Submitted:
09 December 2023
Posted:
14 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample collection and environment variables analyses
2.2. DNA extraction, PCR amplification and sequencing
2.3. Sequence alignment and phylogenetic analyses
2.4. COI/ITS1 group diagnosis and abundance estimation
2.5. Data analysis
| Sample code | Collection date |
Sample size |
Tem (℃) |
pH | Chl-a (μg l-1) |
DO (mg l-1) |
TN (mg l-1) |
TP (mg l-1) |
NH4+-N (mg l-1) |
| Lake Yunlong | |||||||||
| YL10 | Oct 2018 | 23 | 16.7 | 7.73 | 25.12 | 8.90 | 1.29 | 0.133 | 0.31 |
| YL11 | Nov 2018 | 7 | 10.9 | 8.16 | 22.39 | 1.42 | 1.61 | 0.090 | 0.33 |
| YL12 | Dec 2018 | 40 | 4.9 | 8.2 | 13.65 | 3.90 | 1.48 | 0.067 | 0.32 |
| YL01 | Jan 2019 | 19 | 3.7 | 8.85 | 8.19 | 2.14 | 2.32 | 0.046 | 0.41 |
| YL02 | Feb 2019 | 19 | 3.2 | 8.77 | 5.46 | 2.30 | 1.96 | 0.057 | 0.34 |
| YL03 | Mar 2019 | 15 | 14.0 | 8.6 | 26.75 | 1.97 | 1.96 | 0.058 | 0.46 |
| YL04 | Apr 2019 | 16 | 18.9 | 6.94 | 36.04 | 1.35 | 2.27 | 0.062 | 0.21 |
| YL05 | May 2019 | 30 | 23.6 | 8.92 | 33.85 | 1.74 | 1.91 | 0.065 | 0.33 |
| YL06 | Jun 2019 | 33 | 28.7 | 9.06 | 27.30 | 1.94 | 1.99 | 0.073 | 0.36 |
| YL07 | Jul 2019 | 26 | 28.3 | 8.92 | 66.07 | 1.13 | 1.37 | 0.092 | 0.40 |
| YL08 | Aug 2019 | 42 | 28.6 | 9.22 | 60.61 | 1.52 | 2.02 | 0.069 | 0.41 |
| YL09 | Sep 2019 | 20 | 23.0 | 8.48 | 50.23 | 1.53 | 1.90 | 0.095 | 0.44 |
| Lake Jinghu | |||||||||
| JH10 | Oct 2018 | 18 | 19.5 | 8.72 | 20.75 | 1.38 | 0.96 | 0.087 | 0.04 |
| JH11 | Nov 2018 | 17 | 5.6 | 8.93 | 19.66 | 2.66 | 0.93 | 0.073 | 0.04 |
| JH12 | Dec 2018 | 16 | 5.6 | 7.90 | 15.29 | 2.30 | 1.11 | 0.048 | 0.04 |
| JH01 | Jan 2019 | 20 | 8.0 | 9.16 | 10.37 | 2.35 | 0.92 | 0.049 | 0.05 |
| JH02 | Feb 2019 | 13 | 7.6 | 8.41 | 3.82 | 1.80 | 0.67 | 0.030 | 0.06 |
| JH03 | Mar 2019 | 20 | 16.5 | 8.85 | 37.67 | 1.21 | 1.16 | 0.086 | 0.05 |
| JH04 | Apr 2019 | 41 | 19.4 | 8.59 | 25.66 | 1.97 | 0.70 | 0.058 | 0.06 |
| JH05 | May 2019 | 15 | 25.2 | 9.19 | 12.01 | 1.44 | 0.84 | 0.082 | 0.15 |
| JH06 | Jun 2019 | 43 | 28.5 | 9.51 | 26.21 | 1.75 | 1.35 | 0.087 | 0.33 |
| JH07 | Jul 2019 | 27 | 34.3 | 8.93 | 42.04 | 0.77 | 0.68 | 0.031 | 0.10 |
| JH08 | Aug 2019 | 18 | 31.0 | 8.61 | 36.58 | 1.06 | 1.50 | 0.125 | 0.14 |
| JH09 | Sep 2019 | 17 | 25.9 | 8.49 | 22.93 | 1.04 | 1.06 | 0.078 | 0.31 |
| Lake Jinniu | |||||||||
| JN10 | Oct 2018 | 9 | 29.0 | 6.56 | 24.70 | 1.83 | 3.37 | 0.120 | 2.38 |
| JN11 | Nov 2018 | 15 | 26.0 | 6.60 | 40.18 | 0.51 | 8.73 | 1.000 | 1.67 |
| JN12 | Dec 2018 | 18 | 17.0 | 6.70 | 21.83 | 0.43 | 12.38 | 0.920 | 7.05 |
| JN01 | Jan 2019 | 17 | 20.0 | 6.20 | 115.40 | 8.06 | 11.61 | 0.300 | 5.65 |
| JN02 | Feb 2019 | 22 | 23.0 | 6.70 | 165.00 | 1.64 | 9.86 | 0.490 | 1.04 |
| JN03 | Mar 2019 | 38 | 25.0 | 6.70 | 45.80 | 4.47 | 4.96 | 0.180 | 1.77 |
| JN04 | Apr 2019 | 15 | 26.0 | 6.50 | 105.80 | 5.80 | 2.88 | 0.020 | 0.34 |
| JN05 | May 2019 | 38 | 26.0 | 6.50 | 215.90 | 5.34 | 3.46 | 0.180 | 0.26 |
| JN06 | Jun 2019 | 12 | 25.5 | 7.12 | 107.80 | 4.95 | 4.15 | 0.260 | 2.54 |
| JN07 | Jul 2019 | 9 | 25.5 | 6.70 | 36.48 | 5.07 | 6.73 | 0.090 | 1.51 |
| JN08 | Aug 2019 | 14 | 25.5 | 6.40 | 156.38 | 4.82 | 3.41 | 0.150 | 1.64 |
| JN09 | Sep 2019 | 28 | 25.0 | 6.40 | 74.63 | 6.05 | 4.02 | 0.190 | 1.18 |
3. Results
3.1. Temporal variation in environmental variables
3.2. Sequence variation, phylogenetic relationships, and COI/ITS1 group diagnosis
