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Abstract: The Transformer architecture, while adept at capturing context through self-attention, falls

short in encapsulating complex syntactic structures effectively. Addressing this gap, we introduce

the Linguistic Structure through Graphical Interpretation with BERT (LSGIB) approach in Machine

Translation (MT) frameworks. Combining the strengths of Graph Attention Network (GAT) and

BERT, LSGIB intricately captures syntactic dependencies as explicit knowledge from the source

language. This enhances the source language representation and aids in more accurate target

language generation. Our empirical analysis leverages gold-standard syntax-annotated sentences

and employs a Quality Estimation (QE) model. This approach enables us to assess translation

improvements in terms of syntactic accuracy, extending beyond traditional BLEU score metrics.

The LSGIB model demonstrates superior translation quality across diverse MT tasks, maintaining

robust BLEU scores. Our study delves into the optimal sentence lengths benefiting from LSGIB and

identifies which syntactic dependencies are more precisely captured. We observe that GAT’s ability to

learn specific dependency relations directly influences the translation quality of sentences with those

relations. Additionally, we discover that incorporating syntactic structure into BERT’s intermediate

and lower layers offers a novel approach to modeling linguistic structure in source sentences.

Keywords: machine translation; linguistic interpretation; attention models

1. Introduction

Neural Machine Translation (NMT) has significantly evolved, offering more fluent and coherent

translations than its statistical predecessors. However, despite these advancements, NMT systems

often grapple with syntactic complexities, leading to translations that are syntactically inconsistent.

This is particularly evident in scenarios involving limited bilingual training resources. The Transformer

model, a notable development in this field, employs a self-attention mechanism that, while effective

in context capturing, still struggles with intricate syntactic nuances [1,2]. This limitation is not just a

technical shortfall but also a barrier to achieving truly natural and accurate machine translations.

BERT, introduced by [3], builds upon the Transformer model, but with a significant enhancement

- pre-training. This process involves unsupervised learning on a vast corpus, equipping BERT with an

extensive understanding of language nuances. The model not only preserves the structural strengths

of the Transformer but also brings in rich, implicit linguistic knowledge, making it a valuable asset in

Machine Translation (MT) tasks [2,4,5]. BERT’s ability to capture deep linguistic features has opened

new avenues in the realm of NMT, allowing for more accurate and contextually rich translations.

The role of explicit linguistic knowledge, such as syntax, is paramount in refining NMT outputs.

Traditional linear models like RNNs and even the Transformer, while capable of processing syntactic

information to an extent, are inherently limited in their representation of non-linear syntactic structures

and relationships [8,9]. This limitation often leads to translations that, although grammatically correct,

miss the subtleties of linguistic structure and meaning.

Enter the Graph Attention Network (GAT) [10], a novel approach that represents syntactic

structures and relationships more explicitly through a graph-based topology. GAT’s ability to

encapsulate complex inter-word dependencies in a non-linear manner offers a more accurate

representation of syntactic phenomena. This explicit representation not only enhances the model’s
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performance but also improves its interpretability, a crucial aspect in understanding and improving

NMT systems [11,12]. The integration of GAT into NMT poses a compelling question: Can the fusion

of explicit syntactic knowledge via GAT with the deep, implicit linguistic understanding of BERT lead

to a significant leap in translation quality?

To address this, we introduce the Linguistic Structure through Graphical Interpretation with

BERT (LSGIB) model. LSGIB is an innovative approach that synergizes the syntactic data processing

capabilities of GAT with the deep linguistic comprehension of BERT. This combination aims to tackle

the inherent limitations of current Transformer-based NMT systems by integrating both syntactic

structure and deep learning insights. LSGIB leverages multi-head attention mechanisms on graphs

to utilize source-side syntactic dependencies explicitly. This not only enhances the source language

representation but also provides a more informed basis for the target-side decoder.

