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Abstract: Cybersecurity has become a critical area in the digital field in recent years. The expansion of networks 

has revolutionised the way network structures are organised and managed. However, with increased 

connectivity and the growing complexity of modern networks, the threat of cyber-attacks has become more 

intense. As technology continues to advance, it brings both opportunities and challenges. One of the major 

challenges is the need to secure networks and sensitive data from various malicious activities. Traditional 

networks have evolved to include Software Defined Network (SDN), which offers a more flexible and 

programmable framework. Researchers should focus on detecting attacks in SDN because SDN networks are 

becoming more popular and attractive targets for clients due to their programmability and dynamic nature. 

The centralised controller, known as the backbone of an SDN, becomes a single point of failure and a potential 

target for attackers if not properly secured. Researchers need to emphasise the detection of attacks in SDN in 

order to mitigate these risks. By understanding the potential vulnerabilities and attack methods specific to 

SDN, researchers can develop effective detection approaches and propose countermeasures. This methodology 

helps protect the network from potential threats and minimises the impact of successful attacks. Therefore, this 

survey paper provides a review of Intrusion Detection Systems (IDSs) in Software-Defined Networks (SDN) to 

provide a thorough understanding of SDN security issues. 

Keywords: software-defined network (SDN); intrusion detection system (IDS); non-deep learning 

(non-DL); deep learning (DL); openflow; control plane; data plane; attack; security; and challenges 

 

1. Introduction 

In recent years, the rapid development of network technologies has led to the emergence of 

Software-Defined Networks (SDN) as a promising paradigm for managing and controlling network 

infrastructures. With its centralised control and programmability, SDN offers enhanced flexibility 

and scalability compared to traditional network architectures. However, alongside these advantages 

come new challenges, particularly in terms of security. 

The motivation behind this survey stems from the critical need to address the escalating security 

concerns within the dynamic landscape of SDNs. The exponential growth in network 

interconnectivity and the pivotal role played by SDNs in modern networking underscore the 

necessity for robust security measures. The objective of this survey is to meticulously examine and 

elucidate the crucial role of Intrusion Detection Systems (IDS) employing machine learning 

approaches within SDNs. 

Our aim is to not only comprehensively outline the existing security vulnerabilities inherent in 

SDNs but also to explore and evaluate the efficacy of IDS mechanisms in mitigating evolving security 

threats. By delving into machine learning-based approaches for IDS implementation within SDNs, 

this survey strives to contribute significantly to the fortification of network security paradigms. 

Our survey begins by introducing SDN and providing an overview of its key components, 

including the OpenFlow Protocol, which enables centralized network control. We also discuss the 
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security features of SDN and highlight the vulnerabilities that make the SDN environment 

susceptible to various types of attacks. 

Furthermore, we explore the different types of network attacks that commonly target SDNs, 

including Distributed Denial of Service (DDoS) attacks, Denial of Service (DoS) attacks, Portscan 

attacks, SQL injection, document infiltration, probe attacks, and penetration attacks such as User to 

Root (U2R) and Remote to Local (R2L). Understanding these specific attacks is crucial for devising 

effective intrusion detection mechanisms within SDNs. 

In the subsequent sections, we focus on the methods of intrusion detection in SDNs, including 

signature and threshold detection methods, as well as anomaly-based detection approaches. 

Specifically, we delve into non-Deep Learning-based, and Deep Learning (DL) approaches as 

potential techniques for improving intrusion detection capabilities within SDNs. DL-based 

approaches and non-DL-based approaches are both subsets of Machine Learning (ML) techniques 

used in various domains, including intrusion detection. 

Finally, we discuss the important findings of existing research and identify research gaps that 

need to be addressed. These include the need for effective network traffic processing, distributed 

processing stages over OpenFlow devices, accurate detection of slow DDoS/DoS attacks, the usage of 

up-to-date datasets for training and testing proposed models, achieving high accuracy with limited 

raw features through Deep Learning and non-Deep Learning approaches, testing models in real 

network environments, and investigating the scalability of using multiple controllers. 

In conclusion, this survey aims to highlight the research issues and challenges associated with 

developing effective IDS based on machine learning approaches for SDNs. By addressing these 

challenges, we can enhance the security and resilience of SDN environments against evolving 

network attacks. SDN allows networks to be controlled by multiple applications, reducing the 

number of networking devices needed and simplifying physical connectivity and configurations. 

Consequently, network operators can customize the network's behaviour to accommodate modern 

services and security applications [1]. Figure 1 illustrates the classification of Intrusion Detection 

Systems (IDS) in SDN networks. 

 

Figure 1. Taxonomy of IDS in SDN. 

The main contribution of this paper is introducing a literature review of Intrusion Detection 

Systems (IDSs) in SDN to present a full understanding of SDN security issues. This survey includes 

the most recent research related to SDN security. Moreover, this paper discussed the tools used in 

IDS evaluations. Furthermore, the review paper contains a critical review and research gaps 

regarding security issues. 

The rest of this paper is organised as follows: Section 2 provides an overview of Software-

Defined Networks (SDN), including the OpenFlow Protocol and the security features of SDN. Section 

3 explores the different types of network attacks that target SDNs and discusses their effects on the 

SDN environment, as well as the points vulnerable to attacks. Section 4 focuses on the methods of 

intrusion detection in SDNs, covering signature and threshold detection methods, as well as 

anomaly-based detection approaches. Section 5 and 6 discusses the evaluation metrics and tools 
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available for IDS in SDNs. Section 7 presents the findings of existing research and identifies research 

gaps that need to be addressed. Finally, Section 8 offers a conclusion summarising the key insights 

and recommendations from this survey.  

2. Software-Defined Networks (SDN) 

SDN stands for Software-Defined Network. It is an innovative approach to networking 

architecture. This technology allows for centralised and intelligent management of networks through 

applications like traffic classification and security measures. The internet is expanding rapidly, 

posing challenges for traditional networks that lack flexibility and capacity to meet organisational 

needs. SDN addresses these difficulties and offers promising solutions. However, there are 

challenges and issues in implementing centralised and programmable techniques, requiring 

contemporary security solutions such as Intrusion Detection Systems (IDS). Recently, security 

solutions have utilised Machine Learning techniques, particularly Deep Learning algorithms, to 

enhance accuracy and efficiency [1].  

The SDN is managed by using lower-level functionality abstraction. The main characteristic of 

SDN is the separation of the control and data planes using the Application Programmable Interface 

(API). SDN decouples the forwarding and control functions in the network [2]. The forwarding 

devices, such as switches and routers, are separated from control logic and moved into the logical 

controller. This controller aims to centralize the network [2]. Therefore, the controller organizes the 

data plane. The separation of the data and controller planes allows the network's services and 

applications to be programmable. In other words, SDN breaks down traditionally vertical stacks of 

networking to customize it and improve scalability to adapt to new technology environments. The 

SDN's primary goal is to permit the networks' engineers and administrators to react rapidly, which 

leads them to deal with dynamic businesses' necessities effectively [3]. 

The connections between the layers and planes of SDN, as well as the SDN reference 

architecture, are depicted in Figure 2. As mentioned, by utilising the control plane, a network 

administrator can address the security and tactics of the network across the application plane. 

Additionally, they can redirect network traffic to multiple applications or systems [4]. 

 

Figure 2. Application Plane, Control Plane, and Data Plane. 

2.1. OpenFlow Protocol 
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OpenFlow serves as the communication interface between the data and control plane in SDN 

networks. As a result, the data plane devices need to adhere to the OpenFlow protocol in order to 

connect to the control plane [5]. This protocol allows administrators to effectively manage and control 

the flow of network traffic by separating the control plane from the data plane. OpenFlow was 

initially introduced by the Open Networking Foundation (ONF) in 2008 and has since garnered 

widespread acceptance and adoption within the research and industry communities. Additionally, 

the OpenFlow controller provides a precise and unambiguous network plan, enabling easier 

controller access to network vulnerabilities and intrusion detection.  

At its core, OpenFlow provides a standardised interface between the control and data planes. In 

conventional networking, these planes are tightly connected. However, OpenFlow splits the control 

plane from the data plane, allowing a more flexible and programmable network infrastructure. The 

splitting between these planes makes it easier for the SDN to implement security policies. Many of 

these players are moving toward SDN technology to revolutionise the design of networks and 

operations [6]. The following subsections explain the main functions of the data and control planes.  

2.1.1. Data Plane 

The data plane is essential for transporting and processing network packets in SDN. It contains 

physical and virtual parts that implement forwarding functions. The data plane allows traffic flow 

within the network efficiently. This plane is managed by the SDN controller, which provides the 

correct dispatch of packets to their targeted destinations [7]. 

The data plane processes incoming packets, making forwarding decisions based on allocated 

rules and redirecting them to their destinations. The properties of switches play critical roles in 

implementing forwarding actions in adherence to the specified forwarding rules. This separation of 

control and data planes determines the main difference between SDN and traditional networking 

paradigms, presenting more significant flexibility, programmability, and scalability [8]. 

In an SDN network, this plane works as a workhorse, where its inherent programmability and 

dynamic nature adjust to varying traffic conditions on the network. Therefore, it allows for systematic 

and intelligent routing, traffic engineering, quality of service (QoS) control, and other vital network 

functions. The invention of the data plane in SDN has revolutionised network administration, 

offering administrators outstanding control and agility in dealing with ever-evolving network 

requirements [7]. 

2.1.2. Control Plane 

The control plane in SDN is implemented through a centralised controller, which works as the 

brain of SDN networks. The control plane Intercommunicates with the network devices in the data 

plane using a standardised protocol such as OpenFlow [6]. The main function of the control plane is 

traffic engineering. It specifies the best paths for network traffic based on several factors, such as 

network congestion, bandwidth utilisation, and quality of service conditions. This plane optimises 

network resource management by dynamically modifying the routing directions based on the current 

conditions [7]. 

The control plane is responsible for implementing network policies. It allows administrators to 

define and enforce policies that govern network traffic behaviour more flexibly. These policies 

include access control rules and traffic prioritisation. The responsibility that falls on this plane is to 

ensure these policies are applied across the network [9]. 

Furthermore, the control plane enables network monitoring and troubleshooting. It collects real-

time traffic information from the data plane and analyses it to detect anomalies, specify performance 

bottlenecks, and analyse the vulnerable points across the network. In addition, this information may 

be used to make accurate decisions to keep the highest possible network reliability and performance 

[10]. 

2.2. SDN Security Features 
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As it is commonly known, software has essential features in its design and implementation, often 

referred to as architecture. SDN has several features that correspond to these modules. The design 

characteristics of SDN make it a distinct approach from typical network architecture. SDN features 

enhance network security, enabling greater flexibility and efficiency. However, SDNs can also be 

vulnerable by design, susceptible to threats that exploit their weak points and overhead [11]. Hence, 

the descriptions of SDN design features have been approached from two perspectives. The first one 

focuses on the components that safeguard the SDN framework against various threats. The second 

aspect relates to the features that can potentially make it vulnerable.  

2.2.1. To achieve resilience of the SDN infrastructure to several attacks 

SDN offers many strategic features to deal with, for example: 

(1) Centralising the monitoring of malformed flow: The controller manages the network's data. 