3.3. Temporal distributions, relative frequencies, and densities of COI/ITS1 groups
3.4. Effects of environmental variables on the relative frequencies and densities of COI/ITS1 groups
4. Discussion

| Groups | Lake Yunlong | Lake Jinghu | Lake Jingniu | |||||||
| Tem (A) | Chl-a (B) | A × B | Tem (A) | Chl-a (B) | A × B | Cop (A) | Chl-a (B) | A × B | ||
| “6” | z | - | - | - | 30.01 | 23.26 | -25.54 | -13.405 | 5.603 | 23.279 |
| P | - | - | - | <2×10-16*** | <2×10-16*** | <2×10-16*** | <2×10-16*** | <2.11×10-8*** | <2×10-16*** | |
| “11” | z | 8.978 | 4.923 | -0.916 | 36.892 | -1.924 | -4.899 | 273.1 | 140.3 | -171.5 |
| P | <2×10-16*** | 8.53×10-7*** | 0.36 | <2×10-16*** | 0.0544 | 9.65×10-7*** | <2×10-16*** | <2×10-16*** | <2×10-16*** | |
| “13” | z | -0.109 | -0.611 | -1.312 | - | - | - | - | - | - |
| P | 0.913 | 0.541 | 0.19 | - | - | - | - | - | - | |
| “15” | z | -4.526 | 12.448 | -13.961 | 85.53 | 55.86 | -74.39 | - | - | - |
| P | 6.02×10-6*** | <2×10-16*** | <2×10-16*** | <2×10-16*** | <2×10-16*** | 1.06×10-9*** | - | - | - | |
| “A” | z | - | - | - | 30.21 | 23.30 | -25.59 | -12.39 | 14.86 | 21.52 |
| P | - | - | - | <2×10-16*** | <2×10-16*** | <2×10-16*** | <2×10-16*** | <2×10-16*** | <2×10-16*** | |
| “C” | z | 8.978 | 4.923 | -0.916 | 36.576 | -2.045 | -4.667 | 273.4 | 139.4 | -171.1 |
| P | <2×10-16*** | 8.53×10-7*** | 0.36 | <2×10-16*** | 0.0408* | 3.05×10-6*** | <2×10-16*** | <2×10-16*** | <2×10-16*** | |
| “D” | z | -4.98 | 11.81 | -13.41 | 74.21 | 51.74 | -66.63 | - | - | - |
| P | 6.35×10-7*** | <2×10-16*** | <2×10-16*** | <2×10-16*** | <2×10-16*** | <2×10-16*** | - | - | - | |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knowlton, N. Sibling species in the sea. Annu. Rev. Ecol. Evol. S. 1993, 24, 189–216. [Google Scholar] [CrossRef]
- Schonrogge, K.; Barr, B.; Wardlaw, J.C.; Napper, E.; Gardner, M.G.; Breen, J.; Elmes, G.W.; Thomas, J.A. When rare species become endangered: cryptic speciation in myrmecophilous hoverflies. Biol. J. Linn. Soc. 2002, 75, 291–300. [Google Scholar] [CrossRef]
- Bickford, D.; Lohman, D.J.; Sodhi, N.S. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007, 22, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 2005, 85, 407–415. [Google Scholar] [CrossRef]
- Puillandre, N.; Lambert, A.; Brouillet, S.; Achaz, G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 2012, 21, 1864–1877. [Google Scholar] [CrossRef] [PubMed]
- Leibold, M.; McPeek, M. Coexistence of the niche and neutral perspectives in community ecology. Ecology 2006, 87, 1399–1410. [Google Scholar] [CrossRef] [PubMed]
- Gabaldón, C.; Fontaneto, D.; Carmona, M.J.; Montero-Pau, J.; Serra, M. Ecological differentiation in cryptic rotifer species: what we can learn from the Brachionus plicatilis complex. Hydrobiologia 2017, 796, 7–18. [Google Scholar] [CrossRef]
- Ortells, R.; Gómez, A.; Serra, M. Coexistence of cryptic rotifer species: ecological and genetic characterization of Brachionus plicatilis. Freshwater Biol. 2003, 48, 2194–2202. [Google Scholar] [CrossRef]
- Nicholls, B.; Racey, P.A. Contrasting home-range size and spatial partitioning in cryptic and sympatric pipistrelle bats. Behav. Ecol. Sociobiol. 2006, 61, 131–142. [Google Scholar] [CrossRef]
- Wellborn, G.A.; Cothran, R.D. Niche diversity in crustacean cryptic species: complementarity in spatial distribution and predation risk. Oecologia 2007, 154, 175–183. [Google Scholar] [CrossRef]
