Submitted:
27 December 2023
Posted:
27 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Phylogeny Inferred from Concatenated Sequences of the Genus Oryza

3.2. Validation of the PCR Sequence Artifacts through Southern Hybridization
3.3. Fragments Hybridization of RDF1-4
3.4. Analyses of 28S Genes in Ribosome of O. officinalis
3.5. Conservation of RNA Secondary Structure

3.6. Differential Expression of 28S ribosomal Genes with and without Fertilization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wing, R.A.; Purugganan, M.D.; Zhang, Q. The rice genome revolution: from an ancient grain to Green Super Rice. Nature Reviews Genetics 2018, 19, 505–517. [Google Scholar] [CrossRef]
- Stein, J.C.; Yu, Y.; Copetti, D.; Zwickl, D.J.; Zhang, L.; Zhang, C.; Chougule, K.; Gao, D.; Iwata, A.; Goicoechea, J.L. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature genetics 2018, 50, 285–296. [Google Scholar] [CrossRef]
- Tabassum, J.; Raza, Q.; Riaz, A.; Ahmad, S.; Rashid, M.A.R.; Javed, M.A.; Ali, Z.; Kang, F.; Khan, I.A.; Atif, R.M. Exploration of the genomic atlas of Dof transcription factor family across genus Oryza provides novel insights on rice breeding in changing climate. Frontiers in Plant Science 2022, 13, 1004359. [Google Scholar] [CrossRef]
- Gross, B.L.; Zhao, Z. Archaeological and genetic insights into the origins of domesticated rice. Proceedings of the National Academy of Sciences 2014, 111, 6190–6197. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Zhao, Z.; Wu, R.; Yang, Z.; He, G. Sequencing and Genomic Analysis of Sorghum DNA Introgression Variant Line R21 and Recipient Rice Jin Hui 1 Revealed Repetitive Element Variation. International Journal of Molecular Sciences 2022, 23, 11864. [Google Scholar] [CrossRef] [PubMed]
- Konikkat, S.; Woolford Jr, J.L. Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast. Biochemical Journal 2017, 474, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Mitterer, V.; Pertschy, B. RNA folding and functions of RNA helicases in ribosome biogenesis. RNA biology 2022, 19, 781–810. [Google Scholar] [CrossRef]
- Espinar-Marchena, F.J.; Fernández-Fernández, J.; Rodríguez-Galán, O.; Fernández-Pevida, A.; Babiano, R.; de la Cruz, J. Role of the yeast ribosomal protein L16 in ribosome biogenesis. FEBS J . 2016, 283, 2968–2985. [Google Scholar] [CrossRef] [PubMed]
- Wan, K.; Yabuki, Y.; Mizuta, K. Roles of Ebp2 and ribosomal protein L36 in ribosome biogenesis in Saccharomyces cerevisiae. Current genetics 2015, 61, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yue, Z.; Xu, F.; Wang, S.; Hu, X.; Dai, J.; Zhao, G. Coevolution of ribosomal RNA expansion segment 7L and assembly factor Noc2p specializes the ribosome biogenesis pathway between Saccharomyces cerevisiae and Candida albicans. Nucleic Acids Research 2021, 49, 4655–4667. [Google Scholar] [CrossRef] [PubMed]
- Gómez Ramos, L.M.; Degtyareva, N.N.; Kovacs, N.A.; Holguin, S.Y.; Jiang, L.; Petrov, A.S.; Biesiada, M.; Hu, M.Y.; Purzycka, K.J.; Arya, D.P. Eukaryotic ribosomal expansion segments as antimicrobial targets. Biochemistry 2017, 56, 5288–5299. [Google Scholar] [CrossRef]
- Leppek, K.; Fujii, K.; Quade, N.; Susanto, T.T.; Boehringer, D.; Lenarčič, T.; Xue, S.; Genuth, N.R.; Ban, N.; Barna, M. Gene-and species-specific Hox mRNA translation by ribosome expansion segments. Molecular cell 2020, 80, 980–995. e913. [Google Scholar] [CrossRef]
- Paul, B.; Raj, K.K.; Murali, T.S.; Satyamoorthy, K. Species-specific genomic sequences for classification of bacteria. Computers in Biology and Medicine 2020, 123, 103874. [Google Scholar] [CrossRef]
- Raza, Q.; Rashid, M.A.R.; Waqas, M.; Ali, Z.; Rana, I.A.; Khan, S.H.; Khan, I.A.; Atif, R.M. Genomic diversity of aquaporins across genus Oryza provides a rich genetic resource for development of climate resilient rice cultivars. BMC Plant Biology 2023, 23, 172. [Google Scholar] [CrossRef]
- Chen, E.; Huang, X.; Tian, Z.; Wing, R.A.; Han, B. The genomics of Oryza species provides insights into rice domestication and heterosis. Annual review of plant biology 2019, 70, 639–665. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Wang, Z.; Wang, J.; Teng, J.; Shen, S.; Xiao, Q.; Bao, S.; Feng, Y.; Zhang, Y.; Li, Y. Conversion between 100-million-year-old duplicated genes contributes to rice subspecies divergence. BMC genomics 2021, 22, 1–19. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Hörandl, E. Does polyploidy inhibit sex chromosome evolution in angiosperms? Frontiers in Plant Science 2022, 13, 976765. [Google Scholar] [CrossRef] [PubMed]