Hence, the controller is able to observe all the suspicious activity throughout the network [12]. 

(2) Programmable configuration: An essential advantage covered by SDN is the programmable 

features. When any malicious behaviour in the network is detected, the new configuration of a 

program acts instantaneously to deal with the identified anomalies [11]. 

2.2.2. Features that make the SDN environment vulnerable to various attacks 

SDN’s design has vulnerabilities that make it weak against various security threats.  

(1) The Separation of the planes: The separation of planes causes vulnerabilities to various 

attacks. Both planes start transferring the data between each other by employing the OpenFlow 

protocol. Therefore, an intruder can take advantage of attacking the channel by executing DoS, DDoS, 

and saturation attacks. Thus, congestion will occur at the channel bandwidth between the switch and 

the controller [10]. 

(2) The controller suffers from cascading and single-point failures: In any SDN-based 

infrastructure, the controller is the primary target for intruders. When the SDN design relies on a 

centralized entity, it becomes vulnerable to a single point of failure. If the controller crashes, most 

network functionalities, including traffic monitoring, will be disrupted, and security measures will 

be compromised [8]. The nature of a single controller makes it ineffective in handling significant 

network traffic. To address this issue, multiple controllers can be deployed. However, this approach 

may impact the authenticity, scalability, and consistency of privacy rules within each controller 

domain. This behaviour can lead to a cascading failure of more than one controller. 

(3) A limited TCAM: The OpenFlow switches retain the flow rules in order to store the received 

packets within the flow tables. SDN switches utilise the Ternary Content Addressable Memory table 

(TCAM) technology to store the flow rules [9]. TCAM is a memory that enables fast searching within 

used applications. However, SDN switches have a limitation in terms of storage capacity in their flow 

tables. As a result, the network becomes susceptible to various attacks [10]. 
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Figure 3. The architecture of SDN when using security applications. 

3. Intrusion Detection Systems (IDS) in SDN 

IDS play a critical role in safeguarding SDN against various forms of attacks. This section 

provides an overview of IDS in the context of SDNs. IDS are responsible for monitoring network 

traffic and detecting potential intrusions or security threats. They analyse network packets, anomalies 

in traffic patterns, and other indicators to identify suspicious activities. Within SDNs, IDS face unique 

challenges due to the dynamic and programmable nature of the network infrastructure. This section 

delves into the different types of IDS that can be employed in SDNs and highlights their strengths 

and limitations. Understanding the capabilities and limitations of IDS in the context of SDNs is 

pivotal for formulating effective strategies to detect and mitigate security threats within these 

network environments. 

3.1. IDS Overview 

Intrusion Detection Systems (IDS) are crucial, particularly when a network enterprise is 

concerned about security or handles sensitive data. IDS is responsible for defending the network by 

controlling and monitoring its traffic. When malicious traffic is detected, IDS sends an alert to the 

administrator and acts by filtering or redirecting the traffic based on specific requirements or 

installing special policies [13]. The components of a network-based IDS typically include IDS 

management, IDS collector, and IDS classification. IDS management handles the policies and rules of 

the IDS, while the collector collects traffic or flows from the database of flow tables. The classification 

component utilizes classification techniques for forecasting purposes.  

The IDS inspects each packet. These packets are received through the switches using the south-

bound API and then sent to the application plane through the north-bound API. This procedure is 

conducted on the standard switch by configuring the controller. Consequently, the controller can 

observe and analysing all network traffic that flows through the switches [14]. 
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3.2. Type of IDS 

IDS can be categorised upon on their targets as below:  

1. Host-based Intrusion Detection System: The IDS must be installed on a computer or personal 

device like a mobile or tablet. It is an important application that examines all the activities on the 

device. It detects and prevents attacks if there are intruders [15]. 

2. Network-based Intrusion Detection System: This system observes the traffic to detect 

malignant activities by checking the traffic behaviour at various stages throughout the entire 

network and raises the alarm when an anomaly is identified [15]. 

4. Attacks in SDN 

Network attacks represent any unauthorised attempt to access data that may compromise 

network security or stop some services. An explanation of the network attacks is provided in this 

section. 

4.1. Network Attacks Overview 

In the context of SDN, network attacks pose a significant threat to the security and integrity of 

the network infrastructure. Network attacks in SDN refer to malicious activities that exploit 

vulnerabilities within the SDN environment to compromise its availability, confidentiality, or 

integrity. These attacks can range from Distributed Denial of Service (DDoS) attacks, which 

overwhelm network resources and cause service disruptions, to Denial of Service (DoS) attacks, 

which target specific network components to render them inaccessible. Other network attacks include 

Portscan attacks, SQL injection, document infiltration, probe attacks, and various types of penetration 

attacks like User to Root (U2R) and Remote to Local (R2L). Understanding the different network 

attacks in SDN is crucial to develop effective IDS that can detect and mitigate such threats, enhancing 

the security of SDN environments. 

4.2. Specific Attacks: 

This subsection delves into the various types of attacks that target SDN. These attacks are 

categorised into eight major groups. These groups are explained below.  

1. DDoS (Distributed Denial of Service) Attack 

DDoS is a kind of cyber-attack where numerous compromised techniques are utilised to flood a 

target network or a server with a large amount of traffic, blocking responses to normal requests. These 

attacks are organised by employing a network of computers, which is called a botnet, that are 

managed by the attacker. The size and distributed nature of the attack make it difficult to mitigate 

the impacts and identify the source of the attack [16]. 

DDoS attacks manipulate the basic principles of network communication and can target 

different planes of the SDN network, including the control and data planes. Commonly, DDoS floods 

the victim with an extensive volume of packets, consuming network resources, including bandwidth 

or server processing capacity, or using vulnerabilities in network protocols to suspend 

communication between other parts of the network [17]. 

The motivations behind DDoS attacks vary from malicious intention to performing financial 

profit or advancing ideological agendas. In such attacks, the targets can be businesses or institutions 

seeking to stop their economy, causing financial losses, spoiling their reputation, or data breaches. 

The general forms of DDoS attack include Smurf, TCP SYN flooding, and teardrop [18]. 

2. DoS (Denial of Service) Attack 

DoS attack is the same DDoS concept as the main target for both is to disrupt the resources of a 

targeted system or service, but the DoS attacks are implemented by utilising a single source rather 

than multi-source like DDoS attacks. 

3. Portscan attack 

A portscan attack is defined as a mechanism used by an attacker to probe systems for open ports. 

This method enables the attackers to access potential vulnerabilities and get illegal access to the target 
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system. This attack systematically queries a range of network ports on a given host to define which 

ports are open, closed, or filtered. The attacker employs the obtained information to breach sensitive 

services and threaten the victim. It is difficult to prevent this attack due to its stealthy nature [19].  

4. SQL Injection 

An SQL injection attack is a malignant utilisation that targets the weak points in SDN controllers 

and related databases employing SQL applications. Due to the significant impacts of SDN controllers 

in governing the network's policies, an SQL injection attack can seriously affect network security and 

functionality. By injecting malignant SQL queries into user-supplied data, attackers can exploit the 

network's policies, compromise the integrity of network flows, and gain unapproved access to 

sensitive data. SDN architectures should apply robust security measures, such as IDS-based ML, to 

prevent this threat [20]. 

5. Document infiltration 

A document infiltration attack is a refined and targeted cyberattack directed at obtaining sensitive 

data stored in documents, either in physical or electronic format. Hackers employ complicated 

intrusion strategies to breach the security of a system to get unlawful access to documents. 

These types of attacks use vulnerabilities in information systems, like human errors, or utilising 

advanced hacking approaches, including phishing, malware, or social engineering. Once the attacker 

logs into the system, the Intruder uses techniques to contraband the targeted documents, such as 

copying, downloading, or sending them to remote servers. Document infiltration attacks involve a 

high risk to the confidentiality, and integrity of secret information. Institutions must utilise vital 

security measures such as encryption techniques, access controls, and continuous monitoring, to 

detect such attacks [21]. 

6. Probe Attack 

The hacker scans the whole network to get information about the target machine.  With the 

help of port sweeps responsible for running the host machine's services, Ping Sweep launches an 

enormous IP address range, mapping for live hosts [18]. 

7. User to Root (U2R) 

This attack is used to allow the unauthorised log to a host machine to access the superuser 

privileges. This attack is usually launched to get the root privileges of the user account. The basic 

types include input modification and buffer overflow [18].  

8. Remote to Local (R2L) 

The R2L attack is an initial or traditional attempt to plagiarise offline users. The attackers enter 

the system by sending data packets over the network in this method. The victim and the hacker need 

to reach others or be on the same network. Unauthorised access to the user can be gained through 

Social Engineering or password sniffing methods [18]. 

4.3. Effects of Attacks on the SDN Environment  

Most threats occur by overloading the controller through bandwidth congestion of the 

communication between the data and control planes. The most significant threats and the possible 

effects of these attacks are discussed as follows:  

(1) Saturation of the controller resource: The controller is seen as the central component of the 

SDN network. As a result, if the controller crashes, it can have a significant impact on network 

performance. The controller's capabilities may be overwhelmed by the processing of many flooded 

requests generated by DDoS attacks. When the controller is overloaded, it becomes impossible to 

manage all the incoming data flows effectively. Consequently, a substantial amount of regular traffic 

may experience delays or fail to undergo crucial processing [18].  

(2) Switch overloading: The primary threats to SDN architectures are Denial of Service (DoS) 

and Distributed Denial of Service (DDoS) attacks. These attacks involve flooding the switches with 

numerous harmful packets. When a switch cannot find a corresponding entry in the flow table for a 

malicious packet, all unmatched entry requests are stored in a single buffer and then sent to the 

controller for a specific rule application. However, because the switch has limitations in terms of 

TCAM, it cannot process all incoming packets. As a result, the flow table's memory can be exceeded 
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by the incoming flow and requests. This leads to regular traffic being unable to undergo the necessary 

processing [22]. 

(3) Congestion bandwidth between switch and controller: The missing events happen when 

two actions occur during the arrival of new packets. The first one takes place when incoming packets 

are stored in a buffer in the flow table. The second happens when an OpenFlow request includes 

information from the packet header. The controller is notified and receives this information when the 

buffer reaches its maximum capacity. As a result, packets might collide with another associated 

interface, leading to users experiencing a service blockage [23]. 

4.4. Vulnerable Points in the SDN Environment 

The SDN structure consists of three planes: data, control, and application. This characteristic of 

SDN makes the network susceptible to multiple attacks, including DDoS and DoS. The specific points 

that attack target are described below:  

(1) The SDN switches: The primary purpose of OpenFlow switches is to send the newly received 

traffic to the controller for further action and processing. However, the switch has a flow table with 

limited memory capacity. Consequently, this becomes a significant concern in terms of security as it 

enables attackers to flood the switch with an enormous number of harmful packets [12].  

(2) The SDN switches links: The packets transfer between the switches before they reach the 

controller. The packets are not encrypted when they are transferred over the links. As a result, an 

attacker can easily capture the packets, particularly in wireless environments. This type of attack is 

referred to as man-in-the-middle. Additionally, at this stage, DoS and DDoS attacks can be carried 

out, where the attacker can send a large amount of malicious traffic to disrupt the transmission of 

normal traffic, thereby halting the services.    

(3) The SDN controller: As it represents the central component of the network, it performs 

crucial environmental actions. Any abnormality can halt network operations. The controller affects 

the functionality of a network, making it an attractive target for attackers. However, if only one 

controller is used, the network becomes vulnerable to a single point of failure. Therefore, this 

significant security concern must be addressed [23]. 

(4) Controller and switch communication: When a newly received packet cannot match any 

records in the flow table, it will then be redirected to the controller for further processing. As a result, 

the rules used for forwarding will be added to the flow table entries in the particular switch. At this 

stage, an attacker has the opportunity to intercept the packet and inject harmful rules or modify the 

existing ones. Because of this, the majority of packets may be sent in the wrong direction [17]  

(5) Applications:  The applications that are implemented in the SDN control layer include 

traffic monitoring and classification. These applications are created by third parties to add necessary 

security requirements. Attackers focus on these applications in order to access sensitive information 

or introduce harmful rules to the controller. An unauthorized user could carry out this process while 

communicating with the API. Consequently, SDN applications are seen as a direct target to disrupt 

the service of controllers [19]. 

5. Methods of Intrusion Detection System in SDN 

The Intrusion Detection System (IDS) analyses the data from the packet, which is the entire data 

of the packet obtained by monitoring all network flows. This information consists of a packet header, 

as well as the number of bytes and packets in both the source and destination. The IDS employs 

various analysis and detection methods to assess and monitor the movement of packets throughout 

the network. These methods can be categorized based on how they detect potential intrusions. The 

primary techniques include Signature-based and Anomaly-based methods. Table 1 illustrates the key 

distinctions between these techniques. Additionally, other approaches are explained below. 

Table 1. IDS methods Comparison [24]. 

# Methods Signature - Based Methods Anomaly - Based   
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1 Implementation is easy Difficult to implement 

2 Reliable Less Reliable 

3 Speed is high Speed is low. 

4 Less Robust More Robust 

5 Low rate of Alarm A high rate of Alarm 

6 Low scalability High Scalability 

5.1. Signature and Threshold Detection Method 

This method of detection is known as knowledge-based detection. It identifies attacks or 

abnormal behaviours by examining patterns or rules and comparing the observed behaviour against 

these regulations or patterns. The rules are used to determine whether a particular activity pattern is 

malicious or normal. This approach is employed when there is a need to detect an attack with a 

distinctive and unambiguous signature [24]. 

5.2. Anomaly - Based Detection 

This detection method can be categorised as behaviour-based, statistical anomaly-based, or 

baselining. It involves collecting data on the normal behaviour of users during a specific period [6]. 

Statistical tests are then used to efficiently determine whether a user is exhibiting normal behaviour 

or being attacked, using Machine Learning techniques. Within Machine Learning type of detection, 

there are two sub-categories: non-DL-based approaches, and DL-based approaches, which are both 

belong to Machine Learning approaches [23].  

Non-DL-based approaches: Non-deep learning (DL) based approaches refer to machine learning 

techniques other than deep learning algorithms. These approaches include traditional machine 

learning algorithms such as decision trees, random forests, support vector machines, and naive Bayes 

classifiers. Non-DL-based approaches are often used in behaviour-based and statistical anomaly-

based detection methods. They are effective in detecting known attack patterns but may struggle 

with detecting complex or evolving attack techniques [19]. 

DL-based approaches: DL-based approaches utilise deep learning algorithms, such as artificial 

neural networks, convolutional neural networks (CNNs), or recurrent neural networks (RNNs). 

These approaches have the ability to automatically learn complex patterns and features from data, 

making them suitable for detecting sophisticated and evolving attack techniques. DL-based 

approaches are particularly effective in identifying unknown or zero-day attacks. However, they 

often require a large amount of labelled training data and computational resources [20]. 

Overall, both non-DL-based and DL-based approaches are part of the broader category of 

machine learning approaches used for intrusion detection. The choice of approach depends on the 

specific requirements of the system, the available data, and the types of attacks to be detected. 

Table 2. Comparison of non-DL and DL Techniques in IDS within SDNs: Pros and Cons. 

Aspect non-DL Approaches within IDS in SDNs 
Deep Learning (DL) Approaches within IDS 

in SDNs 

Pros 

- Interpretability and Explainability: Non-

DL models offer explicit rules, aiding in 

understanding decision-making [24]. 

- Efficiency with Moderate-Sized Datasets: 

Techniques like SVMs perform well without 

excessive computational demands [22]. 

- Adaptive Learning: non-DL models can 

adapt to changing behaviours effectively [17]. 

- Availability of Off-the-Shelf Algorithms: A 

wide range of established non-DL algorithms 

are available. 

- Complex Feature Extraction: DL 

architectures excel in extracting intricate 

features from raw data [24]. 

- Superior Accuracy in Complex Scenarios: 

DL models often achieve higher accuracy 

[23]. 

- Adaptability to Diverse Data Structures: 

DL methods can process diverse data formats 

without explicit feature engineering [19]. 
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- Potential for Real-Time Decision-Making: 

Optimised DL architectures enable rapid 

decisions [11]. 

Cons 

- Struggles with Complex Data Patterns: 

Traditional non-DL methods might struggle 

to discern intricate attack patterns. 

- Limited Scalability: Some non-DL models 

face challenges in handling large-scale SDNs 

effectively [9]. 

- Dependency on Feature Engineering: Some 

non-DL techniques require manual feature 

engineering [11]. 

- High Computational Demands: DL models 

require substantial computational resources 

[4]. 

- Black-Box Nature and Interpretability: DL 

architectures often result in opaque models 

[8]. 

- Data Dependency and Overfitting Risks: 

DL models are highly data-dependent and 

prone to overfitting [11]. 

Table 3 provides an overview of the advantages and disadvantages of the classifiers that are 

widely used for anomaly detection. 

Table 3. Advantages and disadvantages of non-DL and DL approaches. 

Algorithms Type Advantages  Disadvantages 

SVM non-DL 

 High accuracy [25-27]. 

 SVM can reduce the data 

redundancy [27] 

 Cost computationally [27] 

 It takes a long time for the 

training. 

 SVM is used in single-class 1 

or 0. To use it in multiple classes 

will need more computational 

complexity [27] [28].  

 SVM needs more memory 

and CPU for the implementation 

[26] 

 It is improper with a large 

number of features [29] 

 SVM does not fast enough 

in the real-time classification [25] 

DT 

 
non-DL 

 It works probably with a large 

number of features [27] 

 DT able to work with a small 

number of features [29-30] 

 It could be used with numerical 

and categorical data [26] 

 It has complexity 

computational [27] 

 Giving low accuracy 

compared with other classifiers 

depends on the dataset [31] 

 Requires a long time for the 

training [29] 

 It becomes too complicated 

in numeric data [29] 

NB non-DL 

 Low-cost computational [26] [29] 

[30] 

 It gives high accuracy in 

dependencies absence case in the 

features [27] [29] 

 It works probably with a large and 

low number of features [26] [31] 

 It can be used in multi-class 

classification [31] 

 It can classify continuous and 

discrete data [30] 

 It gives low accuracy only if 

there is a high dependency 

between the features [26].   
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 It is swift and lightweight for the 

real-time classification [26] [30] 

RF non-DL 

 It is considered a non-linear 

classifier with high accuracy [26] [32] 

 It can classify the continuous and 

categorical data.  

 It is a very stable classifier [26]. 

 High cost and complex 

computational [32]. 

 It needs more memory and 

CPU for the implementation [32]. 

 It takes a long time for the 

training [32]. 

K-NN non-DL 

 It is a fast classifier [30]. 

 Does not need to a long time to 

the training and it is easy to execute 

[27]. 

 It does not affect the dependency 

of the data [30]. 

 Requires selecting the 

number of neighbours' K' 

manually [30] 

 It is not efficient with a large 

number of features [26]. 

 Uses more storage [30] 

LR non-DL 

 High accuracy [26] 

 It has less complexity than other 

classifiers.  

 Low cost computational 

 It gives high accuracy only if 

there is a high dependency 

between the features [26].   

 Uses only the numerical 

value in the outputs [26] 

 It takes a long time for the 

training [26] 

 LR used in single-class 1/0 

[27] 

LogR non-DL 

 High accuracy [26] 

 It has less complexity than other 

classifiers [27] 

 Low cost computational [26] 

 It gives high accuracy only if 

there is a high dependency 

between the features [26].   

 It is very sensitive to noisy 

data. 

 Uses only the categorical 

value in the outputs [26] 

 It takes a long time to train. 

 LR used in single-class 1/0  

ANN DL 

 High accuracy [33]. 

 It is not sensitive to noisy data [28] 

 It can be used in multiple classes. 

 It could be used with numerical 

and categorical data. 

 It can easily define the 

complicated relationship between the 

independent and dependent features.   

 High cost and complex 

computational [26] 

 Requires a long time for the 

processing.  

 Requires a long time for the 

training [28] 

 Needs big data for the 

training [33]. 

 Needs more memory and 

CPU for the implementation [33]. 

 Does not fast enough in the 

real-time classification [28]. 

CNN DL 

 High accuracy [33] 

 It can be used in multiple classes 

[33] 

 High cost and complex 

computational [33]. 

 Requires a long time for the 

process [33] 

 Requires a long time for the 

training [34] 

 It needs big data for the 

training [34] 
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 Needs more 

memory/storage and CPU for the 

implementation [33] 

 CNN needs to change the 

dataset to be like the image data 

before the classification [33]. 

 It is not fast enough in the 

real-time classification [34]. 

GRU DL 

 Highest accuracy than the other 

DL approaches [35]. 

 It can be used in multiple classes 

[35]. 

 It can be used with a low number 

of features on the training.  

 It can be supervised or 

unsupervised. 

 Can easily define the complicated 

relationship between the independent 

and dependent features [35]. 

 It has a high cost and 

complex computational [35]. 

 It gives lousy prediction 

when using a dataset with a 

longer sequence [35]. 

 Requires a long time for the 

training [33]. 

 Uses more storage [35]. 

 It does not fast enough in 

the real-time classification [28]. 

The non-DL and DL based approaches need a dataset to train and test the models to be ready 

for attack detection. There are two methods to train such models, which are simulation-based and 

public datasets-based.  

The simulation-based mechanism uses a simulation method to generate the dataset in order to 

train and test the non-DL classifiers. These classifiers categorise the traffic into abnormal or normal. 

Figure 4 shows sequential stages in creating a simulation dataset. In these specific methods, the 

researchers built a network topology that included regular hosts to generate normal traffic and other 

bot hosts to generate abnormal traffic. Scapy and Wireshark are open-source tools that were used by 

researchers to simulate and generate DDoS, DoS, Prob, Portscan, U2R, and R2L attacks. The features, 

such as protocol type, source IP address speed, source port rate, and flow packets, will be extracted 

from normal and abnormal traffic. After pre-processing these features, they will be stored in a CSV 

file as the raw data, which will train the proposed models [36]. After learning the model, it will be 

ready to apply non-DL algorithms to classify the normal and malicious packets in the SDN 

environment accordingly.  

