Altmetrics
Downloads
114
Views
34
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
11 December 2023
Posted:
15 December 2023
You are already at the latest version
Part 1 - Efficiency in Reverse Logistics, i.e., fast with less spending of resources. | |||||
No. 1) High complexity of shape and size of plastic waste. | ○ 1-Very bad influence on RL performance | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
No. 2) Working with varieties of plastic waste (e.g.: PET, HDPE, LDPE, PP, PVC, PS) at the same plant facility. | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
No. 3) High variability in plastic waste, i.e., the opposite of purity. | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
Part 2 - Effectiveness in Reverse Logistics, i.e., solving the logistics with better safety and better quality. | |||||
No. 4) Maturity of the plastic waste market. | ○ 1-Very low influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very high influence on RL performance. |
No. 5) Value of plastic waste. | ○ 1-Very low influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very high influence on RL performance. |
No. 6) Volume of plastic waste processing. | ○ 1-Very low influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very high influence on RL performance. |
Part 3 - Performance in Reverse Logistics. | |||||
No. 7) High recycling rate of plastic waste. | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
No. 8) High thermochemical conversion rate (for plastics that cannot be recycled but only incinerated). | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
No. 9) High profitability of the plastic waste business. | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
No. 10) Availability of plastics sorting technologies (e.g.: automated sorting machines). | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
Part 4 - Infrastructure of the Municipality | |||||
No. 11) Availability of selective collection in the municipality. | ○ 1-Very bad influence on RL performance | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
No. 12) Presence of Deposit-Return Systems in the municipality, i.e., vending machines that charge an extra deposit because of the packaging when purchasing a bottled drink, and they get a refund upon returning an empty bottle. | ○ 1-Very bad influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very good influence on RL performance. |
Part 5 - Socio-economic characteristics of the municipality | |||||
No. 13) Socio-economic profile of the municipality. | ○ 1-Very low influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very high influence on RL performance. |
No. 14) Population density of the municipality. | ○ 1-Very low influence on RL performance. | ○ 2 | ○ 3 | ○ 4 | ○ 5-Very high influence on RL performance. |
EFICI-1 | EFICI-2 | EFICI-3 | EFICA-1 | EFICA-2 | EFICA-3 | DESEMP-1 | DESEMP-2 | DESEMP-3 | DESEMP-4 | INFRA-1 | INFRA-2 | SOCIO-1 | SOCIO-2 |
5 | 4 | 4 | 4 | 1 | 2 | 4 | 4 | 5 | 3 | 4 | 4 | 1 | 3 |
4 | 3 | 3 | 5 | 5 | 5 | 5 | 2 | 2 | 1 | 5 | 4 | 5 | 5 |
3 | 2 | 3 | 2 | 2 | 4 | 3 | 3 | 3 | 3 | 5 | 5 | 3 | 2 |
3 | 1 | 1 | 4 | 3 | 5 | 3 | 3 | 1 | 3 | 5 | 4 | 5 | 5 |
