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Abstract: The Transformer architecture, while adept at capturing context through self-attention, falls
short in encapsulating complex syntactic structures effectively. Addressing this gap, we introduce
the Linguistic Structure through Graphical Interpretation with BERT (LSGIB) approach in Machine
Translation (MT) frameworks. Combining the strengths of Graph Attention Network (GAT) and
BERT, LSGIB intricately captures syntactic dependencies as explicit knowledge from the source
language. This enhances the source language representation and aids in more accurate target
language generation. Our empirical analysis leverages gold-standard syntax-annotated sentences
and employs a Quality Estimation (QE) model. This approach enables us to assess translation
improvements in terms of syntactic accuracy, extending beyond traditional BLEU score metrics.
The LSGIB model demonstrates superior translation quality across diverse MT tasks, maintaining
robust BLEU scores. Our study delves into the optimal sentence lengths benefiting from LSGIB and
identifies which syntactic dependencies are more precisely captured. We observe that GAT’s ability to
learn specific dependency relations directly influences the translation quality of sentences with those
relations. Additionally, we discover that incorporating syntactic structure into BERT’s intermediate
and lower layers offers a novel approach to modeling linguistic structure in source sentences.

Keywords: machine translation; linguistic interpretation; attention models

1. Introduction

Neural Machine Translation (NMT) has significantly evolved, offering more fluent and coherent
translations than its statistical predecessors. However, despite these advancements, NMT systems
often grapple with syntactic complexities, leading to translations that are syntactically inconsistent.
This is particularly evident in scenarios involving limited bilingual training resources. The Transformer
model, a notable development in this field, employs a self-attention mechanism that, while effective
in context capturing, still struggles with intricate syntactic nuances [1,2]. This limitation is not just a
technical shortfall but also a barrier to achieving truly natural and accurate machine translations.

BERT, introduced by [3], builds upon the Transformer model, but with a significant enhancement
- pre-training. This process involves unsupervised learning on a vast corpus, equipping BERT with an
extensive understanding of language nuances. The model not only preserves the structural strengths
of the Transformer but also brings in rich, implicit linguistic knowledge, making it a valuable asset in
Machine Translation (MT) tasks [2,4,5]. BERT’s ability to capture deep linguistic features has opened
new avenues in the realm of NMT, allowing for more accurate and contextually rich translations.

The role of explicit linguistic knowledge, such as syntax, is paramount in refining NMT outputs.
Traditional linear models like RNNs and even the Transformer, while capable of processing syntactic
information to an extent, are inherently limited in their representation of non-linear syntactic structures
and relationships [8,9]. This limitation often leads to translations that, although grammatically correct,
miss the subtleties of linguistic structure and meaning.

Enter the Graph Attention Network (GAT) [10], a novel approach that represents syntactic
structures and relationships more explicitly through a graph-based topology. GAT’s ability to
encapsulate complex inter-word dependencies in a non-linear manner offers a more accurate
representation of syntactic phenomena. This explicit representation not only enhances the model’s

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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performance but also improves its interpretability, a crucial aspect in understanding and improving
NMT systems [11,12]. The integration of GAT into NMT poses a compelling question: Can the fusion
of explicit syntactic knowledge via GAT with the deep, implicit linguistic understanding of BERT lead
to a significant leap in translation quality?

To address this, we introduce the Linguistic Structure through Graphical Interpretation with
BERT (LSGIB) model. LSGIB is an innovative approach that synergizes the syntactic data processing
capabilities of GAT with the deep linguistic comprehension of BERT. This combination aims to tackle
the inherent limitations of current Transformer-based NMT systems by integrating both syntactic
structure and deep learning insights. LSGIB leverages multi-head attention mechanisms on graphs
to utilize source-side syntactic dependencies explicitly. This not only enhances the source language
representation but also provides a more informed basis for the target-side decoder.