The proposed work in the public datasets-based method utilises public datasets to train and test 

models. The selection of these datasets is crucial for achieving efficient and accurate Intrusion 

Detection Systems (IDS). However, it should be noted that most publicly available datasets are not 

realistic and lack the inclusion of most types of attacks. Consequently, this can have a negative impact 

on the accuracy and performance of IDS [37]. The main reasons behind the inadequacy of these 

datasets are related to privacy and legal concerns. Additionally, these datasets tend to be outdated 

and may not encompass the latest behaviours. Furthermore, such datasets often contain many 

duplicate records. Consequently, using such datasets achieves low accuracy and performance [37]. 

The public datasets that are currently available were gathered from conventional networks rather 

than the SDN network. These datasets contain certain characteristics that cannot be accessed in SDN 

networks [37]. Numerous published datasets also incorporate various attacks like KDD'99 NSL-KDD, 

CICIDS2017, ISCX2012, Kyoto, and CSE-CIC-IDS2018 [37]. 
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Figure 4. Sequential stages in creating a simulation dataset [36]. 

1. The KDD'99 is a widely used data set for the evaluation of anomaly detection methods. Some pitfalls and 

problems of KDD'99 led to the creation of the NSL-KDD, which is a refined version of the KDD'99 dataset.  

2. CICIDS2017: Another dataset from the Canadian Institute for Cybersecurity, this dataset is much newer 

and includes modern attack behaviours. It is highly regarded for having a balance of multiple types of 

network intrusions and normal behaviours which allows for a comprehensive evaluation of IDS.  

3. ISCX2012: Created by the Information Security Centre of Excellence (ISCX), this dataset is recognized for 

its extensive coverage of both normal and attack traffic.  

4. Kyoto: The Kyoto University’s Honeypot datasets are some of the most comprehensive ones for IDS as well. 
These datasets include a wide variety of attacks, including fewer common ones, making them quite useful 

for intrusion detection research.  

5. CSE-CIC-IDS2018: This dataset is another product of the Canadian Institute for Cybersecurity, and it is one 

of the most recent and comprehensive datasets for developing and training IDS. It contains a wide array of 

updated attacks which provide researchers with a current 'snapshot' of internet traffic to assist in IDS 

development and training. 

Table 4. A summary of the used datasets in IDS approaches. 

Dataset Year 
No. of 

Features 
Notable Attack types Method of Data Collection 

KDD'99 1999 41 U2R, R2L, DoS, Probe Simulated network traffic 

NSL-KDD 2009 41 U2R, R2L, DoS, Probe 

Improved version of KDD'99 

with unnecessary duplicates 

removed 

CICIDS2017 2017 80 
Brute Force, DoS, Heartbleed, 

Web Attack, Infiltration, Botnet 
Real network traffic 

ISCX2012 2012 283 
HTTP, DoS, scanning, 

infiltration 
Simulated network traffic 

Kyoto 2006 

Depends on 

varied 

releases 

Wide array, including less 

common and recent attacks 

Honeypots and real network 

traffic 
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CSE-CIC-

IDS2018 
2018 

78-85 

depending on 

the scenario 

Brute Force, DoS, Heartbleed, 

Infiltration, Web Attacks 
Real network traffic 

5.2.1. non-Deep Learning-based Approaches 

Non-Deep Learning (non-DL) approaches refer to machine learning techniques that do not 

involve deep learning algorithms [31]. These approaches are often based on traditional machine 

learning algorithms, which are shallower models with fewer layers [32]. Here are some examples of 

non-DL approaches in the context of intrusion detection systems (IDS): 

1. Decision Trees: Decision trees are a type of non-DL approach used in IDS. They work by 

recursively splitting the data into subsets based on the feature values, creating a tree-like structure. 

The leaves of the tree represent decisions, and the path from the root to a leaf represents a 

classification or prediction. Decision trees can be used for both anomaly detection and signature-

based detection, where they can classify network traffic or user activities based on predefined rules 

or patterns [29]. 

2. Random Forests: Random forests are an ensemble learning method that builds multiple 

decision trees and combines their predictions to improve the overall accuracy and robustness of the 

model. They are effective in IDS due to their ability to handle high-dimensional data and different 

feature types. Random forests can be used for both anomaly detection and signature-based detection, 

as well as for predicting the severity of detected threats [28]. 

3. Support Vector Machines (SVM): SVMs are a powerful non-DL approach for classification and 

regression tasks. They work by finding the optimal hyperplane that separates different classes of data 

points. In the context of IDS, SVMs can be used to classify network traffic or user activities based on 

known attack patterns or features. SVMs are known for their effectiveness and efficiency in handling 

large datasets and high-dimensional feature spaces [33]. 

4. Naive Bayes Classifiers: Naive Bayes classifiers are a family of probabilistic classifier 

algorithms based on Bayes' theorem. They are "naive" because they assume that the features are 

conditionally independent, given the class label. Naive Bayes classifiers are often used in IDS for both 

anomaly detection and signature-based detection. They are known for their simplicity, efficiency, and 

effectiveness in handling high-dimensional data and text data, such as logs or network traffic [34]. 

5. K-Nearest Neighbours (KNN): K-Nearest Neighbours (KNN) is a non-DL approach that is 

used for classification and regression tasks. KNN works by finding the k-nearest data points 

(neighbours) to a given data point and assigning the majority class label or predicting the mean value 

based on these neighbours. In the context of intrusion detection systems, KNN can be used for 

anomaly detection or signature-based detection by comparing the features of known attack patterns 

or network traffic/user activities to known normal or malicious patterns [30][26]. 

6. Linear Regression: Linear regression is a non-DL approach used for predicting the relationship 

between a dependent variable and one or more independent variables. In the context of intrusion 

detection systems, linear regression can be used to model the relationship between different features 

of network traffic or user activities and the likelihood of an attack. This can be useful for detecting 

anomalous behaviour or predicting the severity of detected threats. Although linear regression is not 

typically used for anomaly detection, it can still be applied to other aspects of intrusion detection 

systems [27]. 

The paper in [24] presents an approach to identify non-DL-based attacks. The system is a flow-

based IDS designed with the limitations of signature-based IDS in mind. The controller uses a neural 

network algorithm to classify each packet. The proposed IDS uses the NSL-KDD public dataset for 

implementation and training, aiming to define DOS, U2R, R2L, and Probes. The model has achieved 

a Detection Rate of 97.4%. However, during the training stage, using a small database negatively 

impacts the detection accuracy of real tests. The features are extracted solely from the header packet, 

lacking coverage of attack behaviours. Moreover, the dataset used contains redundant records. 

Implementing non-DL approaches with IDS poses the challenge of a bottleneck and single point of 
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failure in the controller due to the processing operation for each packet. Additionally, the proposed 

model requires a feature selection method to choose effective features during an attack. 

The researchers in reference [36] conducted a comprehensive analysis of the existing non-DL 

approaches for detecting malicious traffic in SDN environments. The evaluation involved identifying 

the limitations of each algorithm and performing experiments using a publicly available database. 

The algorithms analysed included Support Vector Machine (SVM), Naïve Bayes, K-Nearest 

Neighbours (KNN), Adaptive Support Vector Machine (ASVM), Hidden Markov Model (HMM), K-

means, Random Forest, Bayesian Networks, Decision Tables, K-medoids, and fuzzy control models. 

These algorithms were assessed based on previous research, considering their features, classes, 

datasets, and sizes. However, it should be noted that the comparison of these algorithms is not 

entirely fair, as each algorithm has its own advantages and disadvantages in different areas. For 

instance, the paper fails to mention the specific use case of K-means in clustering compared to SVM 

in classification. These algorithms cannot be directly compared because K-means is effective at 

separating datasets based on patterns, whereas SVM excels at separating data with predefined 

patterns, thereby facing the challenge of proper selection. Principal Component Analysis (PCA) is 

used to reduce the number of parameters required for algorithms that necessitate manual parameter 

analysis, although it does not address this challenge. The evaluation process for these algorithms 

involves measuring precision, recall, F-score, and accuracy. However, the scores attained by each 

algorithm do not necessarily imply the same advantages and disadvantages across the board. 

Unfortunately, the paper lacks an in-depth analysis of these differences. Lastly, the paper mentions 

that deep learning (DL) is the most effective method for detecting unknown attacks. However, only 

non-DL algorithms were tested, and DL algorithms were not considered. Among the non-DL 

algorithms tested, the J48 algorithm achieved the highest accuracy of 81.5%. The authors did not 

provide a technique to mitigate the overhead caused by the Intrusion Detection System (IDS) when 

installed on the controller. 

The authors in [38] used the SVM algorithm to identify DDoS attacks in the SDN architecture. 

The methodology includes the implementation of a system called "Flow Status Collection," but there 

is no explanation of how this system works. The algorithms are briefly described, but there is no code 

provided for analysing the implementation, creating uncertainty. Despite being a learning model 

designed for training with limited data, it is necessary to implement a feature selection method to 

achieve better results for this type of attack. The results show that the highest detection rate achieved 

is 98%. However, since this approach yields some non-real values, these false positives can be 

concerning. If the false positive rate is not 5.88%, it could be up to 7 or 8 times higher due to the type 

of infrastructure, which is known to have the aforementioned issues. This method faces the challenge 

of implementing solutions to DDoS attacks. Although successful, it lacks various datasets for a better 

training model. Integration with datasets from multiple frameworks and public trials for research 

purposes is already missing. 

In this paper [39], the researchers created a simulation platform using Mininet in the SDN 

network in order to identify DDoS attacks. They employed an SVM classifier to classify each 

incoming packet. The flow table collection was subjected to extraction of characteristic values in order 

to provide input for the classifier during the attack detection process. However, this flow table 

collection did not undergo a feature selection process, which means that certain features could impact 

the performance and accuracy of the classifier. This presents a challenge concerning the appropriate 

selection method. Another challenge addressed was the efficient processing of packets, as DDoS 

attacks involve processing large volumes of data within short periods. However, these particular 

features were not covered by the practices employed for detecting DDoS attacks. Consequently, while 

the detection results may be helpful, the performance could be insufficient depending on the testing 

environment, potentially resulting in a bottleneck at the controller. Based on the results, the highest 

accuracy rate was achieved through testing using a dataset consisting of 600 TCP packets, resulting 

in an accuracy of 96.83%. The overall best results were obtained for the TCP protocol compared to 

UDP and ICMP, as the TCP protocol provides more network fields for classification. Conversely, 

UDP offers fewer fields but is more representative in terms of the analysed application. Lastly, ICMP 
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exhibits distinctive characters in the payload which allow for individual behaviour during attacks. 

The proposed system achieved a detection accuracy rate of 95.24% and a false alarm rate of 1.26%. 

The authors in [40] have designed a detection model for the SDN network. They used an 

improved version of SVM to identify DDoS attacks. However, there are still some challenges that 

have not been solved. These challenges include performance degradation and efficient packet 

processing. In this model, packets go through the entire SDN network, including OpenFlow switches 

flow entries, Open Daylight, and finally the API of ASVM. This allows ASVM to classify the packet 

as an attack or not. The testing process faces the challenge of using realistic datasets or environments. 

The testing was done with 1000 packets, which is an average number under normal conditions. 

However, a DDoS attack is not a normal condition. It is the worst condition where the infrastructure 

is heavily stressed. Additionally, latency increases significantly, although it is considered to be 0.1 

seconds under typical conditions in the testing scenario. Furthermore, the model does not consider 

obfuscated information, which is a technique attackers use to bypass security controls' fingerprinting 

process. The accuracy of the model was around 97% with training with the minimum required time. 

However, this does not mean that the algorithm was optimal. More features related to improvements 

over SVM and a comparison with a normal implementation of SVM and ASVM are missing. The goal 

of the study was to achieve better results than using a regular version. 

In the study in [41], the authors introduced a management framework that combines techniques 

from information theory with non-DL algorithms. The objective of this research is to address the 

categorization of traffic analysis. The main challenge lies in efficiently processing packets, so the 

authors proposed a comprehensive approach to understanding SDN networks. The problem starts 

with the involvement of human intervention, as using SDN is manageable at a broad level but not at 

a detailed level. Moreover, extracting network traffic profiles requires significant memory usage, 

which introduces the issue of selecting appropriate features when dealing with large amounts of data. 

On a different note, the authors implemented K-means for clustering and SVM (Support Vector 

Machine) for variety in the classification of abnormal traffic. However, since a clustering algorithm 

was used to create subsets, there might be an impact on performance. In the testing phase, the authors 

described the behaviour of DDoS (Distributed Denial-of-Service) and port scanning attacks. The 

results achieved an accuracy of 88.7% and a precision of 82.3%, which is considered low compared to 

previous works. However, the cause of this low accuracy percentage is not discussed. Nevertheless, 

one could speculate that the main issue lies in integrating directives from a user-friendly interface 

executed in a technical and low-level environment, even when the collection and analysis time is only 

0.075 in a topology involving 100 switches. 

The authors of the paper in [42] focused on the essential requirement and presented a solution 

called Eunoia. The proposed model is an IDS based on non-DL in the SDN network. Eunoia aims to 

monitor, detect, and control any malicious or suspicious traffic in SDN that could harm its internal 

operations, resulting in network intrusion. The presented solution consists of three subprocesses: 

data pre-processing (filtering irrelevant data traffic to provide valuable data), data modelling 

(applying chosen algorithms to predict new audit data), and decision-making and response (helping 

SDN respond to analysis results through an active learning process and reactive routing in SDN). 

However, it faces numerous challenges, such as the need for sufficient computational power to 

handle and process the large amount of data entering the SDN-based network intrusion system as 

malicious traffic. The features extracted in the model filter valuable data from non-valuable data. The 

active learning and reactive routing data further examine the analysis results and store the 

implemented results. Another relevant challenge could be efficient packet processing to avoid 

causing bottlenecks and deteriorating the system, leading to crashes, or going on standby. 

The authors in reference [43] enhanced the SVM (Support Vector Machine) by adopting a 

behaviour-based approach to integrate the learning algorithm's functionality for monitoring and 

categorizing threads. The feature extraction method was based on an information gain approach, 

which described each variable accordingly. However, the process and selection of variables were not 

defined. While the selection method was described as based on top-ranked features, setting a proper 

feature selection remains a significant challenge for NIDS (Network Intrusion Detection System). The 
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SVM algorithm mentioned its hyperparameters but did not explain why they were set within specific 

ranges. This presents a challenge for NIDS, as it aims to ensure consistent and accurate evaluations. 

The SVM implementation was neither optimized frameworks nor custom-made modifications to 

other implementations. The main objective of this paper was to identify various attacks, yet the tests 

conducted focused solely on DoS (Denial of Service) attacks. Consequently, the algorithm 

demonstrated a high accuracy rate of 97.63% in identifying such attacks. However, the proposed 

model may not be suitable for large-scale networks and requires an efficient method for processing 

each packet. Furthermore, this model needs to incorporate a feature selection technique that captures 

the behaviours of the selected attack. 

In this research paper [44], the researchers presented a model designed to ensure that the SDN 

structure is self-adaptive while responding to network events. This is done by analysing 

misbehaviour and new flow attacks. The analysis is conducted using non-DL algorithms to classify 

such behaviours. The proposal has multiple strategic points where analysis needs to be performed. 

The first one is when the traffic is new, it must be determined if it is an attack or not. The second point 

is when the traffic is unknown, it needs to be analysed in detail. However, the challenge of waiting 

for the client to request the resource in a timely manner is not addressed in the paper. Efficient packet 

processing is essential, especially during DDoS attacks that generate large amounts of abnormal 

traffic. The algorithm's performance can be impacted if the attack lasts for several hours. The paper 

mentions that there are 41 features, which brings up the issue of how to properly select these features. 

Unfortunately, this aspect is not covered in the paper. Consequently, it affects the performance of the 

algorithm and its execution for each incoming sample from the network traffic. On another note, only 

20% of the total samples were used for training, while typically 60% and 40% are used for testing. 

However, the paper does not provide any analysis of the 20% that were not used. Despite this, the 

SMO classification achieves an accuracy of 99.4%, which is impressive. Finally, the equation used to 

identify misbehaviour attacks is simply a calculation of distances between values. Therefore, there is 

no in-depth analysis of correlation or variance. 

The authors in [45] introduced an inference-based IDS to DoS attacks in SDN. The proposed IDS 

is responsible for managing the separation of network structure information from the control panel. 

The proposed approach is based on Graph Theory, which focuses on the relationship of context to 

predict attacks. The authors used the CAIDA dataset and a specific dataset containing labels per 

connection to test the system. They evaluated this IDS using Precision, Recall, and F-score 

measurements, with respective results of 0.84, 0.78, and 0.81. This method can also help mitigate the 

effects of DoS attacks in SDN. However, this approach uses a large amount of data and requires 

packet processing, which can impact the performance of the controller. Furthermore, the features 

extracted were taken from the header information, and some of these features were not relevant or 

used to identify the DoS attack, such as the Node type. Additionally, the selected features do not 

cover the behaviours of a DoS attack. As a result, an attacker can easily evade this model when 

initiating an attack. 

In this paper [46], the researchers presented a method for detecting network-based attacks such 

as DoS and Probe attacks in SDN. The proposed system used the Decision Tree approach with the 

C4.5 algorithm and the 1999 Darpa dataset. The C4.5 algorithm prevented overfitting of the data and 

dealt with missing attribute values in the training data. The researchers claim that this method can 

effectively mitigate the impact of DoS and Probe attacks in SDN. They evaluated the model using 

Precision and Recall measurements, achieving results of 0.989 and 0.964 for the DoS attack, and 0.984 

and 0.921 for the Probe attack, respectively. However, their use of the 1999 Darpa dataset for training 

is questionable since it does not include features related to new types of DoS attacks. Attackers 

frequently come up with new behaviours for DoS and Probe attacks. The integration of the SDN 

controller and the IDPS requires a large number of control packets to monitor traffic, which poses 

another challenge that needs to be addressed in their work. 

In this paper [47], the authors presented an IDS that identifies DDoS attacks in SDN networks 

using traffic data. The proposed system utilises the NOX controller. The main concept is to use a Flow 

Collector to retrieve traffic information from the flow table. A Self-Organizing Maps (SOM) algorithm 
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is employed for classifying the traffic as normal or malicious. The system's performance is evaluated 

based on Detection Rate and False Alarm rate measurements, which yield results of 98.61% and 0.59 

respectively. However, it is worth noting that the training stage utilizes a small dataset size, which 

negatively impacts the accuracy of real tests. Furthermore, the extracted features considered only the 

packet header, failing to capture the complete behaviour of DDoS attacks. Consequently, attackers 

can easily bypass the system by modifying the header information to resemble a regular packet. 

Moreover, it is important to extend the scope of the research to include other attack types such as 

Prob and U2R. Additionally, the authors did not provide any method for preventing the detected 

attacks. 

The authors in [48] proposed an Intrusion Detection System (IDS) on SDN using the Support 

Vector Machine (SVM) algorithm. They used a kernel function to classify network traffic into normal 

and abnormal. These kernel functions are commonly used to transform the dataset into a higher 

dimension and support linear classification. The proposed system is capable of detecting IPsweep, 

Probe, and DDoS attacks in the control plane. To evaluate the system, the authors used 1998 DARPA 

and 2000 DARPA datasets for training and testing. Each dataset contains different types of attacks. 

The system achieved a 94.81% accuracy rate and a 0.11% false alarm rate. However, the number of 

extracted features is insufficient for understanding attack behaviours, and some features are 

unrelated to attack practices. Additionally, the SVM classifier takes longer during the training stage. 

Furthermore, the controller needs to examine all pass-through packets to properly classify them. This 

process can overwhelm the controller, leading to flooding and congestion. 

This paper [49] presents a detection method that is based on an anomaly. This method functions 

by integrating with the OpenFlow switch. The proposed model helps to prevent and detect both 

known and unknown attacks in SDN networking. The J48-tree algorithm, which is a variant of the 

C4.5 decision tree designed for classification purposes, has been utilized. The implementation of the 

proposed model has been done using the NetFPGA10G board. The system achieved a 91.81% 

detection rate and a 0.55% false alarm rate. The training and test stage employed the KDD'99 public 

dataset. However, the authors failed to consider the large amount of data present in the extensive 

network, which requires significant time and energy for efficient processing. This can result in 

overloading the controller and the switches, as the OpenFlow switches inspect each incoming packet 

and send it to the controller for appropriate action, leading to flooding. Moreover, the proposed 

system extracts an excessive number of features during the investigation stage, thereby consuming 

the network's resources. 

The researchers in [50] have implemented five Intrusion Detection System (IDS) models in an 

SDN network using various non-DL algorithms. These algorithms include Self-Organizing Maps 

(SOM) and Learning Vector Quantization (LVQ1), along with their modified versions. The non-DL 

algorithms utilised in this study are as follows: Self-Organizing Maps (SOM), Multi-pass Self-

Organizing Maps (M-SOM), Learning Vector Quantization (LVQ1), Multi-pass Learning Vector 

Quantization (M-LVQ1), and Hierarchical Learning Vector Quantization (H-LVQ1). These 

approaches are considered types of Artificial Neural Networks (ANN). The proposed models aim to 

detect multi-level attacks such as Prop, U2R, R2L, and DoS by classifying each network traffic. All 

the implemented models have shown successful results, with an average True Positive Rate of 94%. 

However, the authors have created a dataset containing features that are highly specific and easily 

extracted from the packet header. As a result, these implemented models may not be effective in 

detecting real network attacks or capturing their behaviours. Furthermore, the authors have not taken 

into consideration the challenges of handling large-scale networks with a high volume of packet 

processing flows. Moreover, the integration of the SDN controller and the IDS introduces an 

overhead on the controller, leading to controller flooding. This issue poses another challenge that 

needs to be addressed.  