Our research methodology involves comprehensive experiments across translation tasks from

Chinese (Zh), German (De), and Russian (Ru) to English (En). These tasks are designed to rigorously

test and demonstrate the effectiveness of the LSGIB approach. Our primary contributions through this

research are manifold:

• LSGIB marks a pioneering effort in demonstrating the efficacy of combining graph-based

syntactic knowledge with BERT in MT tasks. This model circumvents the need for training

from scratch by being fine-tuned for specific applications.
• We conduct a thorough evaluation of the translation quality, focusing on syntactic accuracy and

Quality Estimation (QE) scores. Our findings show that LSGIB not only maintains robust BLEU

scores but also enhances translation quality, particularly for shorter and medium-length source

sentences. We also identify specific syntactic dependencies that are more effectively captured by

the model, leading to improved translations.
• Our study delves deep into the interpretability of translation quality improvements, particularly

from a syntactic knowledge standpoint. The learning and representation of syntactic relationships

through GAT, coupled with the deep linguistic processing capabilities of BERT, lead to a novel

approach in modeling source sentences. This synergy results in significant enhancements in

translation quality, attributable to both the explicit syntactic knowledge on the graph and the

nuanced features reconstructed by BERT.

2. Related Work

The emergence of pre-trained models has revolutionized the field of Natural Language Processing

(NLP), with the Transformer architecture being a cornerstone for many of these advancements [3,17–

19]. Among these, BERT stands out as a seminal pre-trained model that leverages two innovative

pre-training objectives: the Masked Language Model (MLM) and the Next Sentence Prediction (NSP).

The MLM approach involves predicting masked words in a sentence using contextual clues, while

NSP assesses whether two sentences are sequential. These objectives enable BERT to assimilate a

vast array of implicit linguistic knowledge, which can be fine-tuned for various downstream tasks.

Recognizing BERT’s linguistic prowess, researchers have explored its integration into Neural Machine

Translation (NMT) as both an encoder and decoder to enhance sentence modeling capabilities and

overall translation performance. Notably, [20] utilized BERT directly as an encoder in MT systems,

employing a two-stage optimization process that showed promise in low-resource language learning.

[22] focused on mitigating catastrophic forgetting in MT tasks through a concerted training framework.

Additionally, [4] fused BERT’s output features with the encoder and decoder of the MT model using

an attention module, enabling the model to fully exploit BERT’s knowledge for adaptive learning.

In MT, the role of syntactic dependency is pivotal, as it aids in the analysis of grammatical

structures and their representation in an intuitive tree format. This explicit structural information

reduces sentence ambiguity and enhances the MT model’s understanding of sentence context. Various

studies have underscored the value of incorporating syntactic information into NMT. For instance,

[25] explored the linearization and injection of syntactic information from the source language into the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 December 2023                   doi:10.20944/preprints202312.0921.v1

https://doi.org/10.20944/preprints202312.0921.v1


3 of 12

Transformer model, examining its impact on low-resource translation tasks. [26] integrated specific

syntactic dependencies into the attention mechanism, combined with the Transformer model, to

achieve a linguistics-inspired representation. [27] introduced various masks to guide the attention

mechanisms based on syntactic knowledge, allowing attention heads to select and learn from multiple

syntactic patterns. However, most approaches to modeling syntactic information have been linear,

with a lack of comprehensive exploration into topological representations of syntactic knowledge.

Moreover, the integration of syntactic information in Transformer models and scenarios involving

BERT in MT models remains an underexplored area.

Graph neural networks represent another frontier in feature integration, where nodes symbolize

words in a sentence, and edges delineate the connections between these words. The pre-definition of

a graph’s structure for a sentence, which combines prior knowledge and explicit features, is crucial

for designing an effective graph neural network. Recently, the Graph Attention Network (GAT)

has been proposed as a potent tool for representing data in non-Euclidean spaces. GAT combines

an attention mechanism to allocate varying weights to nodes on the graph, independent of the

network’s specific structure. With its capability for learning on graphs and supporting a multi-headed

attention mechanism, GAT has been increasingly used in conjunction with BERT to represent linguistic

knowledge in downstream tasks [11,28–33]. Despite these advancements, most studies have singularly

focused on syntactic knowledge and BERT in MT scenarios, leaving a gap in understanding how

the integration of explicit syntactic knowledge via GAT and BERT can enhance translation quality.

