Submitted:
29 December 2023
Posted:
03 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Deep eutectic solvents
3. Extractions of organic compounds from fruits by-products
3.1. Bioactive Compounds in Fruit Waste
3.2. Phenolic compounds
3.3. Carbohydrates
3.4. Proteins
3.5. Other compounds
| Fruits | Waste | Extraction technique/conditions | DESs | Bioactive compounds | Reference |
|---|---|---|---|---|---|
| Polyphenols | |||||
| Orange | peel | Solid-liquid extraction (SLE) | LA:glucose (GLC) (5:1), L-proline:malic acid (1:1) |
polyphenols and flavonoids | [120] |
| SLE , 50 oC, 30 min | ChCl:citric acid (CA) (1:1) | hesperidin | [121] | ||
| SLE, 45 ±5 oC, 20 min | ChCl:malic acid ChCl:glycerol |
flavonoids | [120] | ||
| Lemon | peel | RP-LC–QTOF-MS/MS | ChCl:glycerol (1:3) | quercetin, p-coumaric acid) |
[122] |
| Tangerine | peel | USE (20 W, 35 kHz) | ChCl:levulinic acid:N-methyl urea (1:1.2:0.8) | polymethoxylated flavonoids and their glycosides | [123] |
| Grapefruit | peel | HVED SLE, 50 °C, 60 min Solid/liquid ratio (1:10) |
LA:Glc (5:1) |
polyphenols naringin |
[124] |
| Mango | peel | MAE | Sodium acetate:LA (1:3) | mangiferin | [86] |
| Apple |
pomace |
USE, 83.2 W | ChCl:glycerol (1:2) | quercerin, chlorogenic acid, gallic acid, phloretin, phloridazin and rutin | [125] |
| SLE, 60 °C, 6 h | ChCl:ethylene glycol (1:4) | procyanidin, chlorogenic acid, epicatehin hydrate, vanillin, phloridzin | [126] | ||
| Grape |
pomace |
MWE 300W + USE 50 W | ChCl:CA (1:2) | anthocyanins, gallic acid, catehin and quercetin 3-O-glucoside | [127] |
| anthocyanins (malvidin-3-O-monoglucosid | [128] | ||||
| SLE, rt, 24 h. | betain:CA (1:1) | malvidin | [129] | ||
| USE, 100 W | betain:Glc (1:1) | flavan-3-ols | [130] | ||
| SLE, HPLE |
ChCl:ethylene glycol:water, ChCl:glycerol:levulinic acid: water, Ethylene glycol:water, glycerol:water |
phenolic acids, flavanols, flavonols | [131] | ||
| skin | USE, 59 kHz | ChCl:CA (1:2) | flavan-3-ols, catechin, epicatechin, protocatechuic acid | [132] | |
| Mangosteen | peel | USE | ChCl:LA (1:2) | anthocyanins | [133] |
| Pomegranate |
peel |
SLE, 50 oC USE, 50 oC, 50 W |
LA:ChCl 3:1, Malic acid Sucrose 1:1, Glycerol Glycine 3:1, ChCl:fructose 1.9:1, Glc:Tartaric acid 1:1, Glycerol Urea 1:1, Malic acid:Glc Glycerol 1:1:1, LA: Glycine 3:1 |
caffeic acid, kaempferol, luteolin, protocatechuic acid, ellagic acid, chlorogenic acid, hydroxybenzoic acid, gallic acid, quercetin | [134] |
| SLE |
ChCl :glycerol (1:11) | polyphenols and flavonoids | [135] | ||
| USE TPC (water content, 29.30%; liquid-to-solid ratio, 53.50 mL/g; ultrasonic power, 238.20 W; extraction time, 29.50 min¸ PC (water content, 25.65%; liquid-to-solid ratio, 44.20 mL/g; ultrasonic power, 120 W; extraction time, 20 min), and EC (water content, 33.13%; liquid-to-solid ratio, 60 mL/g; ultrasonic power, 300 W; extraction time, 20 min) | Total polyphenol content (TPC) punicalagin content (PC), an ellagic acid content (EC) | [136] | |||
| pretreatment with HVED or US, SLE |
ChCl:CA, ChCl:acetic acid, ChCl:LA, ChCl : glycerol, and ChCl :Glc | polyphenols | [85] | ||
| Jabuticaba | pomace | USE | ChCl:Propyleneglycol 1:2, ChCl:CA 1:1, ChCl:Malic acid 1:1, CA:Glc:Water 1:1:3 CA:Propylene glycol 1:1 Betaine:CA 3:1 |
anthocyanins | [137] |
| Blueberry |
pomace |
USE | ChCl: LA (1:1) | anthocyanins | [138] |
| USE | ChCl:oxalic acid (1:1) | anthocyanins | [139] | ||
| USE | ChCl:butane-1,4-diol | cyanidin-3-O-rutinoside | [140] | ||
| Cranberry | pomace | USE | ChCl:betaine hydrochloride:levulinic acid (1:1:2) | procyanidins and anthocyanins | [141] |
| Strawberry and raspberry waste |
extrudate | SLE |
ChCl:glycolic acid:Oxalic acid (1:1.7:0.3) | anthocyanins | [142] |