The researchers in [51] introduced a method to handle the dynamic nature of SDNs in order to 

detect DDoS attacks in the application plane. They accomplished this by classifying the incoming 

traffic using non-DL algorithms. The specific algorithms employed were Naive Bayes, KNN, K-

means, and K-medoids. For the experiment, a private dataset was utilised, taken from a real 
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network’s traced file to train and test the models. The accuracy of the implemented algorithms was 
measured using the Detection Rate metric, with the results being 94%, 90%, 86%, and 88% 

respectively. However, in order to train and test the models, 50 features were utilized, which in turn 

requires substantial memory and leads to a lengthy process. As a result, when an attack begins shortly 

after, the controller will experience a significant overhead. 

Lataha and Toker [52] conducted an analysis to demonstrate that SDN can be utilized as a 

solution for DoS attacks. Their proposed model consists of two phases: intrusion detection. The first 

phase is flow-based, while the second phase is packet-based. A drawback of this approach is the high 

utilization of resources, particularly when filtering and analysing packets in two states, resembling a 

stateful and stateless firewall. These challenges lead to performance degradation during periods of 

high incoming data rates. The proposed intrusion detection system detects malicious flows by 

comparing them to legitimate flows using the Knn approach. However, due to the presence of SDN 

in the environment, the management at a higher level restricts the manipulation of features. On the 

other hand, the detection of malicious packets is performed through neural networks, which 

successfully classify both legitimate and malicious traffic. Nonetheless, this algorithm excels mainly 

at separating the two classes, as suggested. Since the flow-based detection already classified the 

malicious traffic, the packet detection should utilize the previous algorithm and consider additional 

properties not accounted for in the layers. As a result, the proposed approach achieved an accuracy 

of 91.27% and a precision of 0.99%, outperforming other algorithms such as Knn using the NSL-KDD 

dataset, as well as neural networks and others, under the same circumstances. Although the false 

positive rate improved, the processing time did not, as it still had to handle packet processing and 

the controller's bottleneck. 

The authors in [53] proposed an IDS in the SDN environment. Their model is based on Artificial 

Intelligence (AI) and consists of two stages of processing. In the first stage, the authors utilised the 

Random Forest algorithm to classify the network traffic. For the features selection stage, they 

employed a Bat algorithm with swarm division and binary differential mutation. This proposed 

system can identify various types of attacks, including DoS, Probe, DDoS, U2R, and R2L. To evaluate 

the system's performance and effectiveness, the authors used the KDD Cup 1999 dataset for both 

training and testing purposes. The results showed that the system achieved an accuracy rate of 96.3%. 

However, it is worth noting that the proposed classifier requires more time during the training stage. 

Additionally, the controller in the system needs to examine all the packets passing through it for 

classification, resulting in increased overhead and creating a bottleneck for the controller. Moreover, 

the limited size of the raw dataset used for training negatively impacts the algorithm's ability to 

achieve high detection accuracy, highlighting the need for a larger and more diverse dataset. 

The researchers in [54] presented an IDS using an Artificial Intelligence (AI) algorithm. The IDS 

is implemented in the context of SDN to detect Distributed Denial-of-Service (DDoS) attacks in Home 

and Small Office/Home Office (SOHO) networks. This approach utilizes the TRW-CB and Rate 

Limiting techniques to classify real-time traffic. The authors collected the dataset from three locations: 

Home Network, SOHO, and Internet Service Provider (ISP) using the Mergepcap tool. Once these 

datasets are collected, they will be used to train the model. The proposed model focuses on extracting 

essential features from the packet headers for classification, which are obtained at the SDN controller. 

The NOX controller has been used in conjunction with this model. In the experiment, a detection rate 

accuracy of 90% was achieved with a 70% false positive rate. However, the limited number of 

extracted features hinders the detection efficiency, as they do not cover all possible attack behaviours. 

Attackers can easily bypass the IDS by modifying the packet headers to resemble regular traffic. 

Additionally, the authors did not consider the bottleneck of the controller in a large-scale network, 

where its functionalities are not performed efficiently. Therefore, there is a need for a lightweight and 

efficient method to process packets in the system.  

The researchers in [55] proposed a non-DL approach in the SDN 5G environment to identify 

DDoS, DoS, U2R, and R2L attacks in the SDN controller. The K-means++ and AdaBoost algorithms 

were used for traffic classification, while the Random Forest (RF) algorithm was employed for feature 

selection. The authors evaluated the proposed system using the widely used KDD Cup 1999 dataset 
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for IDS. The model achieved an average classification accuracy of 84%. However, the RF algorithm 

failed to select relevant features that cover U2R and R2L attack behaviours, resulting in low detection 

accuracy for these attacks. Similar to the previous study, the selected features were extracted from 

the packet headers and were insufficient to adequately characterize attack behaviours. The authors 

also did not address the controller's bottleneck in large-scale networks, where its functionalities are 

not performed efficiently. Thus, there is a need for a lightweight and efficient packet processing 

method in the system. 

Sathya and Thangarajan in [56] focused on security violations in the SDN environment and how 

the model can be identified to prevent attacks using anomaly-based detection methods. The authors 

advocate the use of an Intrusion Detection System (IDS) to recognise the Denial of Service (DoS), 

Probe, User to Root (U2R), and Remote-to-Local (R2L) attacks. The proposed model utilizes the NSL-

KDD dataset, which includes four types of attack packets: DoS, Probe, U2R, and R2L. The Feature 

Selection stage has selected 27 features for the DoS attack, 26 features for the U2R attack, 33 features 

for the Probe attack, and 33 features for the R2L attack. The system achieved detection rates of 90.9%, 

91.1%, 80.2%, and 98.1%, and false alarm rates of 0.111%, 0.249%, 0.69%, and 0.887%, for DoS, Probe, 

R2L, and U2R attacks, respectively. However, this system did not achieve the highest accuracy and 

minimum false alarms compared to other approaches. This system failed to minimize the number of 

extracted features selected by the Binary Bat algorithm, resulting in excessive processing time and 

memory usage at the controller.  

In [57], the authors proposed an effective IDS in SDN environments to identify DDoS attacks 

using a Sequential Probability Ratio Test (SPRT). The proposed IDS was tested with datasets from 

the Defence Advanced Research Projects Agency (DARPA) for intrusion detection and compared 

against other techniques. However, this algorithm requires datasets with the same features as the 

environment, which can be a problem due to the fast technological changes that render the DARPA 

dataset obsolete. The attacks used to test the SDN environment include DDoS, Neptune, smurf, 

ipsweep, and port sweep, but not all of them are targeted specifically at SDN. The SPRT parameters 

were set manually, and further testing under different parameter combinations is necessary to 

improve performance. The main problem with this paper is its inability to accurately identify DDoS 

attacks in the SDN controller using an acceptable threshold. Additionally, the proposed method is 

ineffective for detecting DDoS attacks against a host, as it generates false positives due to differences 

in attack rules. This shows that the proposed method is ineffective for expected flows over distributed 

environments. In [69], the authors presented a novel system called HFS-LGBM IDS for SDN attack 

detection. The HFS model combines the benefits of correlation-based feature selection and Random 

Forest Recursive Feature Elimination. The NSL-KDD dataset and Mininet were used to evaluate and 

test the system. However, the NSL-KDD dataset was found to be outdated and not representative of 

real-world network traffic, which negatively impacted the accuracy of the system. Moreover, the 

system only considered eight features as significant, making it unable to accurately predict the flows. 

Integrating the SDN controller and the IDS resulted in a high volume of required flows to check 

traffic, causing overload on the controller, and posing another challenge that needs to be addressed.  

In [58], the researchers presented the OpenFlowSIA security system in the SDN context. The 

proposed system utilises an SVM classifier and Idle-timeout Adjustment (IA) algorithms to secure 

the controller and OpenFlow switches from DDoS attacks. The IDS consists of five modules: Flow 

Collector, Feature Extractor, SVM, Policy Enforcement, and IA Algorithm. The system collects traffic 

from the flow tables of OpenFlow switches, processes it to extract features, classifies the traffic using 

the SVM based on the protocol type, and ultimately determines if the packet is normal or malignant 

using the Policy Enforcement and IA algorithm. The CAIDA datasets were used for training and 

testing. However, the proposed system was found to consume a significant amount of CPU usage 

and memory, leading to congestion, and affecting response time. The system lacks a feature selection 

method to cover the behaviours of DDoS attacks, and the authors did not use evaluation metrics to 

assess the detection rate or accuracy of the model. 

Table 5. IDSs-based non-Deep Learning. 
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Ref and 

authors 
Approach 

Number 

of 

Features 

Detected 

Attack 
Controller Dataset 

Accuracy/False 

Alarm 

[39] SVM 6 DDoS SDN controller 
Simulation 

datasets 

Detection Rate of 

95.24% and False 

Alarm of 1.26% 

[40] ASVM 5 DDoS POX controller 
Simulation 

datasets 
Accuracy 97% 

[43] SVM 29 DoS OpenDaylight 
KDD99 

dataset 
Accuracy of 97.63% 

[44] 

SMO, 

Naive 

Bayes, and 

J48 

41 DDoS SDN controller NSL dataset 
Accuracy of 99.4% 

for SMO 

[36] 

The 

analysed 

algorithms 

were SVM, 

Naïve 

Bayes, 

KNN, 

ASVM, 

HMM, K-

means, 

Random 

Forest, 

Decision 

tables, K-

medoids, 

and fuzzy 

5 DDoS POX controller 
NSL-KDD 

dataset 

The highest accuracy 

is 81.5% for the J48 

algorithm 

[45] 
Graph 

Theory 

Statistics 

Flow 
DoS POX controller 

CAIDA 

dataset 

The precision of 0.84, 

Recall of 0.78, and F-

score of 0.81 

[46] C4.5 52 
DoS and 

Prob attacks 
SDN controller 

1999 Darpa 

dataset 

The precision of 

0.989 and recall of 

0.964 

[47] SOM 4 DDoS NOX controller 
1999 Darpa 

dataset 

Detection Rate of 

98.61% and False 

Alarm of 0.59% 

[48] 

SVM 

algorithm 

with a 

kernel 

function 

8 

IPsweep, 

Probe, and 

DDoS 

SDN controller 

1998 DARPA 

and 2000 

DARPA 

Accuracy Rate of 

94.81% and False 

Alarm of 0.11% 

[49] J48-tree 41 

known and 

unknown 

attacks 

NetFPGA10G KDD'99 

Detection Rate of 

91.81% and False 

Alarm of 0.55% 

[51] 

Naive 

Bayes, 

KNN, K-

means and 

K-mediods 

52 DDoS POX controller 
privet 

dataset 

Detection Rates of 

94%, 90%, 86% and 

88% 
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[24] NN 6 

DOS, U2R, 

R2L, and 

Probes 

SDN controller NSL-KDD 
Detection Rate of 

97.4% 

[52] KNN 23 DoS SDN controller NSL-KDD 

Accuracy Rate of 

91.27% and 0.99% of 

precision 

[53] 
Random 

Forest 
5 DOS NOX controller 

Specific 

dataset 

Detection Rate of 

90% and False Alarm 

of 70% 

[54] 

TRW-CB 

and Rate 

Limiting 

4 

DoS, Probe, 

DDoS, U2R, 

and R2L 

NOX controller 
KDD Cup 

1999 dataset 

Accuracy Rate of 

96.3% 

[55] 

K-means++, 

AdaBoost, 

and 

Random 

Forest (RF) 