- Leibold, M.A. The niche concept revisited: mechanistic models and community context. Ecology 1995, 76, 1371–1382. [Google Scholar] [CrossRef]
- Chase, J.; Leibold, M. Ecological Niches: linking Classical and Contemporary Approaches; University of Chicago Press: Chicago, 2003. [Google Scholar]
- Walczyńska, A.; Fontaneto, D.; Kordbacheh, A.; Hamil, S.; Jimenez-Santos, M.A.; Paraskevopoulou, S.; Pociecha, A.; Zhang, W. Niche differentiation in rotifer cryptic species complexes: a review of environmental effects. Hydrobiologia 2023. [Google Scholar] [CrossRef]
- Gómez, A.; Temprano, M.; Serra, M. Ecological genetics of a cyclical parthenogen in temporary habitats. J. Evol. Biol. 1995, 8, 601–622. [Google Scholar] [CrossRef]
- Gómez, A.; Carmona, M.J.; Serra, M. Ecological factors affecting gene flow in the Brachionus plicatilis complex (Rotifera). Oecologia, 1997, 111, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Montero-Pau, J.; Ramos-Rodríguez, E.; Serra, M.; Gómez, A. Long-term coexistence of rotifer species. PloS One 2011, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gabaldón, C.; Montero-Pau, J.; Serra, M.; Carmona, M.J. Morphological similarity and ecological overlap in two rotifer species. PloS One 2013, 8, e57087. [Google Scholar] [CrossRef] [PubMed]
- Papakostas, S.; Michaloudi, E.; Triantafyllidis, A.; Kappas, I.; Abatzopoulos, T.J. Allochronic divergence and clonal succession: two microevolutionary processes sculpturing population structure of Brachionus rotifers. Hydrobiologia 2013, 700, 33–45. [Google Scholar] [CrossRef]
- Campillo, S.; García-Roger, E.M.; Carmona, M.J.; Serra, M. Local adaptation in rotifer populations. Evol. Ecol. 2010, 25, 933–947. [Google Scholar] [CrossRef]
- Gabaldón, C.; Serra, M.; Carmona, M.J.; Montero-Pau, J. Life-history traits, abiotic environment and coexistence: the case of two cryptic rotifer species. J. Exp. Mar. Biol. Ecol. 2015, 465, 142–152. [Google Scholar] [CrossRef]
- Gabaldón, C.; Carmona, M.J.; Montero-Pau, J.; Serra, M. Long-term competitive dynamics of two cryptic rotifer species: diapause and fluctuating conditions. PLoS One 2015, 10, e0124406. [Google Scholar] [CrossRef]
- Walczyńska, A.; Serra, M. Body size variability across habitats in the Brachionus plicatilis cryptic species complex. Sci. Rep.-UK 2022, 12, 6912. [Google Scholar] [CrossRef] [PubMed]
- Ciros-Pérez, J.; Carmona, M.J.; Serra, M. Resource competition between sympatric cryptic rotifer species. Limnol. Oceanog. 2001, 46, 1511–1523. [Google Scholar] [CrossRef]
- Ciros-Pérez, J.; Carmona, M.J.; Lapesa, S.; Serra, M. Predation as a factor mediating resource competition among rotifer cryptic species. Limnol. Oceanog. 2004, 49, 40–50. [Google Scholar] [CrossRef]
- Lapesa, S.; Snell, T.W.; Fields, D.M. Selective feeding of Arctodiaptomus salinus (Copepoda, Calanoida) on co-occurring cryptic rotifer species. Freshwater Biol. 2004, 49, 1053–1061. [Google Scholar] [CrossRef]
- Li, L.; Niu, C.J.; Ma, R. Rapid temporal succession identified by COI of the rotifer Brachionus calyciflorus Pallas in Xihai Pond, Beijing, China, in relation to ecological traits. J. Plankton Res. 2010, 32, 951–959. [Google Scholar] [CrossRef]
- Li, Y.; Xi, Y.-L.; Wang, A.; Niu, X.; Wen, X.; Liu, G. Temporal variation in composition of Brachionus calyciflorus complex and life history traits of sibling species in Lake Tingtang. Acta Ecol. Sin. 2014, 34, 6172–6181. [Google Scholar]