| Black chokeberry | pulp | (UMAE-EtOH) solid–liquid ratio of 1:15, 230 W, 367 s, 52 °C |
ChCl: CA (1:1), ChCl: malic acid (1:1), ChCl:LA (1:1), ChCl: Glc (1:1), ChCl: sucrose (1:1), ChCl: glycerol (1:2), ChCl:CA:Glc (1:1:1), ChCl:CA:glycerol (1:1:1) |
cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, cyanidin-3-O-xyloside, cyanidin-3,5-O-dihexoside, dimer of cyanidin-hexoside | [143] |
| Sour cherry | pomace | USE, 40 ◦C, 30 min MWE, 90 W three successive cycles of 5 s (15 s of total time) | ChCl:Mallic acid | cyanidin-3-O-sophoroside cyanidin 3-O-glucosylrutinoside cyanidin-3-O- rutinoside quercetin-3-O-glucoside quercetin-3-O-rutinoside quercetin-O-glycoside Isorhamnetin-3-O-rutinoside |
[144] |
| Carbohydrates | |||||
| Pomelo | peel | USE, 80 °C, 60 min, liquid:solid ratio (40:1) | ChCl:Mal acid ChCl:Glc:Water | pectin | [112] |
| Apple | pomace | ChCl: LA, ChCl: oxalic acid, ChCl: urea, 1:2 | pectin | [113] | |
| Banana | puree | MWE, 25 ◦C, 30 min, water content: 30%, | Malic Acid:β-alanine:water (1:1:3) | soluble sugars | [145] |
| Grape | seed | USE, 30°C, 10 min, | Dodecanoic Acid: Octanoic Acid (1:1) | Gsps | [146] |
| Proteins | |||||
| Pomegranate | seed | Pressurized liquid extraction (PLE) and DES extraction |
ChCl:CA, ChCl:AA, ChCl:LA, ChCl:glycerol, ChCl:glc |
protein | [85] |
| Orange | peel | 4 °C, 15 min | ChCl -based NADES with ethylene glycol | protein | [88] |
| Other compounds | |||||
| Watermelon | rind | USE | ChCl:LA | lignin | [119] |
4. Extraction from vegetables byproduct
Polyphenols
| Vegetable | Waste | Extraction technique | DESs | bioactive compounds | Reference |
| Polyphenols | |||||
| onion | peel | 60 °C, 120 min, 20:1 (liquid:solid) | ChCl:U:H2O (1:2:4) | TPC, quercetin, kaempferol, myricetin | [147] |
| Black carrot | waste | Ultrasonic bath, 50 °C, 30 min, 37 kHz, 140 W | ChCl:glycerol (1:2) | Polyphenols | [155] |
| Onion | 20 °C, 35 min, 400 µL of DES | Methanol solution of betaine:d -mannitol | Quercetin, isorhamnetin, kaempferol | [148] | |
| Curcuma longa | rhizomes | 50 °C, 0.1:10 g/mL (solid:liquid), 30 min | 1:1 citric acid:glucose (1:1), 15 % water | Pigments: curcuminoides | [150] |
| Broccoli | 20 °C, 35 min, 400 µL of DES | Methanol solution of betaine:d -mannitol | Quercetin, isorhamnetin, kaempferol | [148] | |
| Broccoli | leaves | Solvent:solid 36.35 mL/g, 49.5 °C, 31.4 min, ultrasonic power 383 W | ChCl:1,2-propylene glycol (1:2) | neochlorogenic acid, ferulic acid, erucic acid, quinic acid, chlorogenic acid, caffeic acid | [149] |
| Tomato | By-products | Solvent:solid 25:1, 90 min, 50 °C | Menthol:hexanoic acid (2:1) | carotenoides | [152] |
| Other | |||||
| Beet, cucumber, potato, and tomato | 70 °C, 5 min, 142 µL DES, 1610 xg 5min centrifugation | ChCl:p-chlorophenol | Pesticides: diazinon, metalaxyl, bromopropylate, oxadiazon, fenazaquin |
[156] | |
| Garlic | skin | ultrasound 20+28+40 kHz, 30 min, r.t., followed by microwave 20 min, 80 °C | ChCl:Glycerin:AlCl3·6H2O (1:2:0.2) | Removal of lignin | [157] |
| Beetroot | Peel and pulp | 1:30 g/mL (solid:liquid), 25 °C, ultrasonic bath, 3h, agitation 900 s | MgCl2x6H2O:urea (2:1) | Betalains | [151] |
| Onion | root | ultrasound 20+28+40 kHz, 30 min, r.t., followed by microwave 20 min, 80 °C | ChCl:Glycerin:AlCl3·6H2O (1:2:0.2) | Removal of lignin | [157] |
5. Extraction from oilseed agro waste
6. Extractions from animal byproducts
7. Extractions from other Agri-Food byproducts
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviation
| DES – deep eutectic solvent |
| QAS - quaternary ammonium salt |
| HIFU - high intensity ultrasound extraction |
| HBD – hydrogen bond donor |
| HBA – hydrogen bond acceptor |