Our research methodology involves comprehensive experiments across translation tasks from
Chinese (Zh), German (De), and Russian (Ru) to English (En). These tasks are designed to rigorously
test and demonstrate the effectiveness of the LSGIB approach. Our primary contributions through this
research are manifold:

* LSGIB marks a pioneering effort in demonstrating the efficacy of combining graph-based
syntactic knowledge with BERT in MT tasks. This model circumvents the need for training
from scratch by being fine-tuned for specific applications.

* We conduct a thorough evaluation of the translation quality, focusing on syntactic accuracy and
Quality Estimation (QE) scores. Our findings show that LSGIB not only maintains robust BLEU
scores but also enhances translation quality, particularly for shorter and medium-length source
sentences. We also identify specific syntactic dependencies that are more effectively captured by
the model, leading to improved translations.

¢ Our study delves deep into the interpretability of translation quality improvements, particularly
from a syntactic knowledge standpoint. The learning and representation of syntactic relationships
through GAT, coupled with the deep linguistic processing capabilities of BERT, lead to a novel
approach in modeling source sentences. This synergy results in significant enhancements in
translation quality, attributable to both the explicit syntactic knowledge on the graph and the
nuanced features reconstructed by BERT.

2. Related Work

The emergence of pre-trained models has revolutionized the field of Natural Language Processing
(NLP), with the Transformer architecture being a cornerstone for many of these advancements [3,17-
19]. Among these, BERT stands out as a seminal pre-trained model that leverages two innovative
pre-training objectives: the Masked Language Model (MLM) and the Next Sentence Prediction (NSP).
The MLM approach involves predicting masked words in a sentence using contextual clues, while
NSP assesses whether two sentences are sequential. These objectives enable BERT to assimilate a
vast array of implicit linguistic knowledge, which can be fine-tuned for various downstream tasks.
Recognizing BERT’s linguistic prowess, researchers have explored its integration into Neural Machine
Translation (NMT) as both an encoder and decoder to enhance sentence modeling capabilities and
overall translation performance. Notably, [20] utilized BERT directly as an encoder in MT system:s,
employing a two-stage optimization process that showed promise in low-resource language learning.
[22] focused on mitigating catastrophic forgetting in MT tasks through a concerted training framework.
Additionally, [4] fused BERT’s output features with the encoder and decoder of the MT model using
an attention module, enabling the model to fully exploit BERT’s knowledge for adaptive learning.

In MT, the role of syntactic dependency is pivotal, as it aids in the analysis of grammatical
structures and their representation in an intuitive tree format. This explicit structural information
reduces sentence ambiguity and enhances the MT model’s understanding of sentence context. Various
studies have underscored the value of incorporating syntactic information into NMT. For instance,
[25] explored the linearization and injection of syntactic information from the source language into the
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Transformer model, examining its impact on low-resource translation tasks. [26] integrated specific
syntactic dependencies into the attention mechanism, combined with the Transformer model, to
achieve a linguistics-inspired representation. [27] introduced various masks to guide the attention
mechanisms based on syntactic knowledge, allowing attention heads to select and learn from multiple
syntactic patterns. However, most approaches to modeling syntactic information have been linear,
with a lack of comprehensive exploration into topological representations of syntactic knowledge.
Moreover, the integration of syntactic information in Transformer models and scenarios involving
BERT in MT models remains an underexplored area.

Graph neural networks represent another frontier in feature integration, where nodes symbolize
words in a sentence, and edges delineate the connections between these words. The pre-definition of
a graph’s structure for a sentence, which combines prior knowledge and explicit features, is crucial
for designing an effective graph neural network. Recently, the Graph Attention Network (GAT)
has been proposed as a potent tool for representing data in non-Euclidean spaces. GAT combines
an attention mechanism to allocate varying weights to nodes on the graph, independent of the
network’s specific structure. With its capability for learning on graphs and supporting a multi-headed
attention mechanism, GAT has been increasingly used in conjunction with BERT to represent linguistic
knowledge in downstream tasks [11,28-33]. Despite these advancements, most studies have singularly
focused on syntactic knowledge and BERT in MT scenarios, leaving a gap in understanding how
the integration of explicit syntactic knowledge via GAT and BERT can enhance translation quality.
Furthermore, there is a need for more interpretability from a linguistic perspective to elucidate the
changes in translation quality brought about by these integrations. In this paper, we propose the
Linguistic Structure through Graphical Interpretation with BERT (LSGIB) model. LSGIB seeks to bridge
these gaps by combining the explicit syntactic knowledge representation capabilities of GAT with the
deep linguistic comprehension of BERT. This innovative approach aims to redefine the paradigms of
syntactic modeling in NMT, providing a more nuanced and interpretable framework for understanding
and improving translation quality.