- Niu, X.; Xi, Y.-L.; Li, Y.; Wang, A.; Liu, G. Rapid change in structure of Brachionus calyciflorus complex collected from Jiulian Pond and its ecological mechanism. J. Appl. Ecol. 2013, 24, 3561–3566. [Google Scholar]
- Wen, X.-L.; Xi, Y.-L.; Zhang, G.; Xue, Y.-H.; Xiang, X.-L. Coexistence of cryptic Brachionus calyciflorus (Rotifera) species: roles of environmental variables. J. Plankton Res. 2016, 38, 478–489. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, A.; Xi, Y.-L.; Sun, Q.; Ning, L.-F.; Xie, P.; Wen, X.-L.; Xiang, X.-L. Temporal patterns and processes of genetic differentiation of the Brachionus calyciflorus (Rotifera) complex in a subtropical shallow lake. Hydrobiologia 2018, 807, 313–331. [Google Scholar] [CrossRef]
- Zhang, W.; Lemmen, K.D.; Zhou, L.; Papakostas, S.; Declerck, S.A. Patterns of differentiation in the life history and demography of four recently described species of the Brachionus calyciflorus cryptic species complex. Freshwater Biol. 2019, 64, 1994–2005. [Google Scholar] [CrossRef]
- Paraskevopoulou, S.; Dennis, A.B.; Weithoff, G.; Tiedemann, R. Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers. Sci. Rep.-UK 2020, 10, 13281. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.-L.; Xi, Y.-L.; Qian, F.P.; Zhang, G.; Xiang, X.-L. Comparative analysis of rotifer community structure in five subtropical shallow lakes in east China: role of physical and chemical conditions. Hydrobiologia 2011, 661, 303–316. [Google Scholar] [CrossRef]
- Huang, X.-F. Survey, Observation and Analysis of Lake Ecology; Chinese Standard Press: Beijing, 1999. [Google Scholar]
- Montero-Pau, J.; Gómez, Á.; Muñoz, J. Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnol. Oceanog. 2008, 6, 218–222. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W. DNA primers for amplification of mitochondrial cytochrome coxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Xi, Y.-L.; Chen, Y.-Q.; Zhuge, Y.; Huang, X.-F. Sequence analysis of rDNA 18S-28S intergenic spacer regions from Brachionus calyciflorus, B. bidentata, B. diversicornis and B. angularis in lake Donghu, China. Acta Hydrobiol. Sin. 2003, 27, 427–430. [Google Scholar]
- Sara, H. Bioinformatik: BLAST. Biologie in unserer Zeit 2018, 48, 367–368. [Google Scholar]
- Posada, D.; Crandall, K.A. Modeltest: testing the model of DNA substitution. Bioinformatics 1998, 9, 817–818. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J.P. MRBAYES 3: Bayesian Phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.-L.; Xi, Y.-L.; Wen, X.-L.; Zhang, G.; Wang, J.-X.; Hu, K. Patterns and processes in the genetic differentiation of the Brachionus calyciflorus complex, a passively dispersing freshwater zooplankton. Molecular Phylogenet. Evol. 2011, 59, 386–398. [Google Scholar] [CrossRef]
- Xiang, X.-L.; Xi, Y.-L.; Wen, X.-L.; Zhang, G.; Wang, J.-X.; Hu, K. Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China. Mol. Ecol. 2011, 20, 3027–3044. [Google Scholar] [CrossRef]
- Papakostas, S.E.; Michaloudi, K.; Proios, M.; Brehm, L.; Verhage, J.; Rota, J.; Peña, C.; Stamou, G.; Pritchard, V.L.; Fontaneto, D.; Declerck, S.A.J. Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: evidence from a rotifer cryptic species complex. Syst. Biol. 2016, 65, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Fontaneto, D.; Kaya, M.; Herniou, E.A.; Barraclough, T.G. Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Mol. Phylogenet. Evol. 2009, 53, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.; Alcántara-Rodríguez, J.A.; Ciros-Pérez, J.; Gómez, A.; Hagiwara, A.; Galindo, K.H.; Walsh, E.J. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 2017, 796, 39–58. [Google Scholar] [CrossRef]