| NADES – natural deep eutectic solvents |
| THEDES – therapeutic deep eutectic solvents |
| TDES – ternary deep eutectic solvents |
| SLE - solid-liquid extraction |
| ROS - reactive oxygen species |
| RNS - reactive nitrogen species |
| DNA - deoxyribonucleic acid |
| PEF - pulsed electric field |
| GAE - gallic acid equivalent |
| DW - dry weight |
| ChCl – choline chloride |
| Glc – glucose |
| LA – lactic acid |
| CA – citric acid |
| Mal – malonic acid |
| AA – acetic acid |
| TPC -total polyphenol content |
| PC - punicalagin content |
| EC - an ellagic acid content |
| RP-LC–QTOF-MS/MS - reversed phase ultra-pressure electrospray liquid chromatographic time-of-flight massspectrometric method |
| USE – ulrasound extraction |
| HVED - high voltage electrical discharges pre-treatment |
| MAE – microvawe assisted extraction |
| HPLE - hot pressurized liquid extraction |
| UMAE-EtOH - ultrasonic-microwave-assisted ethanol extraction methods solid–liquid |
| PLE - pressurized liquid extraction |
| Gsps - grape seed polysaccharides |
References
- Stenmarck, A.; Jensen, C.; Quested, T.; Moates, G. Estimates of European Food Waste Levels | FAO; Fusion: European Union, 2016.
- Socas-Rodríguez, B.; Mendiola, J.A.; Rodríguez-Delgado, M.Á.; Ibáñez, E.; Cifuentes, A. Safety Assessment of Citrus and Olive By-Products Using a Sustainable Methodology Based on Natural Deep Eutectic Solvents. J Chromatogr A 2022, 1669, 462922. [CrossRef]
- Ojeda, G.; Vallejos, M.; Sgroppo, S.; Sánchez-Moreno, C.; De Ancos, B. Enhanced Extraction of Phenolic Compounds from Mango By-Products Using Deep Eutectic Solvents. Heliyon 2023, 9, e16912. [CrossRef]
- Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients 2016, 8, 552. [CrossRef]
- Bolhassani, A.; Khavari, A.; Bathaie, S.Z. Saffron and Natural Carotenoids: Biochemical Activities and Anti-Tumor Effects. Biochim Biophys Acta Rev Cancer 2014, 1845, 20–30. [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid Med Cell Longev 2009, 2, 270–278. [CrossRef]
- Macáková, K.; Afonso, R.; Saso, L.; Mladěnka, P. The Influence of Alkaloids on Oxidative Stress and Related Signaling Pathways. Free Radic Biol Med 2019, 134, 429–444. [CrossRef]
- Stahl, W.; Sies, H. Antioxidant Activity of Carotenoids. Mol Aspects Med 2003, 24, 345–351. [CrossRef]
- Hügel, H.M.; Jackson, N.; May, B.; Zhang, A.L.; Xue, C.C. Polyphenol Protection and Treatment of Hypertension. Phytomedicine 2016, 23, 220–231. [CrossRef]
- Zhou, Z.; Chen, J.; Cui, Y.; Zhao, R.; Wang, H.; Yu, R.; Jin, T.; Guo, J.; Cong, Y. Antihypertensive Activity of Different Components of Veratrum Alkaloids through Metabonomic Data Analysis. Phytomedicine 2023, 120, 155033. [CrossRef]
- Manso, T.; Lores, M.; de Miguel, T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics (Basel) 2021, 11, 46. [CrossRef]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and Glycemic Control. Nutrients 2016, 8, 17. [CrossRef]
- Chojnacka, K.; Skrzypczak, D.; Izydorczyk, G.; Mikula, K.; Szopa, D.; Witek-Krowiak, A. Antiviral Properties of Polyphenols from Plants. Foods 2021, 10. [CrossRef]
- Abookleesh, F.L.; Al-Anzi, B.S.; Ullah, A. Potential Antiviral Action of Alkaloids. Molecules 2022, 27, 903. [CrossRef]
- Capello, C.; Fischer, U.; Hungerbuhler, K. What Is a Green Solvent? A Comprehensive Framework for the Environmental Assessment of Solvents. Green Chem 2007, 9, 927-934. [CrossRef]
- Flieger, J.; Flieger, M. Ionic Liquids Toxicity—Benefits and Threats. Int J Mol Sci 2020, 21, 6267. [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem Commun 2003, 2003, 70–71. [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020, 121, 1232–1285, doi:doi.org/10.1021/acs.chemrev.0c00385.