3. Methodology

This section elaborates on the architecture of the Linguistic Structure through Graphical
Interpretation with BERT (LSGIB) model. The LSGIB model is composed of several layers: the
encoding layer, the graph attention layer, and the fusion and output layer, each playing a crucial role
in the overall translation process.

3.1. Encoding

The LSGIB model is tested on translations from three source languages to English: Chinese to
English (Zh—En), Russian to English (Ru—En), and German to English (De—En). For a given source
sentence S = [wy, wy, w3, ... w;], where i is the number of tokens, the sentence is first tokenized into
subwords and processed by BERT: S = [[CLS], w%, w%#l, wo, wg, wg#B, ... Wy, [SEP]]. Here, w"*" denotes
subwords of w;;, and [CLS] and [SEP] are BERT’s special tokens.

For each language, a specific BERT variant is utilized as the encoder: Chinese is represented by
chinese-bert-wwm-ext!, Russian by rubert-base?, and German by bert-base-german?®. These models,
while structurally similar, differ in their pre-training methodologies, offering unique insights into each
language’s linguistic nuances.

The embedding sequence generated from the last layer of BERT, iy = BERT(S), encapsulates the
representation of each subword token. To extract syntactic dependency information from the source

1 https:/ /huggingface.co/hfl/chinese-bert-wwm-ext

https:/ /huggingface.co/DeepPavlov/rubert-base-cased

3 https:/ /huggingface.co/bert-base-german-cased
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sentence S, a Universal Dependencies-based parser* is employed for tokenizing and parsing. The

parsing results facilitate the construction of a node adjacency matrix, representing the graph structure
of the sentence. Each token corresponds to a node on the graph, with node embeddings derived from
BERT’s word representations. Considering subword segmentation, these embeddings are averaged to
represent each node.

3.2. Graph Attention

The sentence structure, encompassing words and their syntactic relationships, is modeled as a
graph. In this graph, nodes represent words, and edges, the syntactic dependencies between them.
The Graph Attention Network (GAT) [10] is employed to integrate this graph-structured data with
node features. The node features input to a GAT layer are S = [xl, X, e Xy xn], X; € R, where n is
the total number of nodes and F the feature size for each node. The GAT’s functioning is summarized
in Equations (1) and (2):

K

h?ut = H g (Z zx;‘jka]) (1)
k=1 JEN;

‘ exp(LeakyReLU (a” [Wx; || Wxj]))

iy = Yoen; exp(LeakyReLU (aT [Wx; || Wxy]))

@

K
where j € N; are the 1-hop neighbors attended by node i, || denotes the concatenation of K multi-head
k=1
attention outputs, and h¢"! is the representation of node i in the given layer. zxi«‘j is the attention
coefficient, WX a linear transformation matrix, and a the weight vector for attention calculation.
LeakyReLU serves as the activation function. Simplified, the GAT layer’s feature computation is
hg = GAT(X, A; ), with X € R"*F being the input, i € R"*F’ the output, A € R"*" the adjacency

matrix, and @' the trainable parameters.

3.3. Fusion and Output

Two approaches are proposed for integrating syntactic knowledge in the LSGIB model. The first,
termed LSGIB Concatenation (LSGIBC), combines the graph’s syntactic knowledge with BERT for the
encoder, as delineated in Equations (3) and (4):

H! = concat(hg, hg) 3)

R, = attnp (L, H., HY) (4)

Here, attnp represents the encoder-decoder attention in MT engines, with [ being the I-th layer’s

output and d the decoder-side token representation. H! incorporates features from BERT (hp) and

GAT (hg) and feeds them into the encoder-decoder attention module in the decoder. The attention

features are then processed by a feed-forward network with a residual connection, similar to the vanilla
Transformer model.