4 | 2 | 2 | 4 | 4 | 3 | 4 | 2 | 4 | 4 | 4 | 3 | 4 | 4 |
5 | 2 | 1 | 4 | 4 | 3 | 2 | 1 | 2 | 5 | 5 | 4 | 5 | 5 |
3 | 3 | 3 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 4 |
4 | 4 | 2 | 2 | 2 | 3 | 4 | 1 | 5 | 5 | 3 | 3 | 5 | 5 |
1 | 1 | 1 | 5 | 5 | 5 | 1 | 1 | 5 | 5 | 5 | 5 | 3 | 5 |
3 | 3 | 3 | 1 | 1 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
2 | 4 | 2 | 4 | 5 | 4 | 4 | 3 | 4 | 4 | 4 | 4 | 5 | 3 |
3 | 4 | 2 | 5 | 5 | 4 | 3 | 3 | 5 | 3 | 4 | 2 | 5 | 3 |
1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 1 | 4 | 4 | 5 | 2 | 1 |
3 | 2 | 3 | 5 | 5 | 5 | 5 | 3 | 5 | 5 | 4 | 4 | 5 | 5 |
3 | 2 | 2 | 4 | 3 | 4 | 4 | 3 | 4 | 5 | 4 | 3 | 5 | 5 |
1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 5 | 5 |
3 | 1 | 1 | 5 | 5 | 4 | 4 | 1 | 5 | 5 | 5 | 5 | 5 | 3 |
1 | 2 | 2 | 4 | 4 | 5 | 5 | 4 | 5 | 5 | 5 | 3 | 5 | 5 |
4 | 3 | 5 | 5 | 2 | 4 | 5 | 2 | 5 | 5 | 5 | 5 | 5 | 5 |
1 | 2 | 1 | 5 | 3 | 5 | 5 | 5 | 5 | 5 | 3 | 5 | 5 | 5 |
2 | 2 | 2 | 3 | 4 | 3 | 4 | 3 | 3 | 3 | 4 | 4 | 4 | 4 |
2 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 5 | 5 |
3 | 4 | 3 | 1 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 5 |
1 | 1 | 1 | 4 | 3 | 5 | 5 | 3 | 3 | 5 | 5 | 5 | 5 | 5 |
2 | 5 | 2 | 5 | 3 | 5 | 5 | 5 | 4 | 5 | 4 | 3 | 5 | 1 |
2 | 2 | 1 | 4 | 3 | 5 | 5 | 3 | 5 | 5 | 5 | 4 | 5 | 5 |
4 | 4 | 3 | 4 | 3 | 4 | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 4 |
5 | 3 | 5 | 3 | 4 | 4 | 3 | 2 | 3 | 2 | 3 | 4 | 1 | 2 |
2 | 2 | 1 | 5 | 5 | 5 | 5 | 2 | 5 | 5 | 2 | 3 | 5 | 4 |
1 | 1 | 2 | 5 | 5 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
2 | 3 | 5 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 3 |
3 | 1 | 4 | 2 | 3 | 5 | 5 | 4 | 3 | 3 | 5 | 5 | 2 | 1 |
4 | 3 | 3 | 4 | 2 | 3 | 3 | 2 | 4 | 5 | 4 | 2 | 5 | 5 |
5 | 4 | 4 | 5 | 5 | 5 | 2 | 2 | 5 | 5 | 5 | 5 | 5 | 5 |
3 | 2 | 1 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
3 | 5 | 2 | 3 | 5 | 5 | 5 | 3 | 5 | 5 | 4 | 4 | 5 | 5 |
2 | 2 | 2 | 5 | 5 | 5 | 5 | 2 | 5 | 5 | 4 | 4 | 5 | 5 |
5 | 5 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 5 | 1 | 1 |
4 | 3 | 4 | 3 | 2 | 4 | 4 | 2 | 4 | 3 | 5 | 5 | 4 | 1 |
1 | 2 | 2 | 5 | 5 | 5 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 4 |
4 | 5 | 4 | 4 | 3 | 5 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
1 | 3 | 2 | 2 | 3 | 3 | 5 | 4 | 5 | 4 | 5 | 5 | 5 | 5 |
3 | 3 | 3 | 2 | 3 | 3 | 1 | 1 | 2 | 4 | 3 | 3 | 1 | 4 |
4 | 5 | 2 | 4 | 3 | 4 | 4 | 4 | 4 | 3 | 5 | 4 | 5 | 5 |
3 | 2 | 1 | 4 | 5 | 4 | 5 | 2 | 5 | 5 | 4 | 5 | 5 | 5 |
3 | 3 | 3 | 4 | 4 | 4 | 4 | 2 | 3 | 4 | 4 | 5 | 4 | 4 |
3 | 3 | 1 | 5 | 5 | 5 | 5 | 4 | 4 | 5 | 5 | 5 | 5 | 5 |
3 | 1 | 1 | 3 | 3 | 3 | 4 | 3 | 5 | 5 | 3 | 5 | 5 | 4 |
4 | 2 | 2 | 5 | 1 | 4 | 5 | 2 | 5 | 5 | 4 | 3 | 5 | 5 |
2 | 2 | 1 | 3 | 2 | 3 | 3 | 3 | 4 | 5 | 4 | 4 | 5 | 5 |
3 | 2 | 2 | 5 | 3 | 4 | 5 | 1 | 4 | 5 | 5 | 1 | 5 | 4 |
3 | 4 | 2 | 2 | 3 | 4 | 4 | 3 | 4 | 3 | 3 | 3 | 3 | 4 |
1 | 2 | 1 | 5 | 4 | 4 | 5 | 3 | 5 | 4 | 4 | 4 | 5 | 5 |
1 | 3 | 1 | 5 | 2 | 5 | 5 | 5 | 5 | 5 | 4 | 3 | 5 | 5 |
5 | 1 | 1 | 3 | 5 | 5 | 5 | 1 | 5 | 5 | 5 | 5 | 5 | 5 |
4 | 3 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 2 | 3 | 3 | 4 | 4 |
3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 3 | 2 | 4 | 2 | 5 | 5 |