- Bowers, J.E.; Tang, H.; Burke, J.M.; Paterson, A.H. GC content of plant genes is linked to past gene duplications. Plos one 2022, 17, e0261748. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, Y.; Lv, Y.; Pu, Q.; Li, J.; Zhang, Y.; Deng, X.; Wang, M.; Wang, J.; Tao, D. Interspecific Hybridization Is an Important Driving Force for Origin and Diversification of Asian Cultivated Rice Oryza sativa L. Frontiers in Plant Science 2022, 13, 932737. [Google Scholar] [CrossRef] [PubMed]
- Palaniyappan, S.; Arunachalam, P.; Banumathy, S.; Mini, M.; Muthuramu, S. Genetic divergence and clustering studies in advanced breeding lines of rice (Oryza sativa L.). Electronic Journal of Plant Breeding 2020, 11, 499–504. [Google Scholar] [CrossRef]
- Cheng, L.; Han, Q.; Chen, F.; Li, M.; Balbuena, T.S.; Zhao, Y. Phylogenomics as an effective approach to untangle cross-species hybridization event: A case study in the family Nymphaeaceae. Frontiers in Genetics 2022, 13, 1031705. [Google Scholar] [CrossRef]
- Sun, K.; Li, D.; Xia, A.; Zhao, H.; Wen, Q.; Jia, S.; Wang, J.; Yang, G.; Zhou, D.; Huang, C. Targeted Identification of Rice Grain-Associated Gene Allelic Variation Through Mutation Induction, Targeted Sequencing, and Whole Genome Sequencing Combined with a Mixed-Samples Strategy. Rice 2022, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Chen, X.; Li, H.; Zhang, J.; Wei, Z.; Wang, Y. Interpopulation differences of retroduplication variations (RDVs) in rice retrogenes and their phenotypic correlations. Computational and Structural Biotechnology Journal 2021, 19, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Parks, M.M.; Kurylo, C.M.; Batchelder, J.E.; Theresa Vincent, C.; Blanchard, S.C. Implications of sequence variation on the evolution of rRNA. Chromosome Research 2019, 27, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Li, W.; Zhang, Q.-J.; Zhang, Y.; Tong, Y.; Li, K.; Liu, Y.-L.; Gao, L.-Z. The draft genome sequence of an upland wild rice species, Oryza granulata. Scientific Data 2020, 7, 131. [Google Scholar] [CrossRef]
- Jagadeesh, D.; Kumar, M.P.; Chandrakanth, R.; Devaki, N. Molecular diversity of internal transcribed spacer among the monoconidial isolates of Magnaporthe oryzae isolated from rice in Southern Karnataka, India. Journal of Genetic Engineering and Biotechnology 2018, 16, 631–638. [Google Scholar] [CrossRef]
- Jayaswal, P.K.; Dogra, V.; Shanker, A.; Sharma, T.R.; Singh, N.K. A tree of life based on ninety-eight expressed genes conserved across diverse eukaryotic species. Plos one 2017, 12, e0184276. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.-H.; Du, Y.-S.; Tang, L.; Xu, X.-W.; Doyle, J.J.; Sang, T.; Ge, S. Multiple origins of BBCC allopolyploid species in the rice genus (Oryza). Scientific reports 2015, 5, 14876. [Google Scholar] [CrossRef]
- Jain, R.; Jenkins, J.; Shu, S.; Chern, M.; Martin, J.A.; Copetti, D.; Duong, P.Q.; Pham, N.T.; Kudrna, D.A.; Talag, J. Genome sequence of the model rice variety KitaakeX. BMC genomics 2019, 20, 1–9. [Google Scholar] [CrossRef]
- Luo, S.; Peng, J.; Li, K.; Wang, M.; Kuang, H. Contrasting evolutionary patterns of the Rp1 resistance gene family in different species of Poaceae. Molecular biology and evolution 2011, 28, 313–325. [Google Scholar] [CrossRef]
- Piya, A.A.; DeGiorgio, M.; Assis, R. Predicting gene expression divergence between single-copy orthologs in two species. Genome Biology and Evolution 2023, 15, evad078. [Google Scholar] [CrossRef]
- Zhao, D.; Hamilton, J.P.; Hardigan, M.; Yin, D.; He, T.; Vaillancourt, B.; Reynoso, M.; Pauluzzi, G.; Funkhouser, S.; Cui, Y. Analysis of ribosome-associated mRNAs in rice reveals the importance of transcript size and GC content in translation. G3: Genes, Genomes, Genetics 2017, 7, 203–219. [Google Scholar] [CrossRef]
- Siwaszek, A.; Ukleja, M.; Dziembowski, A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA biology 2014, 11, 1122–1136. [Google Scholar] [CrossRef]
- Deng, H.; Cheema, J.; Zhang, H.; Woolfenden, H.; Norris, M.; Liu, Z.; Liu, Q.; Yang, X.; Yang, M.; Deng, X. Rice in vivo RNA structurome reveals RNA secondary structure conservation and divergence in plants. Molecular plant 2018, 11, 607–622. [Google Scholar] [CrossRef]
- McGee, J.P.; Armache, J.-P.; Lindner, S.E. Ribosome heterogeneity and specialization of Plasmodium parasites. PLoS pathogens 2023, 19, e1011267. [Google Scholar] [CrossRef] [PubMed]
- Burgarella, C.; Lorenzo, Z.; Jabbour-Zahab, R.; Lumaret, R.; Guichoux, E.; Petit, R.; Soto, A.; Gil, L. Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity 2009, 102, 442–452. [Google Scholar] [CrossRef]
- He, N.; Wu, R.; Pan, X.; Peng, L.; Sun, K.; Zou, T.; Zhu, H.; Zeng, R.; Liu, Z.; Liu, G. Development and trait evaluation of chromosome single-segment substitution lines of O. meridionalis in the background of O. sativa. Euphytica 2017, 213, 1–15. [Google Scholar] [CrossRef]
- Kopecký, D.; Martín, A.; Smýkal, P. Interspecific hybridization and plant breeding: From historical retrospective through work of Mendel to current crops. Czech Journal of Genetics and Plant Breeding 2022. [Google Scholar] [CrossRef]
- Vemireddy, L.R.; Noor, S.; Satyavathi, V.; Srividhya, A.; Kaliappan, A.; Parimala, S.; Bharathi, P.M.; Deborah, D.A.; Rao, K.S.; Shobharani, N. Discovery and mapping of genomic regions governing economically important traits of Basmati rice. BMC plant biology 2015, 15, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Siddiq, E.; Vemireddy, L.; Nagaraju, J. Basmati rices: genetics, breeding and trade. Agricultural Research 2012, 1, 25–36. [Google Scholar] [CrossRef]
- Reddy, M.M.; Ulaganathan, K. Draft genome sequence of Oryza sativa elite indica cultivar RP Bio-226. Frontiers in plant science 2015, 6, 896. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. A draft genome, resequencing, and metabolomes reveal the genetic background and molecular basis of the nutritional and medicinal properties of loquat (Eriobotrya japonica (Thunb.) Lindl). Horticulture research 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.-f.; Zhu, X.-g.; Hutang, G.-r.; Li, J.-y.; Tian, J.-q.; Jiang, X.-h.; Zhang, D.; Gao, L.-z. Genome size variation and evolution driven by transposable elements in the genus oryza. Frontiers in Plant Science 2022, 13, 921937. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.L. Gene family evolution in green plants with emphasis on the origination and evolution of a rabidopsis thaliana genes. The Plant Journal 2013, 73, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Ohmido, N.; Fukui, K.; Kinoshita, T. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proceedings of the Japan Academy, Series B 2010, 86, 103–116. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, L.; Columbus, J.T.; Hu, Y.; Zhao, Y.; Tang, L.; Guo, Z.; Chen, W.; McKain, M.; Bartlett, M. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis. Molecular Plant 2022, 15, 755–777. [Google Scholar] [CrossRef]
- Gaikwad, K.B.; Singh, N.; Kaur, P.; Rani, S.; Babu H, P.; Singh, K. Deployment of wild relatives for genetic improvement in rice (Oryza sativa). Plant Breeding 2021, 140, 23–52. [Google Scholar] [CrossRef]
- Yang, X.; Fuller, D.Q.; Huan, X.; Perry, L.; Li, Q.; Li, Z.; Zhang, J.; Ma, Z.; Zhuang, Y.; Jiang, L. Barnyard grasses were processed with rice around 10000 years ago. Scientific Reports 2015, 5, 16251. [Google Scholar] [CrossRef]
- Coiffard, C.; Kardjilov, N.; Manke, I.; Bernardes-de-Oliveira, M.E. Fossil evidence of core monocots in the Early Cretaceous. Nature plants 2019, 5, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Hertweck, K.L.; Kinney, M.S.; Stuart, S.A.; Maurin, O.; Mathews, S.; Chase, M.W.; Gandolfo, M.A.; Pires, J.C. Phylogenetics, divergence times and diversification from three genomic partitions in monocots. Botanical Journal of the Linnean Society 2015, 178, 375–393. [Google Scholar] [CrossRef]
- Gao, L.-Z.; Liu, Y.-L.; Zhang, D.; Li, W.; Gao, J.; Liu, Y.; Li, K.; Shi, C.; Zhao, Y.; Zhao, Y.-J. Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Communications Biology 2019, 2, 278. [Google Scholar] [CrossRef] [PubMed]



![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