The second approach, LSGIB with Decoder (LSGIBD), applies syntactic knowledge from the

graph not only to the encoder but also guides the decoder through syntax-decoder attention, as shown
in Equations (5), (6), and (7):

Iy = attnp (hy, H,, HL) ®)
hi = attng (kY by, ) ©6)
il = concat(hl, i) @)

In this setup, attnp and attng signify encoder-decoder and syntax-decoder attention, respectively. hlg is
GAT’s output, containing syntactic dependency features, and /! is the final attention feature obtained

4 https://github.com/hankcs/HanLP
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by concatenating attnp and attng. The predicted word is generated following a feed-forward network
with a residual connection and softmax function, akin to the original Transformer model.

4. Experiments

To validate the effectiveness of the Linguistic Structure through Graphical Interpretation with
BERT (LSGIB) model, we conducted extensive experiments. These experiments were based on BLEU
score assessments on two major datasets: the United Nations Parallel Corpus (UNPC)® and the
Europarl Corpus®. The datasets involved were UNPC Chinese-English (Zh—En) and Russian-English
(Ru—En), as well as Europarl German-English (De—En). For each language pair, we selected 1M
sentence pairs for the training set, and 6K and 5K sentence pairs for the validation and test sets,
respectively. Additionally, to simulate low-resource language scenarios and limited training set
conditions, we progressively reduced the training set size.

The MT engine’s encoder is a single BERT variant for each source language, serving as our baseline
model (Baseline). The Baseline and the LSGIB engines were trained under similar conditions for fair
comparison. The decoders are derived from the vanilla Transformer model, with each source language
having its unique BERT variant. These decoders consist of 6 layers and 8 attention heads, while other
parameters are kept constant. The Graph Attention Network (GAT) within the LSGIB engines has 2
layers and 6 attention heads for Zh, and 4 attention heads for Ru and De. All engines are trained using
the Adam optimizer with 8; = 0.9 and B, = 0.98, a learning rate of 2e-5, word embedding size of 768,
and cross-entropy as the loss function. The experiments were executed on NVIDIA RTX 3080 and 3090
GPUs.

As depicted in Table 1, the LSGIB engines show promising performance across various source
languages, achieving comparable or superior BLEU scores relative to the baseline models. Furthermore,
the LSGIB engines demonstrate improvements over the baseline in scenarios with small training
samples. This indicates potential benefits for other low-resource languages or limited training set
scenarios (detailed analysis in Appendix Sec ??). The explicit syntactic knowledge represented by graph
attention and BERT proves to be beneficial for learning linguistic structures in MT models. Following
the insights from [34], we also employed the COMET QE model to reassess the performance of the
engines. COMET provides a QE score ranging from 0 to 100, considering the relationship between the
source sentence, its translation, and the reference. The LSGIB engines consistently outperform in terms
of both BLEU and QE scores. However, in actual translation tasks where a reference may be missing,
and translations both within and outside the domain are required, the QE model emerges as a more
robust metric than BLEU for addressing such challenging situations.

Table 1. Performance of the LSGIB model compared with the Baseline on BLEU and COMET QE scores
for three language pairs.

Training Data Size Zh—En Baseline LSGIBC LSGIBD

BLEU 47.15 47.23 47.17
COMET 82.20 83.69 84.78
Ru—En Baseline LSGIBC LSGIBD
M BLEU 47.22 47.36 47.27
COMET 80.93 81.34 82.56
De—En Baseline LSGIBC LSGIBD
BLEU 37.59 37.67 37.63
COMET 78.02 78.66 79.37

5 https://opus.nlpl.eu/UNPC.php
6 https:/ /opus.nlpl.eu/Europarl.php


https://opus.nlpl.eu/UNPC.php
https://opus.nlpl.eu/Europarl.php
https://doi.org/10.20944/preprints202312.0921.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2023 doi:10.20944/preprints202312.0921.v1

6 0of 12

5. Experiments

In exploring the impact of the LSGIB approach on translation quality, we focus on both the
linguistic nuances and human interpretability of translations, areas where BLEU scores may not
provide sufficient insight [35,36]. To this end, we utilize a gold syntactic annotation corpus alongside
a Quality Estimation (QE) model. This methodology allows for a comprehensive assessment of the
LSGIB model’s ability to retain source sentence semantics, ensure coherence in translation semantics,
and maintain rationality in word order.