Furthermore, there is a need for more interpretability from a linguistic perspective to elucidate the

changes in translation quality brought about by these integrations. In this paper, we propose the

Linguistic Structure through Graphical Interpretation with BERT (LSGIB) model. LSGIB seeks to bridge

these gaps by combining the explicit syntactic knowledge representation capabilities of GAT with the

deep linguistic comprehension of BERT. This innovative approach aims to redefine the paradigms of

syntactic modeling in NMT, providing a more nuanced and interpretable framework for understanding

and improving translation quality.

3. Methodology

This section elaborates on the architecture of the Linguistic Structure through Graphical

Interpretation with BERT (LSGIB) model. The LSGIB model is composed of several layers: the

encoding layer, the graph attention layer, and the fusion and output layer, each playing a crucial role

in the overall translation process.

3.1. Encoding

The LSGIB model is tested on translations from three source languages to English: Chinese to

English (Zh→En), Russian to English (Ru→En), and German to English (De→En). For a given source

sentence S = [w1, w2, w3, . . . wi], where i is the number of tokens, the sentence is first tokenized into

subwords and processed by BERT: S̃ = [[CLS], w1
1, w1#1

1 , w2, w3
3, w3#3

3 , . . . wn, [SEP]]. Here, wn#n denotes

subwords of wn, and [CLS] and [SEP] are BERT’s special tokens.

For each language, a specific BERT variant is utilized as the encoder: Chinese is represented by

chinese-bert-wwm-ext1, Russian by rubert-base2, and German by bert-base-german3. These models,

while structurally similar, differ in their pre-training methodologies, offering unique insights into each

language’s linguistic nuances.

The embedding sequence generated from the last layer of BERT, hB = BERT(S̃), encapsulates the

representation of each subword token. To extract syntactic dependency information from the source

1 https://huggingface.co/hfl/chinese-bert-wwm-ext
2 https://huggingface.co/DeepPavlov/rubert-base-cased
3 https://huggingface.co/bert-base-german-cased
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sentence S̃, a Universal Dependencies-based parser4 is employed for tokenizing and parsing. The

parsing results facilitate the construction of a node adjacency matrix, representing the graph structure

of the sentence. Each token corresponds to a node on the graph, with node embeddings derived from

BERT’s word representations. Considering subword segmentation, these embeddings are averaged to

represent each node.

3.2. Graph Attention

The sentence structure, encompassing words and their syntactic relationships, is modeled as a

graph. In this graph, nodes represent words, and edges, the syntactic dependencies between them.

The Graph Attention Network (GAT) [10] is employed to integrate this graph-structured data with

node features. The node features input to a GAT layer are S̃ = [x1, x2, . . . xi, . . . xn], xi ∈ R
F, where n is

the total number of nodes and F the feature size for each node. The GAT’s functioning is summarized

in Equations (1) and (2):

hout
i =

K

‖
k=1

σ



 ∑
j∈Ni

αk
ijW

kxj



 (1)

αk
ij =

exp(LeakyReLU(aT [Wxi ‖ Wxj]))

∑v∈Ni
exp(LeakyReLU(aT [Wxi ‖ Wxv]))

(2)

where j ∈ Ni are the 1-hop neighbors attended by node i,
K

‖
k=1

denotes the concatenation of K multi-head

attention outputs, and hout
i is the representation of node i in the given layer. αk

ij is the attention

coefficient, Wk a linear transformation matrix, and a the weight vector for attention calculation.

LeakyReLU serves as the activation function. Simplified, the GAT layer’s feature computation is

hG = GAT(X, A; Θl), with X ∈ R
n×F being the input, hG ∈ R

n×F′
the output, A ∈ R

n×n the adjacency

matrix, and Θl the trainable parameters.