4 | 5 | 4 | 4 | 4 | 3 | 4 | 3 | 4 | 3 | 3 | 3 | 3 | 3 |
1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 3 | 2 | 2 | 1 | 2 |
2 | 4 | 3 | 4 | 4 | 3 | 5 | 3 | 4 | 5 | 3 | 4 | 4 | 4 |
3 | 1 | 1 | 1 | 5 | 3 | 3 | 2 | 4 | 1 | 2 | 2 | 1 | 1 |
1 | 1 | 1 | 5 | 5 | 5 | 5 | 1 | 5 | 5 | 4 | 3 | 5 | 5 |
1 | 2 | 5 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 3 | 3 | 1 | 2 |
2 | 2 | 3 | 5 | 4 | 5 | 4 | 4 | 2 | 4 | 5 | 4 | 5 | 2 |
2 | 2 | 2 | 5 | 5 | 4 | 5 | 1 | 4 | 5 | 5 | 4 | 5 | 5 |
1 | 1 | 1 | 4 | 5 | 4 | 3 | 3 | 5 | 5 | 4 | 4 | 5 | 4 |
5 | 5 | 1 | 4 | 5 | 5 | 5 | 1 | 3 | 5 | 3 | 3 | 5 | 5 |
3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
3 | 4 | 3 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 |
2 | 2 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 |
3 | 4 | 2 | 4 | 4 | 5 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 |
Alternatives | Population covered by the door-to-door selective collection (%) | Recovery rate of inorganic recyclable materials from the total collected (%) | Per capita mass of recovered inorganic recyclable materials (kg/inhabitant) | Per capita mass of recyclable materials collected via selective collection (kg/inhabitant) |
---|---|---|---|---|
Aracaju (SE) | 38.06 | 0.25 | 1.05 | 1.53 |
Belo Horizonte (MG) | 15.77 | 0.72 | 2.14 | 2.54 |
Brasília (DF) | 75.15 | 2.05 | 5.42 | 18.78 |
Campo Grande (MS) | 67.43 | 0.87 | 3.22 | 6.61 |
Cuiabá (MT) | 16.39 | 0.65 | 1.85 | 5.28 |
Curitiba (PR) | 100.00 | 2.92 | 8.64 | 14.40 |
Manaus (AM) | 38.27 | 0.77 | 2.91 | 5.49 |
Natal (RN) | 12.85 | 0.69 | 3.37 | 3.85 |
Porto Alegre (RS) | 100.00 | 1.83 | 6.22 | 9.57 |
Recife (PE) | 29.67 | 0.13 | 0.69 | 1.45 |
Rio de Janeiro (RJ) | 61.53 | 1.30 | 5.73 | 7.16 |
São Paulo (SP) | 74.91 | 0.85 | 2.74 | 5.94 |
Hypothesis | Basis |
---|---|
H1: Efficiency is directly correlated with the performance | [16,17] |
H2: Effectiveness is directly correlated with the performance | [16,18] |
H3: Municipality's socioeconomic aspects are directly correlated with the performance | [14,19,20] |
H4: Municipality infrastructure is directly correlated with the performance | [22,23] |
Construct | Position in the model | Indicator | Basis |
---|---|---|---|
Reverse Logistics Efficiency | Exogenous | EFICI-1 - Complexity of waste | [21,22] |
EFICI-2 - Variety of waste (types of plastic: PET, HDPE, LDPE, PP, PS, PVC, or PUR...) | [21] | ||
EFICI-3 - Variability of waste | [17,21,24] | ||
Reverse Logistics Effectiveness | Exogenous | EFICA-1 - Market maturity | [25,26] |
EFICA-2 - Value of waste | [27] | ||
EFICA-3 - Volume processing | [19] | ||
Reverse Logistics Performance (Effectivity) | Endogenous | DESEMP-1 - Recycling rate | [22,28] |
DESEMP-2 - Thermochemical conversion rate | [29] | ||
DESEMP-3 - Business profitability | [22,24,30] | ||
DESEMP-4 - Availability of plastics sorting technologies | [31,32] | ||
The infrastructure of the municipality | Exogenous | INFRA-1 - Availability of selective collection in the municipality | [33] |
INFRA-2 - Presence of Deposit-Return Systems (DRS) | [34] | ||
Socioeconomic characteristics of the municipality | Exogenous | SOCIO-1 - Socioeconomic profile of the municipality | [33] |
