Submitted:
21 December 2023
Posted:
22 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Theory of Tight Focusing for Circular Basis HyOPS Beams

3. Intensity landscapes of circular basis HyOPS beams
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HyOPS | hybrid order Poincaré sphere |
| HOPS | higher-order Poincaré sphere |
| SOP | State of polarization |
| NA | Numerical Aperture |
| PSF | point spread function |
References
- Linfoot, E.H.; Wolf, E. Diffraction Images in Systems with an Annular Aperture. Proceedings of the Physical Society London B 1953, 66, 145–149. [Google Scholar] [CrossRef]
- Welford, W.T. Use of Annular Apertures to Increase Focal Depth. J. Opt. Soc. Am. 1960, 50, 749–753. [Google Scholar] [CrossRef]
- Singh, K.; Dhillon, H.S. Diffraction of Partially Coherent Light by an Aberration-Free Annular Aperture. J. Opt. Soc. Am. 1969, 59, 395–401. [Google Scholar] [CrossRef]
- Slepian, D. Analytic Solution of Two Apodization Problems. J. Opt. Soc. Am. 1965, 55, 1110–1115. [Google Scholar] [CrossRef]
- Stamnes, J.J. Focusing of two-dimensional waves. J. Opt. Soc. Am. 1981, 71, 15–31. [Google Scholar] [CrossRef]
- Belland, P.; Crenn, J.P. Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture. Appl. Opt. 1982, 21, 522–527. [Google Scholar] [CrossRef]
- Duan, K.; Lü, B. Nonparaxial analysis of far-field properties of Gaussian beams diffracted at a circular aperture. Opt. Express 2003, 11, 1474–1480. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E.; Gabor, D. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1959, 253, 358–379. [Google Scholar] [CrossRef]
- Hao, B.; Burch, J.; Leger, J. Smallest flattop focus by polarization engineering. Appl. Opt. 2008, 47, 2931–2940. [Google Scholar] [CrossRef]
- Niziev, V.G.; Nesterov, A.V. Influence of beam polarization on laser cutting efficiency. Journal of Physics D: Applied Physics 1999, 32, 1455–1461. [Google Scholar] [CrossRef]
- Salamin, Y.I.; Keitel, C.H. Electron Acceleration by a Tightly Focused Laser Beam. Phys. Rev. Lett. 2002, 88, 095005. [Google Scholar] [CrossRef]
- Dorn, R.; Quabis, S.; Leuchs, G. Sharper Focus for a Radially Polarized Light Beam. Phys. Rev. Lett. 2003, 91, 233901. [Google Scholar] [CrossRef]
- Davidson, N.; Bokor, N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt. Lett. 2004, 29, 1318–1320. [Google Scholar] [CrossRef]
- Quabis, S.; Dorn, R.; Eberler, M.; Glöckl, O.; Leuchs, G. Focusing light to a tighter spot. Optics Communications 2000, 179, 1–7. [Google Scholar] [CrossRef]
- Ferrari, J.A.; Dultz, W.; Schmitzer, H.; Frins, E. Achromatic wavefront forming with space-variant polarizers: Application to phase singularities and light focusing. Phys. Rev. A 2007, 76, 053815. [Google Scholar] [CrossRef]
- Gupta, D.N.; Kant, N.; Kim, D.E.; Suk, H. Electron acceleration to GeV energy by a radially polarized laser. Physics Letters A 2007, 368, 402–407. [Google Scholar] [CrossRef]
- Youngworth, K.S.; Brown, T.G. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 2000, 7, 77–87. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S.; Li, P.; Jiao, X.; Zhao, J. Controlling the polarization singularities of the focused azimuthally polarized beams. Opt. Express 2013, 21, 974–983. [Google Scholar] [CrossRef]
- Schoonover, R.W.; Visser, T.D. Polarization singularities of focused, radially polarized fields. Opt. Express 2006, 14, 5733–5745. [Google Scholar] [CrossRef]
- Dennis, M.R. Fermionic out-of-plane structure of polarization singularities. Opt. Lett. 2011, 36, 3765–3767. [Google Scholar] [CrossRef]
- Freund, I. Cones, spirals, and Möbius strips, in elliptically polarized light. Optics Communications 2005, 249, 7–22. [Google Scholar] [CrossRef]
- Bauer, T.; Neugebauer, M.; Leuchs, G.; Banzer, P. Optical Polarization Möbius Strips and Points of Purely Transverse Spin Density. Phys. Rev. Lett. 2016, 117, 013601. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.; Banzer, P.; Bouchard, F.; Orlov, S.; Marrucci, L.; Santamato, E.; Boyd, R.W.; Karimi, E.; Leuchs, G. Multi-twist polarization ribbon topologies in highly-confined optical fields. New Journal of Physics 2019, 21, 053020. [Google Scholar] [CrossRef]
- Bauer, T.; Banzer, P.; Karimi, E.; Orlov, S.; Rubano, A.; Marrucci, L.; Santamato, E.; Boyd, R.W.; Leuchs, G. Observation of optical polarization Möbius strips. Science 2015, 347, 964–966. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Somers, L.; Singh, R.K.; Senthilkumaran, P.; Arie, A. Focused polarization ellipse field singularities: interaction of spin-orbital angular momentum and the formation of optical Möbius strips. Physica Scripta 2023, 98, 055507. [Google Scholar] [CrossRef]