6 

DDoS, DoS, 

U2R, and 

R2L 

SDN controller 
KDD Cup 

1999 dataset 

Accuracy Rate of 

84% 

[56] 
J48 

algorithm 
41 

DoS, Probe, 

U2R, and 

R2L 

SDN controller NSL-KDD 
Detection Rate of 

90.9% for DoS 

[57] 
Bernoulli 

random 
2 DDoS SDN controller 

DARP 1999 

dataset 
None 

[58] 

Idle-

timeout 

Adjustment 

(IA) & 

SVM 

The six 

Basic 

features  

DDoS 
OpenFlow 

controller 
CAIDA None 

5.2.3. Deep Learning-based Approaches 

Deep Learning (DL) is an approach that belongs to the neural network algorithm, where the 

nodes can be considered as devices built for defence. DL algorithms are a modern update to artificial 

neural networks that utilise swarming and reasonable computation. DL allows an algorithmic 

program to learn an illustration of data with varying levels of generalisation. These methods are 

applied to visual perception, object detection, network intrusion, and many other domains. A DL 

algorithmic program can be trained as either supervised or unsupervised. Deep learning algorithms 

include Convolutional Neural Networks (CNN) and Artificial Neural Networks (ANN), which are 

generally trained and supervised. CNN is currently the benchmark model for computer vision 

purposes [59]. Here are some examples of DL approaches in the context of intrusion detection systems 

(IDS): 

1. Artificial Neural Networks (ANN): ANNs are a type of deep learning-based approach that is 

inspired by the structure and function of the human brain. ANNs consist of interconnected nodes 

(neurons) organized in layers, including input, hidden, and output layers. They are designed to learn 

and recognize patterns in data by adjusting the weights of the connections between neurons. ANNs 

have been widely used in various applications, including intrusion detection systems, where they 

can be employed for anomaly detection or signature-based detection [60]. 

2. Convolutional Neural Networks (CNNs): CNN is a specific type of deep learning-based 

approach that is particularly effective for processing grid-like data, such as images or network traffic 

matrices. CNNs are built on a grid-like structure and use convolution operations to scan and analyse 

local patterns in data. They consist of multiple layers, including convolutional layers, pooling layers, 

and fully connected layers. CNNs have been successfully applied to network traffic analysis for 

detection purposes, where they can identify patterns or features related to known attack signatures 

or detect anomalous traffic patterns [61]. 
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3. Recurrent Neural Networks (RNNs): RNNs are another type of deep learning-based approach 

designed to process sequential data, such as time series data or text data. RNNs have a unique feature 

called "long short-term memory" (LSTM) that allows them to maintain information about previous 

time steps, making them suitable for detecting patterns, trends, and anomalies in time-series data. In 

intrusion detection systems, RNNs and LSTMs can be used for anomaly detection and signature-

based detection, especially in cases where network traffic or user activities have a sequential 

relationship [62]. 

4. Gated Recurrent Units (GRUs): GRUs are a variant of Recurrent Neural Networks (RNNs) 

that were introduced to address some limitations of the traditional RNN architecture. GRUs are a 

type of deep learning-based approach that also processes sequential data, such as time series data or 

text data, making them suitable for detecting patterns, trends, and anomalies in such data [61-63]. 

B. Sarra and G. Mohamed in [60] proposed a DL approach in the SDN context to identify the 

DDoS and DoS attacks between the controller and end-user devices. Using the Relu and Softmax 

functions, the traffic will be classified as malignant or normal inside the SDN controller.  The 

CICIDS2017 public dataset has been used in the experiment in the training and testing stages. The 

authors used the logarithm function, which uses the Min/Max scalar technique to normalise the 

extracted features for the classification step. The proposed model used five basic features in the 

classification, and these features will be extracted for each packet at the SDN controller in real-time. 

The model has achieved an accuracy of 99.6%. However, the limited number of the extracted features 

will be caused by the low efficiency in the detection. These features have been extracted from the 

packet's basic header information and are not enough to cover the attack's behaviours; therefore, the 

attacker can easily avoid the IDS by modifying the header packet to seem like regular traffic. Also, 

the authors did not consider the controller’s bottleneck, where the controller at the extensive network 
will not be able to do the functionalities efficiently. Hence, the system needs a lightweight method to 

process the packet efficiently. 

In this paper [61], the researchers presented a DL-based method for detecting DDoS attacks in 

the SDN environment, specifically focusing on multi-vector attacks. The system examines each packet 

at the SDN controller and extracts features from them, classifying them as normal or malicious. The 

proposed model utilizes the POX controller. The authors collected the dataset from a home wireless 

network using tools like tcpdump and hping3 to generate DDoS traffic. They divided the collected 

traffic into training and testing datasets. The proposed system extracts 68 features from each packet 

for classification, achieving an accuracy of 95.65%. However, the extraction of these features requires 

significant memory and processing time, causing a bottleneck in the controller. Additionally, many 

of these extracted features are not relevant to DDoS attack practices.  

In another study [62], the authors employed a deep neural network approach to recognize DDoS 

attacks in SDN networks. They utilised the NSL-KDD public dataset for training and testing. The 

proposed model used six basic features for classification, extracting them in real time for each flow 

at the SDN controller. The model achieved an accuracy of 75.75%. However, the limited number of 

extracted features resulted in low detection accuracy during the detection stage. These features were 

extracted from basic statistics information and were insufficient to cover the behaviours of attacks, 

making it easy for attackers to evade the intrusion detection system (IDS). The authors suggested that 

the controller periodically requests flow table entries from OpenFlow switches and that each flow in 

the switches should be classified every time. This approach adds complexity and overhead to the 

controller, requiring an efficient and lightweight method to handle traffic processing.  

In [63], the authors presented a DL model based by using the Gated Recurrent Unit Recurrent 

Neural Network (GRU-RNN) to classify traffic as either a DDoS attack or not in SDN. They used the 

NSL-KDD public dataset for training and testing, extracting six basic features for each flow at the 

SDN controller in real time. The POX controller was utilized in this model, achieving a detection rate 

of 89%. However, the limited number of extracted features resulted in low efficiency in detection, as 

they did not cover the full range of DDoS attack behaviours. Additionally, the authors did not address 

the bottleneck issue of the controller in handling large networks, requiring a lightweight traffic 

processing method.  
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In [64], the authors proposed a hybrid system called SD-Reg, which combines convolutional 

neural network (CNN) and SD-Reg to detect SDN attacks. They used the InSDN dataset for training 

and testing the CNN classifier. The model achieved high accuracies of 99.28% and 98.92% for binary 

and multi-class classifications, respectively. However, relying solely on the InSDN dataset for 

training might not cover all high-risk attacks and could lead to poor test results' validity. 

Additionally, the approach did not address the issue of CPU consumption and generated overhead 

on the controller when merging CNN and SD-Reg.  

In [65], the authors proposed a flow-based anomaly detection approach for the OpenFlow 

controller using deep neural network (DNN) algorithms. The model, called GRU-LSTM DNN, used 

52 features extracted in real-time from each flow at the SDN controller using the ANOVA F-TEST 

method. The NSL-KDD public dataset was used for training and testing. The model achieved an 

accuracy of 87% with a false alarm rate of 0.76%. However, the issue of the controller's bottleneck 

was not addressed.  

Y. Hande and A. Muddana [66] addressed the development of Anomaly-based Network 

Intrusion Detection Systems (NIDS) in SDN networks. They utilized a CNN model to identify various 

types of attacks in SDN network traffic, with the sniffer IDS module feeding the detector. However, 

the paper lacks details regarding the selection and extraction of features, as well as the critical 

components' design for the detector. The authors did not explain why they chose to have two layers 

in the CNN model or why manually selected features were used instead of an unsupervised CNN 

approach. The sensing module did not provide information about the classes it had or how it detected 

unknown attacks. The paper also mentioned setting a boundary value for the IDS based on a 

threshold to describe the correct behaviour of network traffic. The authors suggested installing the 

system in the controller, which poses a significant challenge due to the processing and overhead it 

would introduce. Lastly, the CNN algorithm was not suitable for large-scale networks due to its high 

computational complexity. 

Table 6. IDSs-based Deep Learning. 

Ref & 

Author 

Approach Features Attack 

Detected 

Controller Dataset Limitations Accuracy/False 

Alarm 

[60] Relu and 

Softmax 

function 

5 DDoS and 

DoS 

ONOS CICIDS2017 Must reduce the 

bottleneck 

controller and 

low number of 

used features  

99.6 

[62] Deep NN 6 DoS OpenFlow 

Controller 

KDD The accuracy 

must be 

increased. Must 

reduce the 

bottleneck 

controller 

75.75% 

[61] SAE TCP, 

UDP 

features 

DDoS POX Traffic 

Dataset 

Must reduce the 

bottleneck 

controller 

95.65%  

[63] Recurrent 

Neural 

Network. 

6 DoS POX NSL-KDD Model 

optimisation is 

required in 

89%  
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feature selection 

and extraction   

[65] GRU-

LSTM 

DNN 

52 Prop, 

U2R, R2L 

and DoS 

POX NSL-KDD Model 

optimisation 

required 

87% 

[64] CNN 48 and 9 Prop, 

U2R, R2L, 

DoS, etc. 

OpenFlow InSDN Model 

optimisation 

required 

98.92% 

6. Evaluation Metrics 

IDS recognise normal and abnormal traffic by observing the system's overall input. The 

detection algorithms are used for this classification of input traffic on the network, and these 

algorithms are also responsible for sounding the alarm. Some of these alarms are explained below 

[13]: 

 False Positive (K): This alarm occurs when regular traffic is wrongly classified as attack traffic. 

 False Negative (S): This alarm occurs when attack traffic is wrongly classified as regular traffic. 

 True Positive (N): This occurs when attack traffic is classified correctly as attack traffic. 

 True Negative (P): This occurs when normal traffic is classified accurately as regular traffic. 

There are two main groups for measuring security metrics. One is called basic metrics, and the 

other is known as evaluation metrics. In basic metrics, the identification of optimal IDS or the 

comparison of several IDS events. Moreover, Table 7 identifies the parameters related to performance 

in the confusion matrix [13] below are used to compute the metrics of accuracy, recall, precision, and 

F1 score [13].  

Table 7. Confusion Matrix. 

The Event Abnormal Normal 

Abnormal True Positive (N) False Negative(S) 

Normal False Positive(K) True Negative(P) 

To define the accuracy rate of a machine learning algorithm, the percentage of the total amount 

of traffic is divided by correct predictions. Equation 1 was used for this calculation:          𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁+𝑃𝑁+𝑃+𝐾+𝑆  𝑋 100        (1) 

Precision (P), alternatively known as a false alarm, is used as a metric for evaluating the accuracy 

of catching attack traffic. This measure calculates the capacity to identify attack traffic correctly. 

Equation 2 was utilised to determine Precision.             𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑁𝑁+𝐾                (2) 

Recall (R) assess the ratio of correctly recognised attacks out of the total attack traffic. Equation 

3 has been used to calculate R, which provides an estimation of the rate of predicted attacks compared 

to the overall attack traffic.            𝑅𝑒𝑐𝑎𝑙 = 𝑃𝑁+𝐾             (3) 

The F1 score is used to evaluate the classifier employed to calculate the accuracy of a model. It 

includes both the Precision and Recall scores to provide a total evaluation. This metric calculates the 

number of correct predictions made by the model across the entire dataset and therefore determines 

the overall accuracy of the classifier. Equation 9 has been used to calculate F-Score.  F − Score = 21𝑃 + 1𝑅                                                                              (4) 

7. Testing and Implementation Tools  
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Effective IDS becomes paramount in SDN environments with network attacks' increasing 

complexity and challenges. This section explores the different testing and implementation tools 

available for IDS in SDN networks. 

 Mininet Emulator: Mininet is a popular open-source network emulator that enables the design 

of virtual SDN networks. Mininet allows researchers to assess IDS performance under managed 

conditions by simulating network topologies and traffic patterns. It provides an emulated 

environment to deploy IDS initial designs and assess their effectiveness in detecting known 

attacks [14]. Mininet is available online on [14]. However, the performance of the IDS measured 

inside Mininet is relative and dependent on the hosting machine's capabilities. Some factors that 

have a huge influence include the processor speed, the amount of RAM, the hard drive speed, 

and the network adapter’s performance. The IDS measurements we get from Mininet might 
appear more or less efficient than in a non-virtualised environment. This is due to the fact that 

the virtual network is sharing the resources with the host machine, potentially creating a 

bottleneck, and affecting the accuracy of the IDS performance data. 

 Scapy: Scapy, an effective packet generation tool, allows the development of customised packets 

to simulate network traffic, including regular and attack traffic. It enables cybersecurity 

researchers to test IDS in SDN networks by generating composed packets with different payloads 

and headers, imitative real-world attack scenarios. Scapy allows the validation of IDS 

functionalities and the evaluation of their capability to detect, respond to, and mitigate various 

network attacks [23]. Scapy is available online on [67]. 

 Open vSwitch (OvS): Open vSwitch is a popular open-source virtual switch that can simulate 

components of SDN architectures. OvS allows administrators to filter packets and enable traffic 

monitoring, making it a practical implementation tool for IDS in SDN networks. It allows 

researchers to design custom IDS modules that employ packet inspection methods, 

implementing real-time traffic analysis and detection approaches [68]. Open vSwitch is available 

online on [69]. 

 Snort: Snort is a well-established open-source IDS that can integrated with SDN networks. It 

presents various detection policies and abilities to recognise and prevent network attacks. By 

installing Snort with SDN controllers like OpenDaylight or POX, researchers can adjust Snort's 

management to network traffic flows and improve IDS performance in dynamic SDN 

environments [70]. Snort is available online on [71]. 

 Bro/Zeek: Bro, now known as Zeek, is a robust network security monitoring framework for SDN 

networks. It presents real-time traffic analysis abilities, supplying clear insights into network 

possibilities and facilitating IDS functionality. With its programmable scripting language, 

researchers can utilise Zeek to catch specific malignant traffic, supplying more accurate and 

customised attack detection powers [72]. Zeek is available online on [73]. 

 Slowloris: Slowloris is an open-source tool that has been developed using Python programming 

language. Slowloris tool is available online on [74]. Slowloris is an HTTP DoS/DDoS attack that 

affects targeted servers and works as follows: 

a) Creating extensive HTTP requests, causing vast traffic to the server. 

b) Send packets at regular intervals, about every 15 seconds, to keep open connections continuously. 

c) The connection is only closed if the server launches such an action. In the event of connection 

closure by the server, a new connection is set to maintain the continuous process. 

This continuous pattern of activity stresses the server's thread pool, rendering it unable to 

respond to requests from other users. By using the Slowloris attack, targeted servers face the effects 

of the attacker flooding the HTTP connections to block the server's functionality. 

 Wireshark: Wireshark is a software network protocol analyser commonly used in network 

analysis, troubleshooting, and collecting packets and flows from connected devices [75]. 

Wireshark is an open-source packet sniffer tool. It authorises administrators and researchers to 

catch and analyse network traffic in real-time. This software's advanced abilities and 

comprehensive characteristics make it a useful tool in academic and professional settings. It is 

available online on [76]. 

Table 8. The summary of the testing and implementation tools. 
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Tool Description Link 

Mininet 

Emulator 

Mininet is an open-source network emulator that enables the design of 

virtual SDN networks. It's useful for assessing IDS performance under 

managed conditions. 

[14] 

Scapy 
Scapy is a packet generation tool that helps develop customised packets to 

simulate network traffic, aiding in testing IDS in SDN networks. 
[16] 

Open vSwitch 

(OVS) 

OvS is an open-source virtual switch that simulates components of SDN 

architectures. It's handy for designing custom IDS modules. 
[18] 

Snort 
Snort is a popular open-source IDS that can be integrated with SDN 

networks to provide various detection policies and abilities. 
[20] 

Bro/Zeek 
Zeek (formerly known as Bro) is a robust network security monitoring 

framework for SDN networks that offers real-time traffic analysis facilities. 
[22] 

Slowloris 

Slowloris is an open-source tool developed using Python, known for its 

implementation in HTTP DoS/DDoS attacks, which can stress a server's 

thread pool. 

[23] 

Wireshark 
Wireshark is an open-source network protocol analyser used for network 

analysis, troubleshooting, and collecting packets from connected devices. 
[25] 

8. The Findings and Research Gaps 

Due to the flexibility and innovation of SDN over networking environments, there are 

uncovered gaps that integrate with future technologies to offer more exciting research. The present 

review study is the first to make an effort to solve the problem of attack impact over different SDN 

layers. In the future, it is still required to analyse and measure how attack-defined techniques affect 

SDN research challenges' security components and requirements. The following points are what we 

identified as emerging directions and not covered gaps related to the security of SDN architecture: 

8.1. An effective way to process network traffic 

Most researchers propose models that need to monitor traffic in real-time, so this process needs 

to analyse each packet or flow passed through it as normal or malignant. Therefore, the processing 

requires time, memory, and more CPU usage to collect, process, and classify the traffic. This process 

will cause overload/congestion at the controller and the switches. Therefore, getting the best choice 

between efficiency and overload needs to be considered by the researchers. 

8.2. Distribute the processing stages over OpenFlow devices 

All the researchers use of_stats_request to claim the flow tables of all the switches to extract the 

selected features [80]. This method brings all the switches' flow tables without sorting according to 

time, size window, etc. This way needs to be processed by the controller to sort and extract the 

selected features. Some of these features do not take directly from the flow tables as such features 

need complex computational operations to be calculated [47]. Therefore, the OpenFlow channel will 

be busy and congested when installing an IDS. Additionally, due to ofp_flow_stats returning all the 

switches' flow tables, the messages' size will significantly affect the channel and increase the 

processing time. Consequently, this method is inefficient with massive data processing and causes 

more overhead and congestion on the controller. Therefore, using efficient approaches in distributing 

the processing stages needs the attention of the researchers.    

8.3. Detect Slow DDoS/DoS Attack 

In this survey, it was noticed that the majority of researchers focus on heavy-rate DDoS/DoS 

attacks that send huge irregular packets to the target. However, there needs to be more interest in 

detecting the slow DDoS and DoS attacks that target web services, which seem like regular traffic. 

These attacks consume the resources and stop the target service from such attacks with time. 

Therefore, this issue needs to be covered by the researchers. 
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8.4. Employing outdated datasets for training and testing the proposed models 

It is clear from the survey that many researchers have employed out-of-date datasets to test and 

evaluate their proposed techniques [77]. Selecting the datasets is significant for an efficient and 

accurate detection system. Most datasets found publicly need to be realistic and include most attacks, 

negatively affecting accuracy and performance [26]. The main reasons for the deficiency of these data 

are due to privacy and legal matters. Most of these datasets are old and need to include the updated 

behavers. Moreover, such datasets have a high number of duplicate records. Consequently, such 

systems will be involved to obtain low accuracy and poor performance [26]. The available public 

datasets were collected from the traditional networks, not the SDN network. Such datasets include 

some features not accessible in the SDN networks [77]. These datasets are published online, including 

KDD’99 NSL-KDD, CICIDS2017, ISCX2012, and Kyoto. 

8.5. Getting high accuracy with limited raw features by using DL/non-DL approaches 

The essential issues with non-DL/DL approaches are extraction and feature selection. The 

currently proposed systems suffer from many used features in classification or using basic features. 

Using a large number of features causes overload and latency in the network. Using a small number 

of basic features will not give accurate detection attacks as they do not cover the behaviours of attacks. 

Therefore, getting high accuracy with limited raw features using DL/non-DL approaches needs more 

attention from the researchers. 

8.6. Test the proposed models with the real network environments 

Most recent research reviewed in this survey has taken advantage of simulation, emulation, and 

virtualised environments for testing. However, such experiments involve using a simple and smaller 

network. This leads to the outcomes needing to be more accurately validated for the methodologies 

since they applied real data. On the other hand, using real hardware can achieve better results. 

Henceforward, testing and validating security applications based on SDN using real environments 

is another future research direction. 

8.7. The scalability of using more than one controller 

Researchers in the cybersecurity area tried to propose solutions using individual controllers in 

a network topology. Nevertheless, SDN has a centralised nature that is critical to several attacks. 

Using a single controller will cause a bottleneck during the attack and the incoming packet process. 

Hence, the distributed controllers' design significantly improves reliability, load distribution, and 

processing power consumption. However, the implementation of IDS with multi-controllers is under 

research and needs to be covered by the researchers. The new research direction involves designing 

new IDS flexible with the SDN controllers' distribution approach to minimise overhead issues and 

balance the traffic between more controllers. However, when using more than one controller, the 

network suffers from interoperability, where several controllers have different routing algorithms 

and policies. This issue needs to be addressed where no further research considers such issues. 

9. Conclusion 

The conclusion derived from all the literature is that the proposed Intrusion Detection Systems 

(IDSs) play a specific role in identifying and preventing harmful activities in the SDN environment. 

SDN technology enables programmability, flexibility, manageability, dynamism, and intelligence in 

the current network architecture by utilizing a centralized controller, a single viewpoint, and reduced 

configurations to save costs. In contrast, traditional networks rely on switches and routers with their 

operating systems, offering a limited range of configuration options. The SDN concept manages 

network services and maintains control using lower-level functional abstraction. It allows for the 

extraction of multiple features or specific focus on certain types of attacks. The analysis and collection 

of network flow data are more effective compared to traditional networks. This approach also ensures 

user privacy, which is increasingly critical in today's world. 
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Recent research has concluded that combining SDN technology with non-DL approaches for 

attack detection produces superior results for its intended purpose. However, it also has limitations, 

as explained in this review. The transition from conventional networks to SDNs significantly alters 

network architecture and management. Nevertheless, current solutions introduce new challenges 

that cause significant overhead, particularly when implementing such IDS on large-scale networks. 

Researchers need to prioritize intrusion detection in SDN networks to create a secure and integrated 

system that can contribute to the development of a robust model capable of protecting against various 

threats. As technology advances, the research community must dedicate attention to devising 

effective detection approaches to address the current research gaps in SDN networks. 

Data Statement: No new data were created during this study. 
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