SOCIO-2 - Population density of the municipality | [35] |
Construct | Indicator | Description | Outer Loading | VIF | Cronbach's Alpha | CR | rho_A | AVE |
---|---|---|---|---|---|---|---|---|
DESEMP | DESEMP-1 | Recycling rate | 0.783 | 1.489 | 0.775 | 0.868 | 0.798 | 0.688 |
DESEMP-3 | Business profitability | 0.837 | 1.752 | |||||
DESEMP-4 | Availability of plastic sorting technologies | 0.866 | 1.626 | |||||
EFICA | EFICA-1 | Market maturity | 0.880 | 1.508 | 0.734 | 0.883 | 0.737 | 0.790 |
EFICA-3 | Volume processing | 0.897 | 1.508 | |||||
EFICI | EFICI-3 | Variability of waste | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
INFRA | INFRA-1 | Availability of selective collection in the municipality | 0.945 | 2.013 | 0.830 | 0.920 | 0.879 | 0.852 |
INFRA-2 | Presence of Deposit-Return Systems | 0.901 | 2.013 | |||||
SOCIO | SOCIO-1 | Socioeconomic profile of the municipality | 0.896 | 1.425 | 0.706 | 0.872 | 0.715 | 0.772 |
SOCIO-2 | Population density of the municipality | 0.862 | 1.425 |
Cross-loadings (correlations) | |||||
---|---|---|---|---|---|
Indicator | DESEMP | EFICA | EFICI | INFRA | SOCIO |
DESEMP-1 | 0.783 | 0.556 | -0.174 | 0.371 | 0.270 |
DESEMP-3 | 0.837 | 0.507 | -0.162 | 0.468 | 0.314 |
DESEMP-4 | 0.866 | 0.649 | -0.369 | 0.580 | 0.527 |
EFICA-1 | 0.594 | 0.880 | -0.249 | 0.513 | 0.388 |
EFICA-3 | 0.639 | 0.897 | -0.184 | 0.342 | 0.519 |
EFICI-3 | -0.298 | -0.242 | 1.000 | -0.364 | -0.067 |
INFRA-1 | 0.603 | 0.536 | -0.359 | 0.945 | 0.414 |
INFRA-2 | 0.453 | 0.317 | -0.308 | 0.901 | 0.282 |
SOCIO-1 | 0.433 | 0.544 | -0.094 | 0.479 | 0.896 |
SOCIO-2 | 0.379 | 0.346 | -0.019 | 0.181 | 0.862 |
Fornell and Larcker's criterion | |||||
Construct | DESEMP | EFICA | EFICI | INFRA | SOCIO |
DESEMP | 0.829 | ||||
EFICA | 0.695 | 0.889 | |||
EFICI | -0.298 | -0.242 | 1.000 | ||
INFRA | 0.581 | 0.477 | -0.364 | 0.923 | |
SOCIO | 0.464 | 0.513 | -0.067 | 0.386 | 0.879 |
Heterotrait-monotrait (HTMT) ratio | |||||
Construct | DESEMP | EFICA | EFICI | INFRA | SOCIO |
DESEMP | 1 | ||||
EFICA | 0.911 | 1 | |||
EFICI | 0.335 | 0.296 | 1 | ||
INFRA | 0.696 | 0.597 | 0.399 | 1 | |
SOCIO | 0.603 | 0.706 | 0.151 | 0.495 | 1 |
Hypothesis | VIF | Original R2 | Sample Mean1 R2 | Original β | Sample Mean1 β | Original f² | Sample Mean1 f² | Standard Error1 | t-value2 | Decision |
---|---|---|---|---|---|---|---|---|---|---|
H1: EFICI -> DESEMP | 1.181 | 0.573 | 0.606 | -0.069 | -0.072 | 0.010 | -0.072 | 0.097 | 0.717 | Not Supported |
H2: EFICA -> DESEMP | 1.576 | 0.573 | 0.606 | 0.493 | 0.492 | 0.361 | 0.492 | 0.105 | 4.671 | Supported |
H3: SOCIO -> DESEMP | 1.431 | 0.573 | 0.606 | 0.097 | 0.100 | 0.015 | 0.100 | 0.095 | 1.026 | Not Supported |
H4: INFRA -> DESEMP | 1.485 | 0.573 | 0.606 | 0.283 | 0.286 | 0.126 | 0.286 | 0.110 | 2.574 | Supported |
PLS out-of-sample metrics | |||
---|---|---|---|
DESEMP_1 | DESEMP_3 | DESEMP_4 | |
RMSE | 1.075 | 1.023 | 0.842 |
MAE | 0.826 | 0.775 | 0.654 |
LM out-of-sample metrics | |||
DESEMP_1 | DESEMP_3 | DESEMP_4 | |
RMSE | 1.107 | 1.020 | 0.845 |
MAE | 0.853 | 0.811 | 0.658 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated