors the proportion M/ B is not necessary to be M/B = 0.62 as in the
entire original SL dataset. Further, in the distilled set of 26 vectors, the ratio M/ B equals the ratio of
the randomly selected training vectors.

Augmented Datasets 3: Analogously to the case of SL dataset, we use 90% randomly selected
samples for training from each class and distill, from the training samples, 101, 151 and 201 new vectors
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for each of the datasets D, HD and BC. Note, that in the distilled sets the proportion M/B or P/N is the
same as in the original dataset. Then, for each of these datasets we create an augmented training set
of the form: Original + 101-PCA-d, Original + 151-PCA-d, & Original + 201-PCA-d:. With Original
we denote the randomly selected 90% original vector samples, which consist of 90% of the M (P) and
90% of the B (N) samples. The sets of 101,151,201 are distilled from the 90% Original vectors with the
help of the PCA method described in section 2 . Therefore, for each of the original datasets D, HD and
BC we develop three augmented datasets for training. Then we train the models and test them on the
remaining 10% of the original data.

Augmented Datasets 4: Further, we respectively distilled 51, 77, and 101 samples from the 101,
151, and 201 samples, distilled earlier with the help of the same PCA method, described in section
2. In the double distilled three sets of vectors, the proportion M/B or P/N is kept the same as in the
initially distilled dataset. With the help of these new and nested distillation we create three augmented
training sets of the form: Original + (101 + 51)-PCA-d, Original + (151 + 76)-PCA-d, & Original +
(201 + 101)-PCA-d, for each of the original datasets D, HD, and BC. Therefore, we developed nine
training augmented datasets and tested them on the remaining 10% of the original data.

4.3. Model Training

Since the SL data is very small we designed a slightly different NN than the one described in
section 3.3. The modified NN is designed with the Keras Sequential API, and contains two fully
connected layers. The first layer comprises 10 neurons and implements the ReLU activation function,
while the second layer consists of one neuron with the Sigmoid activation function. The model uses
the Adam optimizer for 100 epochs with a batch size of 32 in order to be trained with the very small
sample set of 100 and 106 samples.

As for the classification of the other three datasets we applied the neural network presented in
section 3.3. The model also includes two Dropout layers with a rate of 0.5 to reduce overfitting. The
input dimension is set to 8. The model is compiled with the Adam optimizer and uses the binary
cross-entropy loss function.

Recall that the advantage of this study is that augmenting the training data with PCA distilled
vectors increases classification statistics. The next model we use to validate this advantage is the logistic
regression model described in section 3.1. We define this classifier again with the Scikit-Learn library
as a LogisticRegression object. The model uses a maximum of 1000 iterations to ensure convergence.

The last model we implemented to validate our approach is the Support Vector Machine (SVM).
We design this classifier with the help of the Scikit-Learn library and make the SVM works with two
kernels: linear and polynomial degree 2. Further we set the machine’s regularization strength C=1.

For the NN model, the accuracy score is calculated using the evaluate() method with the testing
data. For the logistic regression and SVM models, the accuracy score is calculated using the score()
method with the testing data. The confusion matrix is also calculated for each model using the
confusion_matrix() function from ScikitLearn.

4.4. Cross-Validation

To fairly validate the classification statistics of the three classifiers we implement the Monte Carlo
cross-validation approach. It randomly splits the entire set of samples into training and test samples
and repeats the slitting m times. For each split, a sample appears in exactly one of the sets training or
testing. The mean of the m experiments is calculated for each evaluating statistics. In our experiments,
we set m=10 and show the results in Tables 1-13 for the SL and HD datasets. The advantage of applying
the Monte Carlo cross-validation comes from the fact that the approach decreases the variance of the
split sample error estimate and the proportion of the training-test random splits does not depend on
the number on the selected number m.
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Table 2. Comparison of Classification Accuracy of Four Classifiers Trained on 90% of the Original D
Data and Various Augmentations, Tested on 10% of the Original D Data. The left column shows the
highest result from the 10-fold experiments, while the right one shows their average.

Training Data NN LR SVML SVMP
Original 76%,75%  73%,70%  70%,70%  70%, 70%
Original +101-PCA-d 840/0,820/0 770/0, 77% 740/0,740/0 82% , 82%
Original + (101 + 51)-PCA-d ~ 84%,79%  78%,78%  78%,78%  78% ,78%
Original + 151-PCA-d 78%,77%  73%,73%  74%,74%  80% , 80%
Original + (151 + 77)-PCA-d 82%,79%  78%,78%  64%,64%  67% ,67%
Original + 201-PCA-d 78%,75%  67%,67%  73%,73%  73% ,73%

Original + (201 + 101)-PCA-d ~ 77%,75%  70%,70%  70%,70%  73% ,73%

Table 3. Comparison of Classification Sensitivity of Different Classifiers Trained on 90% of the Original
D Data and Various Augmentations, Tested on 10% of the Original D Data. The single column shows
the average of the 10-fold experiments.

Training Data NN LR SVML SVMP
Original 52% 56% 68% 67%
Original + 101-PCA-d 77% 48%  30% 37%
Original + (101 + 51)-PCA-d  81% 56%  26% 56%
Original + 151-PCA-d 52% 41%  30% 56%
Original + (151 + 77)-PCA-d ~ 74% 52%  19% 22%
Original + 201-PCA-d 44%  22%  33% 33%

Original + (201 + 101)-PCA-d  52% 41%  41% 22%

Table 4. Comparison of Classification Specificity of Different Classifiers Trained on 90% of the Original
D Data and Various Augmentations, Tested on 10% of the Original D Data. The single column shows
the average of the 10-fold experiments.

Training Data NN LR SVML SVMP
Original data 93% 83%  72% 72%
Original + 101-PCA-d 88%  92% 94% 94%
Original + (101 + 51)-PCA-d ~ 86% 90% 88% 90%
Original + 151-PCA-d 94%  90% 98% 94%
Original + (151 + 77)-PCA-d ~ 86% 92% 88% 92%
Original + 201-PCA-d 96%  94% 94% 94%

Original + (201 + 101)-PCA-d  90% 86%  98% 90%

Table 5. Comparison of Classification Accuracy of Different Classifiers Trained on 90% of the Original
HD Data and Various Augmentations, Tested on 10% of the Original HD Data. The left column shows
the highest result from the 10-fold experiments, while the right one shows their average.

Training Data NN LR SVML SVMP
Original 98%, 95%  83%, 86%  83%,83%  66%, 83%
Original + 101-PCA-d 97%,96%  87%,87%  88%,88%  86% ,86%
Original + (101 + 51)-PCA-d 970/0,960/0 900/0,900/0 910/0,910/0 86% , 91%
Original + 151-PCA-d 97%,95%  86%,86%  86%,86%  83% ,84%
Original + (151 + 76)-PCA-d ~ 98%,95%  83%,83%  83%,83% 88% ,83%
Original + 201-PCA-d 90%,89%  86%,86%  85%,85%  83% ,83%

Original + (201 + 101)-PCA-d  91%,90%  83%,83%  83%,83%  83%, 83%
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Table 6. Comparison of Classification Sensitivity of Different Classifiers Trained on 90% of the Original
HD Data and Various Augmentations, Tested on 10% of the Original HD Data. The single column
shows the average of the 10-fold experiments.

Training Data NN LR SVML SVMP
Or1gmal 1000/0 960/0 98% 690/0
Original + 101-PCA-d 100%  94% 94% 94%
Original + (101 + 51)-PCA-d 96%  94% 96% 85%
Original + 151-PCA-d 100% 85% 89% 87%
Original + (151 + 76)-PCA-d 98%  85% 83% 87%
Original + 201-PCA-d 100%  96% 96% 98%

Original + (201 + 101)-PCA-d  91% 87%  92% 89%

Table 7. Comparison of Classification Specificity of Different Classifiers Trained on 90% of the Original
HD Data and Various Augmentations, Tested on 10% of the Original HD Data. The single column
shows the average of the 10-fold experiments.

Training Data NN LR SVML SVMP
Original 96% 79%  71% 64%
Original + 101-PCA-d 94% 80%  82% 78%
Original + (101 + 51)-PCA-d  98% 86%  86% 88%
Original + 151-PCA-d 94% 88%  84% 78%
Original + (151 + 77)-PCA-d ~ 98% 80%  84% 90%
Original + 201-PCA-d 86% 76%  74% 68%

Original + (201 + 101)-PCA-d  92%  76% 74% 78%

Table 8. Comparison of Classification Accuracy of Different Classifiers Trained on 70% of the Original
HD Data and Various Augmentations, Tested on 30% of the Original HD Data. The left column shows
the highest result from the 10-fold experiments, while the right one shows their average.

Training Data NN LR SVML SVMP
Original 940/0, 92% 840/0, 84% 850/0, 81% 690/0, 81%
Original + 101-PCA-d 89%,86%  82%,82%  82%,82%  82%, 82%
Original + (101 + 51)-PCA-d ~ 92%,91%  80%,80%  80%,80%  86% , 86%
Original + 151-PCA-d 940/0,930/0 850/0,850/0 850/0,850/0 85% ’ 85%
Original + (151 + 76)-PCA-d ~ 90%,88%  84%,84%  83%,83%  82% ,82%
Original + 201-PCA-d 92%,91%  83%,83%  83%,83%  87% ,87%

Original + (201 + 101)-PCA-d =~ 92%,90%  83%,83%  84%,84%  82%,82%

Table 9. Comparison of Classification Sensitivity of Different Classifiers Trained on 70% of the Original
HD Data and Various Augmentations, Tested on 30% of the Original HD Data. The single column
shows the average of the 10-fold experiments.

Training Data NN LR SVML SVMP
Original 92% 93%  56% 76%
Original + 101-PCA-d 93% 89%  91% 89%
Original + (101 + 51)-PCA-d  96% 88%  90% 90%
Original + 151-PCA-d 97%  94% 95% 96%
Original + (151 + 76)-PCA-d  91% 92%  93% 93%
Original + 201-PCA-d 93% 87%  86% 91%

Original + (201 + 101)-PCA-d  94% 92%  94% 89%
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Table 10. Comparison of Classification Specificity of Different Classifiers Trained on 70% of the Original
HD Data and Various Augmentations, Tested on 30% of the Original HD Data. The single column
shows the average of the 10-fold experiments.

Training Data NN LR SVML SVMP
Original 96% 82%  36% 63%
Original + 101-PCA-d 85%  74% 73% 75%
Original + (101 + 51)-PCA-d  88% 71% 81% 81%
Original + 151-PCA-d 91%  77% 73% 74%
Original + (151 + 76)-PCA-d ~ 88% 76% 72% 71%
Original + 201-PCA-d 90%  79% 81% 83%

Original + (201 + 101)-PCA-d  91% 73% 74% 75%

Table 11. Comparison of Classification Accuracy of Different Classifiers Trained on 90% of the Original
BC Data and Various Augmentations, Tested on 10% of the Original BC Data. The left column shows
the highest result from the 10-fold experiments, while the right one shows their average.

Training Data NN LR SVML SVMP
Original 89%, 87%  100%, 95%  65%, 65%  98%, 98%
Original + 101-PCA-d 100%,97%  84%,84%  88%,88%  86% ,86%
Original + (101 + 51)-PCA-d ~ 93%,90%  84%,84%  86%,86% 88% ,88%
Original + 151-PCA-d 90%,81%  95%,95%  98%,98%  98% ,98%
Original + (151 + 77)-PCA-d ~ 95%,95%  81%,81%  86%,86%  90% , 90%
Original + 201-PCA-d 97%,94%  95%,95%  97%,97%  97% ,97%

Original + (201 + 101)-PCA-d ~ 88%,84% 93%,93%  97%,97%  93% ,93%

Table 12. Comparison of Classification Sensitivity of Different Classifiers Trained on 90% of the Original
BC Data and Various Augmentations, Tested on 10% of the Original BC Data. The single column shows
the average of the 10-fold experiments.

Training Data NN LR SVML SVMP
Original 100%  79% 47% 94%

Original + 101-PCA-d 100% 100%  100% 100%
Original + (101 + 51)-PCA-d  100%  95% 95% 95%
Original + 151-PCA-d 100% 100%  100% 100%
Original + (151 + 76)-PCA-d  100% 100%  100% 100%
Original + 201-PCA-d 100%  95% 95% 95%

Original + (201 + 101)-PCA-d  100% 100%  100% 100%

Table 13. Comparison of Classification Specificity of Different Classifiers Trained on 90% of the Original
BC Data and Various Augmentations, Tested on 10% of the Original BC Data. The single column shows
the average of the 10-fold experiments.

Training Data NN LR SVML SVMP
Original 83% 100% 73% 100%
Original + 101-PCA-d 100%  75% 81% 78%
Original + (101 + 51)-PCA-d  89%  77% 80% 83%
Original + 151-PCA-d 83%  92% 97% 97%
Original + (151 + 76)-PCA-d ~ 94%  69% 78% 83%
Original + 201-PCA-d 94%  94% 97% 97%

Original + (201 + 101)-PCA-d  81%  89% 94% 89%
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4.5. Classification Metrics

Accuracy, sensitivity, and specificity are commonly used metrics to evaluate the effectiveness of a
classification model. Below is a description of each metric along with their equations. The notations
used are TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives

®  Accuracy : Accuracy measures the overall correctness of the model’s predictions by calculating
the ratio of correctly predicted instances to the total number of instances.

Accuracy = TP+ 1IN
TP + TN + FP + FN
*  Sensitivity (True Positive Rate): Sensitivity, also known as recall or true positive rate, measures
the model’s ability to correctly identify positive instances out of all the actual positive instances.

Sensitivity = TP
TP + FN
*  Specificity (True Negative Rate): Specificity calculates the model’s ability to correctly identify
negative instances out of all the actual negative instances.

Specificity = _IN
~ TN +FP

5. Experimental Results

To validate that augmenting a training set of vectors with vectors distilled from them by the
PCA method increases classification statistics, we conducted experiments applying NN, SVM and
LR classifiers on the four databases of feature vectors: skin lesion SL [25,26]; diabetes D [27]; heart
disease HD [28]; breast cancer BC [29]. For this purpose, we designed different setups for the training
datasets as described in section 4.2. The classification results obtained are presented in various
tables throughout the present section. In the reporting tables, we show two types of accuracy for
each experiment. The first percentage represents the model’s accuracy for one iteration, while the
2nd percentage indicates the mean accuracy of the Monte Carlo cross-validation approach for 10
experiments. The bold percentages in all the tables indicate the best results. We presented our results
in three separate tables for the classification metrics mentioned in 4.5 for each dataset.

In Figure 1 are shown the curves of the loss function for the NN model on the SL data. One may
observe that the curves of the loss functions for the training processes with original and Augmented
Dataset 1 resemble each other. On the other hand, the curves of the loss functions for the two validation
processes are very different. The curve for the validation process when the NN was trained with
the original vectors is convex from below. It speaks about possible divergence after the 100 epochs.
While the curve for validation when the NN was trained with the Augmented Dataset 1 is steadily
decreasing, which suggests a classification improvement if more than 100 epochs are conducted.
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Figure 1. (a) Training and Validation Loss Curves of the Original Skin Lesion Data (b) Training and
Validation Loss Curves of the Augmented Data 1.

In Table 1, we represented the comparison of classification statistics of different classifiers for
the SL dataset and its augmentations mentioned in 4.2. The total number of samples in the original
dataset is 162 and we split it to 90% vs 10% for training and testing. Studying Table 1 one can tell
that the mean accuracy of the LR has significantly increased from 71% to 82% for Augmented dataset
2. Failure in the remaining classifiers may have occurred due to the fact that the total sample size is
too Is mall. In some instances, the sensitivity has increased which indicates that the model’s ability to
detect malignant samples has increased due to the augmentation. The Specificity of the LR model has
increased by 5% which indicates a better ability of the model to detect benign lesions if Augmented
Data 1 are used. Also, the Sensitivity of the NN classifier for the Augmented Data 1 increased twice,
while the SVML increased the same statistics with 5% for the training Augmented Data 2. Furthermore,
the results show that the augmented training data balances the Sensitivity /Specificity ratio, which
tells that the classifiers are balanced according to the recognition of TP and TN samples. While in the
case of the original data the ability of the NN and the LR to recognize benign samples is twice as big as
the recognition of malignant samples.

Note that the SL dataset is small having only 168 samples. We continue the experimental validation
with relatively larger feature vectors databases: D which contains 768 feature vectors of 8D, with ration
P/N 268/500 [27]; heart desies HD which contains 1025 feature vectors of 13D, with ration P/N 499 /526
[28]; breast cancer BC which contains 569 feature vectors of 30D, with ration P/N 212/347 [29].

The results from D data classification with the four classifiers are presented in Tables 2-4. We
apply the NN, the LR and the SVM with linear and polynomial degree 2 kernels and denote the
classifiers with SVML and SVMP respectively. The classifiers are trained with Original, Original +
N1-PCA-d and Original + N; + N>-PCA-d datasets which are described in section 4.2. One may notice
that the training with the augmented data improved the classification accuracy if compared with the
training by the original data. For the NN and SVMP the highest increase came for the 10-fold (the right
column in Table 2) with the single augmentation by 101 distilled vectors. For the LR the highest results
come with the double augmentation of 101 4- 51 and 151 + 77 distilled vectors, while for the SVML the
highest outcome is obtained with 101 + 51.

On the other hand, the outcomes about Sensitivity and Specificity show high results for the
former statistics and twice smaller for the latter. It tells that the augmentations did not balance the
classification models as it did in the case of the SL dataset in Table 1.

As mentioned above we conducted distillation-augmentation experiments using the heart disease
HD [28] dataset as well. Recall it contains 1025 feature vectors of dimension 13D. Out of them there
are 499 positive (P) vectors and 526 negatives (IN). The former vectors indicate heart disease, while
the latter indicate heathy samples. The four classifiers are trained again with the following types
of sets Original, Original + N;-PCA-d and Original + Nj 4+ N»-PCA-d. The number N; denotes the
number of vectors distilled from the Original training vectors, while N> denotes the number of vectors
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distilled from the already distilled Nj vectors. The experimental results, with 90% of the P and 90% of
the N randomly selected samples for training, are shown in Tables 5, 6, 7. One may tell from there
that the average accuracy increased for all classifiers when they were trained with the augmented
set Original + 101 + 51-PCA-d, which contains double distillation. The Sensitivity increased only for
the SVMP because it is already at the maximum for the Original training data for the other classifiers.
The specificity increased (significantly for LR, SVML and SVMP) for all classifiers if trained with
augmented sets that contain single and double distillated data. Another important achievement
obtained with the HD dataset and the used distillation-augmentations is that all classifiers are balanced
according to Sensitivity /Specificity ratio.

With the help of the heart disease HD [28] dataset we conducted a second set of experiments
decreasing the number of randomly selected original vectors for training to 70%. Now the testing
vectors are the remaining 30% of the feature vectors. All other activities such as distilations and
augmentations are the same as in the case of 90% selected original feature vectors for training. The
obtained results of classification with the four chosen classifiers are shown in Tables 8,9 and 7.

A study of the results in the above tables show that selecting 70% of Original HD feature vectors
for training, distillation and augmentation keeps the same trends of increasing the classification
statistics as in the case of 90% selection. Moreover, one may observe that with the 70:30% split the
Specificity for all classifiers increased when trained with Original+151-PCA-d dataset. In summary, the
augmentation of the original training set with distilled vectors from this set increases the classification
statistics and makes the classifiers balanced. Only that, the classification statistics in the 70% split are
smaller than the classification statistics in the 90% case.

We conducted the final set of experiments with the BC dataset which contains 569 feature vectors
of 30D, with ratio P/N 212/347 [29]. For training we randomly selected, ten times, 90% of the P and
90% of the negative samples. Every time, from every selection of training samples, we distilled 101,
151 and 201 vectors with same dimensions as the original training vectors. From every distilled set we
distilled 51, 77, and 101 vectors respectively as a second distillation. The experimental results with
the Original and the augmented training sets Original + N;-PCA-d and Original + N; + Np-PCA-d
are reported in Tables 11, 12, 13. Recall with N; we denote a set of vectors distilled during the first
distillation, while N, denotes set of vectors from the second distillation.

A study of the results show the significant increase of the classification accuracy of the NN
for the augmented set Original+101-PCA-d and for the SVML classifier with the augmented set
Original+151-PCA-d . In what concern the LR and SVMP the their highest results with the latter
augmented set are same as the accuracy of classification with the Original training data set. The reason
is that the accuracies of the latter data set are high enough and there is no room for further increase.
Same observation and conclusion hold for the Specificity of the NN and the Sensitivities of the LR and
SVMP classifiers. The last two statistics exhibit a significant increase for the remaining classifiers when
trained with augmented datasets. Moreover, the ration Sensitivity /Specificity is well balanced leading
to the highest Balanced Accuracy = (Sensitivity + Specificity)/2.

6. Discussion

The present paper develops a method for vector data augmentation through distillation. The
method is based on the principal component analysis (PCA) [14,15]. Its difference with the extension
we developed for vector data distillation is that former method maps the set of original vectors to a set
of vectors with smaller dimension and same cardinality. On the other hand, the latter one maps the
original set of vectors to a set of vectors with same dimensions as the original set but with a smaller
cardinality.

The extended PCA for distillation is unproductive if the matrix T in Eq. 7 is 1-orthogonal. Note, by
definition the matrix T is 1-orthogonal if and only if TTT = I, where I is the identity matrix. Therefore,
if T is 1-orthogonal Egs. 7 and 8 will map the original training dataset Dy into itself and distilled
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vectors will not be generated. To remedy the problem, we select (m + 1) < r strongest vectors, instead
of m, as it is shown above Eq. 7.

The novelty of the present study is the development and use the extended PCA for distillation of
vectors from given set of vectors, such that the distilled vectors have same dimensions as the original
vectors.

The advantage that comes from the proposed novelty is that adding the PCA distilled vectors to
the original vectors, from which the former ones were distilled, we receive a new training set. This new
set trains a classifier such that its model has statistics higher than the statistics of the model trained
only with the original dataset.

We validated the advantage by applying four classifiers NN, LR, SVML, SVMP on four different
datasets of vectors SL, D, HD, BC. Every experimental result is produced by the Monte-Carlo 10-fold
cross-validation where we randomly select 10 times 10% of the samples for testing while the remaining
90% are used for training. Then the average is taken. For every selection the augmented vectors are
distilled from the set of selected training vectors. We conducted a second (nested) distillation from
every set of vectors generated during the first distillation. The experimental results are shown in Tables
1 to 13 where we compare the outcomes after training with original vectors only and the outcomes
after training with augmented datasets. It is evident that the latter outcomes are higher and better
balanced if compared with the former.

Our future work continues with enlarging classes which have small cardinalities. In certain
datasets exsist a big difference between the number of samples in the different classes. Hence, we will
conduct distillations from the samples of the class with smallest cardinality and will augment this class
to increase its cardinality. For this purpose, we will investigate the number of consecutive distillations
which provide meaningful and useful sample vectors.

Author Contributions: Conceptualization, Nikolay Metodiev Sirakov (NMS), Tahsin Shahnewaz (TS), and Arie
Nakhmani (AN); methodology, NMS and AN; software, TS and AN; validation, TS; formal analysis, NMS, TS, and
AN data curation, TS; writing- NMS; review and editing-TS, and AN; supervision - NMS and AN. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The link below provides access to a web page, where the reader may find: original
datasets of Diabetes, Heart Disease and Breast Cancer; the code for the NN, LR, SVM-linear, SVM-polynomial 2
classifiers to classify the Heart Disease data augmented with 151 PCA distilled vectors; the Excel file that contains
the 151 vectors distilled from a selection of 90%, original vectors for training; the Matlab code that generates the
151 distilled vectors. https:/ /github.com/nakhmani/PCA-augmentation/wiki .

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ML machine learning
VF vector field
NN neural network

CNN  convolutional NN

LSTM  long short time memory

NMTS minimum number training samples

SVM support vector machine

SVML SVM with linear kernel

SVMP  SVM with polynomial kernel second degree
LR logistic regression

SL skin lesion

D diabetes
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HD heart disease
BC  breast cancer
B benign

M malignant

P positive

N negative

TP  true positive
TN  true negative
FP false positive
FN false negative
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