3.3. Fusion and Output

Two approaches are proposed for integrating syntactic knowledge in the LSGIB model. The first,

termed LSGIB Concatenation (LSGIBC), combines the graph’s syntactic knowledge with BERT for the

encoder, as delineated in Equations (3) and (4):

Hl
e = concat(hB, hG) (3)

h̃l
d = attnD(h

l
d, Hl

e, Hl
e) (4)

Here, attnD represents the encoder-decoder attention in MT engines, with l being the l-th layer’s

output and d the decoder-side token representation. Hl
e incorporates features from BERT (hB) and

GAT (hG) and feeds them into the encoder-decoder attention module in the decoder. The attention

features are then processed by a feed-forward network with a residual connection, similar to the vanilla

Transformer model.

The second approach, LSGIB with Decoder (LSGIBD), applies syntactic knowledge from the

graph not only to the encoder but also guides the decoder through syntax-decoder attention, as shown

in Equations (5), (6), and (7):
h̃l

d = attnD(h
l
d, Hl

e, Hl
e) (5)

h̃l
s = attnS(h

l
d, hl

g, hl
g) (6)

h̃l
t = concat(h̃l

d, h̃l
s) (7)

In this setup, attnD and attnS signify encoder-decoder and syntax-decoder attention, respectively. hl
g is

GAT’s output, containing syntactic dependency features, and h̃l
t is the final attention feature obtained

4 https://github.com/hankcs/HanLP
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by concatenating attnD and attnS. The predicted word is generated following a feed-forward network

with a residual connection and softmax function, akin to the original Transformer model.

4. Experiments

To validate the effectiveness of the Linguistic Structure through Graphical Interpretation with

BERT (LSGIB) model, we conducted extensive experiments. These experiments were based on BLEU

score assessments on two major datasets: the United Nations Parallel Corpus (UNPC)5 and the

Europarl Corpus6. The datasets involved were UNPC Chinese-English (Zh→En) and Russian-English

(Ru→En), as well as Europarl German-English (De→En). For each language pair, we selected 1M

sentence pairs for the training set, and 6K and 5K sentence pairs for the validation and test sets,

respectively. Additionally, to simulate low-resource language scenarios and limited training set

conditions, we progressively reduced the training set size.

The MT engine’s encoder is a single BERT variant for each source language, serving as our baseline

model (Baseline). The Baseline and the LSGIB engines were trained under similar conditions for fair

comparison. The decoders are derived from the vanilla Transformer model, with each source language

having its unique BERT variant. These decoders consist of 6 layers and 8 attention heads, while other

parameters are kept constant. The Graph Attention Network (GAT) within the LSGIB engines has 2

layers and 6 attention heads for Zh, and 4 attention heads for Ru and De. All engines are trained using

the Adam optimizer with β1 = 0.9 and β2 = 0.98, a learning rate of 2e-5, word embedding size of 768,

and cross-entropy as the loss function. The experiments were executed on NVIDIA RTX 3080 and 3090

GPUs.

As depicted in Table 1, the LSGIB engines show promising performance across various source

languages, achieving comparable or superior BLEU scores relative to the baseline models. Furthermore,

the LSGIB engines demonstrate improvements over the baseline in scenarios with small training

samples. This indicates potential benefits for other low-resource languages or limited training set

scenarios (detailed analysis in Appendix Sec ??). The explicit syntactic knowledge represented by graph

attention and BERT proves to be beneficial for learning linguistic structures in MT models. Following

the insights from [34], we also employed the COMET QE model to reassess the performance of the

engines. COMET provides a QE score ranging from 0 to 100, considering the relationship between the

source sentence, its translation, and the reference. The LSGIB engines consistently outperform in terms

of both BLEU and QE scores. However, in actual translation tasks where a reference may be missing,

and translations both within and outside the domain are required, the QE model emerges as a more

robust metric than BLEU for addressing such challenging situations.

Table 1. Performance of the LSGIB model compared with the Baseline on BLEU and COMET QE scores

for three language pairs.