5.1. Overall Translation Quality Evaluation

For a thorough evaluation, we processed the PUD corpus in Chinese’, Russian®, and German’,

translating each language to English using both the baseline and LSGIB engines. The state-of-the-art QE
model'® was employed to score the translations, with scores ranging from 0 to 1 indicating translation
quality. To statistically validate the improvements, we used a paired t-test and box plots to analyze the
changes in translation quality pre- and post-implementation of LSGIB, with a significance level set at
0.05.

Table 2 demonstrates that, in the case of the Chinese-to-English translations, the LSGIB model
outperforms the baseline in terms of QE scores, indicating a significant improvement in translation
quality. This pattern is consistent across Russian and German translations, as evident from the t-test
results and p-values. These findings suggest that the integration of syntactic knowledge via graph
representation and BERT within the LSGIB framework leads to a noticeable enhancement in the quality
of MT outputs. Notably, the LSGIB model showcases its superiority in scenarios involving small
training samples, suggesting potential benefits for low-resource languages and limited training set
conditions.

Table 2. Analysis of translation quality improvements in PUD corpus translations across three
languages using paired t-tests between baseline and LSGIB models.

Language Sample Size Models X4 Sq t P-value

LSGIBC 0.024 0.109 7.18 p <0.001
LSGIBD 0.032 0.111 9.12 p <0.001

LSGIBC 0.024 0.042 1838 p <0.001
LSGIBD 0.034 0.045 23.67 p <0.001

LSGIBC 0.007 0.113 2162 p=0.030
LSGIBD 0.012 0.110 3.617 p <0.001

Zh 1000 Baseline

Ru 1000 Baseline

De 1000 Baseline

5.2. Influence of Sentence Length on Translation Quality

To further understand the impact of LSGIB, we investigated the relationship between the length
of source sentences and the improvements in translation quality. After translating the PUD corpus
with the baseline engines and assessing them using the QE model, we identified the bottom 30%
of translations in terms of quality. These translations were then categorized based on the length of
their source sentences, with classifications for short (S), medium (M), and long (L) sentences. This
categorization took into account the linguistic differences in character and word length across Chinese,
Russian, and German.

As illustrated in Table 3, the LSGIB model showed improvements in translation quality across
all sentence lengths and language pairs. Interestingly, the LSGIB Concatenation (LSGIBC) variant

7 https:/ /github.com/UniversalDependencies/UD_Chinese-PUD
8 https://github.com/UniversalDependencies/UD_Russian-PUD
9 https:/ /github.com/UniversalDependencies/UD_German-PUD
10 https:/ /github.com/TharinduDR / TransQuest
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exhibited a notable efficacy for longer sentences, while the LSGIB with Decoder (LSGIBD) variant was
particularly effective in enhancing translations of shorter and medium-length sentences. This indicates
the nuanced capability of LSGIB in adapting to different sentence structures and lengths, offering
significant improvements especially in scenarios where traditional metrics like BLEU may not fully
capture translation nuances.

Table 3. Analysis of QE scores for low-quality translations across different sentence lengths, comparing
Baseline and LSGIB models.