- Wang, Y.; Yong, K.; Chen, D.; Zhang, R. Influence of spherical aberration on the tightly focusing characteristics of vector vortex beams. Opt. Express 2023, 31, 28229–28240. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Senthilkumaran, P.; Singh, K. Effect of primary coma on the focusing of a Laguerre–Gaussian beam by a high numerical aperture system; vectorial diffraction theory. Journal of Optics A: Pure and Applied Optics 2008, 10, 075008. [Google Scholar] [CrossRef]
- Singh, R.K.; Senthilkumaran, P.; Singh, K. Structure of a tightly focused vortex beam in the presence of primary coma. Optics Communications 2009, 282, 1501–1510. [Google Scholar] [CrossRef]
- Dennis, M.R. Polarization singularities in paraxial vector fields: morphology and statistics. Opt. Commun. 2002, 213, 201–221. [Google Scholar] [CrossRef]
- Berry, M.V. The electric and magnetic polarization singularities of paraxial waves. J. Opt. A: Pure Appl. Opt. 2004, 6, 475–481. [Google Scholar] [CrossRef]
- Freund, I. Polarization singularity indices in Gaussian laser beams. Opt. Commun., 2002, 201, 251–270. [Google Scholar] [CrossRef]
- Pal, S.K.; Senthilkumaran, P. Index polarity inversion by helicity inversion in Stokes vortices. Applied Physics Letters 2020, 117, 201101. [Google Scholar] [CrossRef]
- Pal, S.K.; Arora, G.; Ruchi.; Senthilkumaran, P. Handedness control in polarization lattice fields by using spiral phase filters. Applied Physics Letters 2021, 119, 221106. [CrossRef]
- Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Senthilkumaran, P. Singularities in Physics and Engineering; Number 2053-2563, IOP Publishing, 2018.
- Yi, X.; Liu, Y.; Ling, X.; Zhou, X.; Ke, Y.; Luo, H.; Wen, S.; Fan, D. Hybrid-order Poincaré sphere. Phys. Rev. A 2015, 91, 023801. [Google Scholar] [CrossRef]
- Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light. Phys. Rev. Lett. 2011, 107, 053601. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.A.; Nowak, M.D. Selective edge enhancement of images with an acousto-optic light modulator. Appl. Opt. 2002, 41, 4835–4839. [Google Scholar] [CrossRef] [PubMed]
- Samlan, C.T.; Suna, R.R.; Naik, D.N.; Viswanathan, N.K. Spin-orbit beams for optical chirality measurement. Applied Physics Letters 2018, 112, 031101. [Google Scholar] [CrossRef]
- Cipparrone, G.; Ricardez-Vargas, I.; Pagliusi, P.; Provenzano, C. Polarization gradient: exploring an original route for optical trapping and manipulation. Opt. Express 2010, 18, 6008–6013. [Google Scholar] [CrossRef]
- Pal, S.K.; Gangwar, K.K.; Senthilkumaran, P. Tailoring polarization singularity lattices by phase engineering of three-beam interference. Optik 2022, 255, 168680. [Google Scholar] [CrossRef]
- Pal, S.K.; Manisha. ; Senthilkumaran, P. Phase engineering in overlapping lattices of polarization singularities. J. Opt. Soc. Am. B 2023, 40, 1830–1836. [Google Scholar] [CrossRef]
- Meier, M.; Romano, V.; Feurer, T. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A 2007, 86, 329–334. [Google Scholar] [CrossRef]
- Shen, Y.; Martínez, E.C.; Rosales-Guzmán, C. Generation of Optical Skyrmions with Tunable Topological Textures. ACS Photonics 2022, 9, 296–303. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Lang, S.; Wang, H.; Hu, H.; Wang, J.; Gong, Y. Structured Illumination Microscopy Based on Asymmetric Three-beam Interference. J. Innov. Opt. Health Sci. 2021, 14, 2050027. [Google Scholar] [CrossRef]
- Pal, S.K.; Singh, R.K.; Senthilkumaran, P. Focal intensity landscapes of tightly focused spatially varying bright ellipse fields. Journal of Optics 2022, 24, 044013. [Google Scholar] [CrossRef]
- Pal, S.K. Tight focusing of orthogonal C-point polarization states. Optik 2023, 274, 170535. [Google Scholar] [CrossRef]
- Otte, E.; Tekce, K.; Lamping, S.; Ravoo, B.J.; Denz, C. Polarization nano-tomography of tightly focused light landscapes by self-assembled monolayers. Nat. Commun. 2019, 10, 4308. [Google Scholar] [CrossRef] [PubMed]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1959, 253, 358–379. [Google Scholar] [CrossRef]
- Singh, R.K.; Senthilkumaran, P.; Singh, K. Effect of primary spherical aberration on high-numerical-aperture focusing of a Laguerre-Gaussian beam. J. Opt. Soc. Am. A 2008, 25, 1307–1318. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