Training Data Size Zh→En Baseline LSGIBC LSGIBD

1M

BLEU 47.15 47.23 47.17
COMET 82.20 83.69 84.78
Ru→En Baseline LSGIBC LSGIBD
BLEU 47.22 47.36 47.27
COMET 80.93 81.34 82.56
De→En Baseline LSGIBC LSGIBD
BLEU 37.59 37.67 37.63
COMET 78.02 78.66 79.37

5 https://opus.nlpl.eu/UNPC.php
6 https://opus.nlpl.eu/Europarl.php

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 December 2023                   doi:10.20944/preprints202312.0921.v1

https://opus.nlpl.eu/UNPC.php
https://opus.nlpl.eu/Europarl.php
https://doi.org/10.20944/preprints202312.0921.v1


6 of 12

5. Experiments

In exploring the impact of the LSGIB approach on translation quality, we focus on both the

linguistic nuances and human interpretability of translations, areas where BLEU scores may not

provide sufficient insight [35,36]. To this end, we utilize a gold syntactic annotation corpus alongside

a Quality Estimation (QE) model. This methodology allows for a comprehensive assessment of the

LSGIB model’s ability to retain source sentence semantics, ensure coherence in translation semantics,

and maintain rationality in word order.

5.1. Overall Translation Quality Evaluation

For a thorough evaluation, we processed the PUD corpus in Chinese7, Russian8, and German9,

translating each language to English using both the baseline and LSGIB engines. The state-of-the-art QE

model10 was employed to score the translations, with scores ranging from 0 to 1 indicating translation

quality. To statistically validate the improvements, we used a paired t-test and box plots to analyze the

changes in translation quality pre- and post-implementation of LSGIB, with a significance level set at

0.05.

Table 2 demonstrates that, in the case of the Chinese-to-English translations, the LSGIB model

outperforms the baseline in terms of QE scores, indicating a significant improvement in translation

quality. This pattern is consistent across Russian and German translations, as evident from the t-test

results and p-values. These findings suggest that the integration of syntactic knowledge via graph

representation and BERT within the LSGIB framework leads to a noticeable enhancement in the quality

of MT outputs. Notably, the LSGIB model showcases its superiority in scenarios involving small

training samples, suggesting potential benefits for low-resource languages and limited training set

conditions.

Table 2. Analysis of translation quality improvements in PUD corpus translations across three

languages using paired t-tests between baseline and LSGIB models.

Language Sample Size Models x̄d Sd t P-value

Zh 1000 Baseline
LSGIBC 0.024 0.109 7.18 p < 0.001
LSGIBD 0.032 0.111 9.12 p < 0.001

Ru 1000 Baseline
LSGIBC 0.024 0.042 18.38 p < 0.001
LSGIBD 0.034 0.045 23.67 p < 0.001

De 1000 Baseline
LSGIBC 0.007 0.113 2.162 p = 0.030
LSGIBD 0.012 0.110 3.617 p < 0.001

5.2. Influence of Sentence Length on Translation Quality

To further understand the impact of LSGIB, we investigated the relationship between the length

of source sentences and the improvements in translation quality. After translating the PUD corpus

with the baseline engines and assessing them using the QE model, we identified the bottom 30%

of translations in terms of quality. These translations were then categorized based on the length of

their source sentences, with classifications for short (S), medium (M), and long (L) sentences. This

categorization took into account the linguistic differences in character and word length across Chinese,

Russian, and German.

As illustrated in Table 3, the LSGIB model showed improvements in translation quality across

all sentence lengths and language pairs. Interestingly, the LSGIB Concatenation (LSGIBC) variant

7 https://github.com/UniversalDependencies/UD_Chinese-PUD
8 https://github.com/UniversalDependencies/UD_Russian-PUD
9 https://github.com/UniversalDependencies/UD_German-PUD
10 https://github.com/TharinduDR/TransQuest
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exhibited a notable efficacy for longer sentences, while the LSGIB with Decoder (LSGIBD) variant was

particularly effective in enhancing translations of shorter and medium-length sentences. This indicates

the nuanced capability of LSGIB in adapting to different sentence structures and lengths, offering

significant improvements especially in scenarios where traditional metrics like BLEU may not fully

capture translation nuances.

Table 3. Analysis of QE scores for low-quality translations across different sentence lengths, comparing

Baseline and LSGIB models.

Zh
Sen Length Samples Baseline LSGIBC LSGIBD

Long 93 0.425 0.512 0.508
Medium 142 0.423 0.500 0.517

Short 65 0.434 0.543 0.560

Ru
Sen Length Samples Baseline LSGIBC LSGIBD

Long 32 0.719 0.751 0.745
Medium 155 0.698 0.746 0.750

Short 113 0.686 0.752 0.747

De
Sen Length Samples Baseline LSGIBC LSGIBD

Long 57 0.513 0.554 0.549
Medium 150 0.512 0.561 0.586

Short 93 0.482 0.574 0.578

5.3. Impact of Syntactic Relations on Translation Quality

We next focused on how specific syntactic relations in source sentences are influenced by the

LSGIB model. By grouping low-quality translations based on their syntactic relations, we were able to

determine which types of dependencies benefited the most from our approach. Each group of sentences

containing a specific dependency relation was analyzed to measure the average improvement in QE

scores post-LSGIB application.

Table 4 presents a comparative analysis of syntactic relations improvement for each language

under the LSGIB model. The study reveals diverse degrees of enhancement in translation quality

based on dependency relations across different languages. It’s noteworthy that while both SGBC and

SGBD variants of LSGIB incorporate graph syntactic knowledge, their dependency learning patterns

vary. For instance, in the Chinese language, the "flat" dependency is more effectively handled by SGBC

compared to SGBD. This suggests a nuanced differentiation in how each variant processes syntactic

relations, and how this influences the overall translation quality. Despite these differences, certain

syntactic relations consistently show improvement across both SGBC and SGBD models, highlighting

the LSGIB’s capability to explicitly enhance understanding of specific common dependencies.

In assessing the influence of the LSGIB model on translation quality, a key question arises: how

does the explicit syntactic knowledge encoded in graphs interplay with the decision-making process

of BERT? To delve into this, we embark on an exploration of the interpretability of our model with

respect to syntax, focusing on syntactic prediction tests using Graph Attention Network (GAT) and

representation similarity analysis with BERT.
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Table 4. Enhanced QE scores for specific syntactic dependencies in source sentences across three

languages using the LSGIB model.

Zh
Baseline LSGIB-C Baseline LSGIB-D

obl:agent 0.379 0.576 obl:agent 0.379 0.597
discourse:sp 0.388 0.502 iobj 0.387 0.511
flat 0.387 0.494 nsubj:pass 0.423 0.545
flat:name 0.415 0.518 appos 0.404 0.518
mark:prt 0.435 0.532 discourse:sp 0.388 0.501

Ru
Baseline LSGIB-C Baseline LSGIB-D

orphan 0.608 0.768 orphan 0.608 0.719
aux 0.700 0.764 aux 0.700 0.777
ccomp 0.681 0.745 ccomp 0.681 0.747
flat:name 0.703 0.761 discourse 0.614 0.676
fixed 0.688 0.742 fixed 0.688 0.750

De
Baseline LSGIB-C Baseline LSGIB-D

csubj 0.449 0.566 flat 0.442 0.625
flat 0.442 0.553 csubj 0.449 0.554
expl 0.486 0.573 expl 0.486 0.589
compound:prt 0.493 0.579 compound:prt 0.493 0.595
compound 0.495 0.577 cop 0.502 0.586

5.4. Syntactic Predictions in GAT

A crucial determinant of translation quality improvement is whether GAT can effectively

comprehend syntactic structures. We investigate this by designing a syntactic dependency prediction

task for GAT. This experiment aims to ascertain the correlation between syntactic knowledge

represented on graphs and the resultant translation quality. The Parallel Universal Dependencies

(PUD) corpus is utilized as the training, validation, and test sets for each language, divided into 800,

100, and 100 sentences, respectively. Within these sentences, words and their syntactic dependencies

are modeled as nodes and edges on the graph. GAT’s task is to learn node associations to predict

various dependency relations, with the F1-score as the evaluation metric.

Table 5 showcases the training efficiency of GAT, highlighting that only 2 layers are necessary for

it to effectively learn dependency relations. By correlating GAT’s dependency relation prediction scores

with the translation quality of source sentences containing these relations, we discern a significant

pattern: proficient dependency relation learning by GAT is mirrored in the improved translation quality

of corresponding sentences. For example, GAT’s adept prediction of the ’conj’ dependency in Chinese

translations leads to notable enhancements in the translation quality of sentences containing this

relation. This observation is consistent across Russian and German as well. However, some dependency

relations, such as ’iobj’ and ’nusbj:pass’, present challenges for GAT’s prediction capabilities, and

relations like ’obl:tmod’ in Chinese and German show lower prediction scores yet still contribute to

improved translation quality. This indicates that while robust dependency relation learning by GAT

is a key factor in enhancing translation quality, it is not an absolute determinant. Factors such as

the encoder or decoder requiring more explicit structural information from GAT, irrespective of the

correctness of syntactic annotation, also play a crucial role.
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Table 5. Efficacy of GAT in learning syntactic dependencies as reflected by F1-scores across three

languages.

Zh Ru De
Samples Score Samples Score Samples Score

mark 291 0.986 det 476 0.990 case 2053 0.992
cc 283 0.984 root 1000 0.987 cc 724 0.987
conj 383 0.970 amod 1791 0.982 det 2771 0.987
nummod 809 0.965 case 2121 0.978 mark 459 0.981
root 1000 0.955 aux:pass 128 0.974 advmod 1103 0.932
cop 251 0.945 cop 87 0.971 root 1000 0.931
det 338 0.935 advmod 914 0.934 aux:pass 230 0.927
case 1319 0.934 cc 599 0.930 amod 1089 0.913
nmod 702 0.933 flat:foreign 97 0.921 flat:name 164 0.876
amod 420 0.927 obl 1465 0.900 aux 365 0.868

Table 6. Correlation between GAT’s syntactic prediction and BERT’s layer similarity as indicated by

RSA scores for each language. *: Representations from Baseline and LSGIB-D for comparison.

Zh
GAT RSA Layer RSA∗ Layer

mark 0.986 0.178 4 0.208 4
cc 0.984 0.274 4 0.354 5
conj 0.970 0.380 5 0.152 5
nummod 0.965 0.274 4 0.237 3
root 0.955 0.216 4 0.390 4

Ru
GAT RSA Layer RSA∗ Layer

det 0.990 0.426 4 0.408 3
root 0.987 0.466 3 0.504 3
amod 0.982 0.444 3 0.391 4
case 0.978 0.462 4 0.413 4
aux:pass 0.974 0.357 3 0.327 3

De
GAT RSA Layer RSA∗ Layer

case 0.992 0.686 5 0.759 2
cc 0.987 0.591 6 0.741 6
det 0.987 0.584 8 0.817 6
mark 0.981 0.676 6 0.769 6
advmod 0.932 0.733 6 0.774 8

6. Conclusions

In this study, we introduced the Linguistic Structure through Graphical Interpretation with BERT

(LSGIB) model, which represents a novel approach to integrating syntactic knowledge into machine

translation (MT) tasks. The LSGIB model leverages the capabilities of the Graph Attention Network

(GAT) in conjunction with the advanced linguistic comprehension of BERT to enhance translation

quality. Our experiments provided insights into the mechanisms through which syntactic knowledge

contributes to the improvement of translation outcomes. Notably, the LSGIB model demonstrates

how explicit syntactic structures, when effectively captured and integrated, can lead to translations

that are not only more accurate but also more coherent and semantically rich. This paper, through

its exploration of two distinct approaches under the LSGIB umbrella, lays the groundwork for a

deeper understanding of the role of syntactic knowledge in MT. We have shown that by incorporating

syntactic information via GAT, along with the deep learning capabilities of BERT, it is possible to

achieve significant enhancements in translation quality. Our findings underscore the potential of
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combining graph-based representations with pre-trained language models in the realm of natural

language processing. Looking ahead, our future work will delve further into exploring advanced

methods for modeling critical linguistic knowledge through graphical representations in MT tasks.

We aim to refine and extend the LSGIB model, seeking to uncover more nuanced ways in which

syntactic and semantic information can be harnessed to push the boundaries of translation accuracy

and fluency. The ultimate goal is to develop MT systems that not only translate languages but do so

with an understanding of linguistic intricacies akin to that of human translators.
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