Zh
Sen Length  Samples Baseline LSGIBC LSGIBD
Long 93 0.425 0.512 0.508
Medium 142 0.423 0.500 0.517
Short 65 0.434 0.543 0.560
Ru
Sen Length  Samples Baseline LSGIBC LSGIBD
Long 32 0.719 0.751 0.745
Medium 155 0.698 0.746 0.750
Short 113 0.686 0.752 0.747
De
Sen Length  Samples Baseline LSGIBC LSGIBD
Long 57 0.513 0.554 0.549
Medium 150 0.512 0.561 0.586
Short 93 0.482 0.574 0.578

5.3. Impact of Syntactic Relations on Translation Quality

We next focused on how specific syntactic relations in source sentences are influenced by the
LSGIB model. By grouping low-quality translations based on their syntactic relations, we were able to
determine which types of dependencies benefited the most from our approach. Each group of sentences
containing a specific dependency relation was analyzed to measure the average improvement in QE
scores post-LSGIB application.

Table 4 presents a comparative analysis of syntactic relations improvement for each language
under the LSGIB model. The study reveals diverse degrees of enhancement in translation quality
based on dependency relations across different languages. It's noteworthy that while both SGBC and
SGBD variants of LSGIB incorporate graph syntactic knowledge, their dependency learning patterns
vary. For instance, in the Chinese language, the "flat" dependency is more effectively handled by SGBC
compared to SGBD. This suggests a nuanced differentiation in how each variant processes syntactic
relations, and how this influences the overall translation quality. Despite these differences, certain
syntactic relations consistently show improvement across both SGBC and SGBD models, highlighting
the LSGIB’s capability to explicitly enhance understanding of specific common dependencies.

In assessing the influence of the LSGIB model on translation quality, a key question arises: how
does the explicit syntactic knowledge encoded in graphs interplay with the decision-making process
of BERT? To delve into this, we embark on an exploration of the interpretability of our model with
respect to syntax, focusing on syntactic prediction tests using Graph Attention Network (GAT) and
representation similarity analysis with BERT.


https://doi.org/10.20944/preprints202312.0921.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2023 doi:10.20944/preprints202312.0921.v1

8of 12

Table 4. Enhanced QE scores for specific syntactic dependencies in source sentences across three
languages using the LSGIB model.

Zh
Baseline LSGIB-C Baseline LSGIB-D
obl:agent 0.379 0.576 obl:agent 0.379 0.597
discourse:sp 0.388 0.502 iobj 0.387 0.511
flat 0.387 0.494 nsubj:pass 0.423 0.545
flat:name 0.415 0.518 appos 0.404 0.518
mark:prt 0.435 0.532 discourse:sp 0.388 0.501
Ru
Baseline LSGIB-C Baseline LSGIB-D
orphan 0.608 0.768 orphan 0.608 0.719
aux 0.700 0.764 aux 0.700 0.777
ccomp 0.681 0.745 ccomp 0.681 0.747
flat:name 0.703 0.761 discourse 0.614 0.676
fixed 0.688 0.742 fixed 0.688 0.750
De
Baseline  LSGIB-C Baseline LSGIB-D
csubj 0.449 0.566 flat 0.442 0.625
flat 0.442 0.553 csubj 0.449 0.554
expl 0.486 0.573 expl 0.486 0.589
compound:prt 0.493 0.579 compound:prt 0.493 0.595
compound 0.495 0.577 cop 0.502 0.586

5.4. Syntactic Predictions in GAT

A crucial determinant of translation quality improvement is whether GAT can effectively
comprehend syntactic structures. We investigate this by designing a syntactic dependency prediction
task for GAT. This experiment aims to ascertain the correlation between syntactic knowledge
represented on graphs and the resultant translation quality. The Parallel Universal Dependencies
(PUD) corpus is utilized as the training, validation, and test sets for each language, divided into 800,
100, and 100 sentences, respectively. Within these sentences, words and their syntactic dependencies
are modeled as nodes and edges on the graph. GAT’s task is to learn node associations to predict
various dependency relations, with the F1-score as the evaluation metric.