- Puillandre, N.; Modica, M.V.; Zhang, Y.; Sirovich, L.; Boisselier, M.C.; Cruaud, C.; Holford, M.; Samadi, S. Large-scale species delimitation method for hyperdiverse groups. Mol. Ecol. 2012, 21, 2671–2691. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Kapli, P.; Pavlidis, P.; Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013, 29, 2869–2876. [Google Scholar] [CrossRef]
- Fontaneto, D.; Iakovenko, N.; Eyres, I.; Kaya, M.; Wyman, M.; Barraclough, T.G. Cryptic diversity in the genus Adineta Hudson & Gosse, 1886 (Rotifera: Bdelloidea: Adinetidae): a DNA taxonomy approach. Hydrobiology 2011, 662, 27–33. [Google Scholar]
- Fontaneto, D.; Flot, J.F.; Tang, C.Q. Guidelines for DNA taxonomy with a focus on the meiofauna. Marine Biodivers. 2015, 45, 433–451. [Google Scholar] [CrossRef]
- Sanderson, M.J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 2002, 19, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.-L.; Li, H.-B.; Cheng, X.-F. Morphometric differences among three cryptic species in Brachionus calyciflorus species complex. Acta Ecol. Sin. 2010, 30, 3645–3653. [Google Scholar]
- R Core, Team. R: A language and environment for statistical computing version 4.2.2. R Foundation for Statistical Computing, Vienna, Austria, 2022. Available online: https://www.R-project.org/.
- Schlick-Steiner, B.C.; Arthofer, W.; Steiner, F.M. Take up the challenge! Opportunities for evolution research from resolving conflict in integrative taxonomy. Mol. Ecol. 2014, 23, 4192–4194. [Google Scholar] [CrossRef]
- Yang, W.; Deng, Z.; Blair, D.; Hu, W.; Yin, M. Phylogeography of the freshwater rotifer Brachionus calyciflorus species complex in China. Hydrobiologia 2022, 849, 2813–2829. [Google Scholar] [CrossRef]
- Avise, J.C. Phylogeography: the History and Formation of Species; Harvard University Press: Massachusetts, 2000. [Google Scholar]
- Petit, R.; Excoffier, L. Gene flow and species delimitation. Trends Ecol. Evol. 2009, 24, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W. , Declerck, S.A.J. Intrinsic postzygotic barriers constrain cross-fertilisation between two hybridising sibling rotifer species of the Brachionus calyciflorus species complex. Freshwater Biol. 2022, 67, 240–249. [Google Scholar] [CrossRef]
- Hebert, P. Interspecific hybridization between cyclic parthenogens. Evolution 1985, 39, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Michaloudi, E.; Papakostas, S.; Stamou, G.; Nedela, V.; Tihlarikova, E.; Zhang, W.; Declerck, S. Reverse taxonomy applied to the Brachionus calyciflorus cryptic species complex: Morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re)description of four species. PLoS One 2018, 13, e0203168. [Google Scholar] [CrossRef] [PubMed]
- King, C.E.; Serra, M. Seasonal variation as a determinant of population structure in rotifers reproducing by cyclical parthenogenesis. Hydrobiologia 1998, 387/388, 361–372. [Google Scholar] [CrossRef]
- Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. S. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Chesson, P.; Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 1997, 150, 519–553. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).