Table 5 showcases the training efficiency of GAT, highlighting that only 2 layers are necessary for
it to effectively learn dependency relations. By correlating GAT’s dependency relation prediction scores
with the translation quality of source sentences containing these relations, we discern a significant
pattern: proficient dependency relation learning by GAT is mirrored in the improved translation quality
of corresponding sentences. For example, GAT’s adept prediction of the ‘conj” dependency in Chinese
translations leads to notable enhancements in the translation quality of sentences containing this
relation. This observation is consistent across Russian and German as well. However, some dependency
relations, such as “iobj” and 'nusbj:pass’, present challenges for GAT’s prediction capabilities, and
relations like ‘obl:tmod” in Chinese and German show lower prediction scores yet still contribute to
improved translation quality. This indicates that while robust dependency relation learning by GAT
is a key factor in enhancing translation quality, it is not an absolute determinant. Factors such as
the encoder or decoder requiring more explicit structural information from GAT, irrespective of the
correctness of syntactic annotation, also play a crucial role.
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Table 5. Efficacy of GAT in learning syntactic dependencies as reflected by F1-scores across three

languages.
Zh Ru De

Samples Score Samples  Score Samples Score
mark 291 0.986 det 476 0.990 case 2053 0.992
cc 283 0.984 root 1000 0987 «cc 724 0.987
conj 383 0.970 amod 1791 0.982  det 2771 0.987
nummod 809 0.965 case 2121 0.978 mark 459 0.981
root 1000 0.955 aux:pass 128 0.974 advmod 1103 0.932
cop 251 0945 cop 87 0.971 root 1000 0.931
det 338 0.935 advmod 914 0.934 aux:pass 230 0.927
case 1319 0934 cc 599 0.930 amod 1089 0.913
nmod 702 0.933 flat:foreign 97 0.921 flat:name 164 0.876
amod 420 0.927  obl 1465 0.900 aux 365 0.868

Table 6. Correlation between GAT’s syntactic prediction and BERT’s layer similarity as indicated by
RSA scores for each language. *: Representations from Baseline and LSGIB-D for comparison.

Zh
GAT RSA Layer RSA* Layer
mark 0.986 0.178 4 0.208 4
cc 0.984 0.274 4 0.354 5
conj 0.970 0.380 5 0.152 5
nummod 0965 0.274 4 0.237 3
root 0.955 0.216 4 0.390 4
Ru
GAT RSA Layer RSA* Layer
det 0.990 0.426 4 0.408 3
root 0.987  0.466 3 0.504 3
amod 0.982 0.444 3 0.391 4
case 0978 0.462 4 0.413 4
aux:pass 0974 0.357 3 0.327 3
De
GAT RSA Layer RSA* Layer
case 0.992  0.686 5 0.759 2
cc 0.987  0.591 6 0.741 6
det 0.987 0.584 8 0.817 6
mark 0.981 0.676 6 0.769 6
advmod 0932 0.733 6 0.774 8

6. Conclusions

In this study, we introduced the Linguistic Structure through Graphical Interpretation with BERT
(LSGIB) model, which represents a novel approach to integrating syntactic knowledge into machine
translation (MT) tasks. The LSGIB model leverages the capabilities of the Graph Attention Network
(GAT) in conjunction with the advanced linguistic comprehension of BERT to enhance translation
quality. Our experiments provided insights into the mechanisms through which syntactic knowledge
contributes to the improvement of translation outcomes. Notably, the LSGIB model demonstrates
how explicit syntactic structures, when effectively captured and integrated, can lead to translations
that are not only more accurate but also more coherent and semantically rich. This paper, through
its exploration of two distinct approaches under the LSGIB umbrella, lays the groundwork for a
deeper understanding of the role of syntactic knowledge in MT. We have shown that by incorporating
syntactic information via GAT, along with the deep learning capabilities of BERT, it is possible to
achieve significant enhancements in translation quality. Our findings underscore the potential of
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combining graph-based representations with pre-trained language models in the realm of natural
language processing. Looking ahead, our future work will delve further into exploring advanced
methods for modeling critical linguistic knowledge through graphical representations in MT tasks.
We aim to refine and extend the LSGIB model, seeking to uncover more nuanced ways in which
syntactic and semantic information can be harnessed to push the boundaries of translation accuracy
and fluency. The ultimate goal is to develop MT systems that not only translate languages but do so
with an understanding of linguistic intricacies akin to that of human translators.
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