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem Rev 2014, 114, 11060–11082. [CrossRef]
- El Achkar, T.; Fourmentin, S.; Greige-Gerges, H. Deep Eutectic Solvents: An Overview on Their Interactions with Water and Biochemical Compounds. J Mol Liq 2019, 288, 111028. [CrossRef]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environ Chem Lett 2021, 19, 3397–3408. [CrossRef]
- Lomba, L.; Ribate, M.P.; Sangüesa, E.; Concha, J.; Garralaga, M.a P.; Errazquin, D.; García, C.B.; Giner, B. Deep Eutectic Solvents: Are They Safe? Appl Sci 2021, 11, 10061. [CrossRef]
- Pacheco-Fernández, I.; Pino, V. Green Solvents in Analytical Chemistry. Curr Opin Green Sustain Chem 2019, 18, 42–50. [CrossRef]
- Martins, M.A.R.; Pinho, S.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J Solution Chem 2018, 48, 962-982. [CrossRef]
- Duan, L.; Dou, L.-L.; Guo, L.; Li, P.; Liu, E.-H. Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products. ACS Sustainable Chem Eng 2016, 4, 2405–2411. [CrossRef]
- Bowen, H.; Durrani, R.; Delavault, A.; Durand, E.; Chenyu, J.; Yiyang, L.; Lili, S.; Jian, S.; Weiwei, H.; Fei, G. Application of Deep Eutectic Solvents in Protein Extraction and Purification. Front Chem 2022, 10, 912411. [CrossRef]
- Grozdanova, T.; Trusheva, B.; Alipieva, K.; Popova, M.; Dimitrova, L.; Najdenski, H.; Zaharieva, M.M.; Ilieva, Y.; Vasileva, B.; Miloshev, G.; et al. Extracts of Medicinal Plants with Natural Deep Eutectic Solvents: Enhanced Antimicrobial Activity and Low Genotoxicity. BMC Chemistry 2020, 14, 73. [CrossRef]
- Rodríguez-Martínez, B.; Ferreira-Santos, P.; Alfonso, I.M.; Martínez, S.; Genisheva, Z.; Gullón, B. Deep Eutectic Solvents as a Green Tool for the Extraction of Bioactive Phenolic Compounds from Avocado Peels. Molecules 2022, 27, 6646. [CrossRef]
- Karimi, S.; Shekaari, H. Application of Acidic Deep Eutectic Solvents in Green Extraction of 5-Hydroxymethylfurfural. Sci Rep 2022, 12, 13113. [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Deep Eutectic Solvent-Based Extraction of Polyphenolic Antioxidants from Onion (Allium Cepa L.) Peel. J Sci Food Agric 2019, 99, 1969–1979. [CrossRef]
- Ojeda, G.A.; Vallejos, M.M.; Sgroppo, S.C.; Sánchez-Moreno, C.; de Ancos, B. Enhanced Extraction of Phenolic Compounds from Mango By-Products Using Deep Eutectic Solvents. Heliyon 2023, 9, e16912. [CrossRef]
- Lobo, H.R.; Singh, B.S.; Shankarling, G.S. Bio-Compatible Eutectic Mixture for Multi-Component Synthesis: A Valuable Acidic Catalyst for Synthesis of Novel 2,3-Dihydroquinazolin-4(1H)-One Derivatives. Catal Commun 2012, 27, 179–183. [CrossRef]
- Perrone, S.; Capua, M.; Messa, F.; Salomone, A.; Troisi, L. Green Synthesis of 2-Pyrazinones in Deep Eutectic Solvents: From α-Chloro Oximes to Peptidomimetic Scaffolds. Tetrahedron 2017, 73, 6193–6198. [CrossRef]
- Perrone, S.; Messa, F.; Troisi, L.; Salomone, A. N-, O- and S-Heterocycles Synthesis in Deep Eutectic Solvents. Molecules 2023, 28, 3459. [CrossRef]
- Azizi, N.; Edrisi, M. Deep Eutectic Solvent Catalyzed Eco-Friendly Synthesis of Imines and Hydrobenzamides. Monatsh Chem 2015, 146, 1695–1698. [CrossRef]
- Ali, S.; Al-Rashida, M.; Younus, H.A.; Moin, S.T.; Hameed, A. Piperidinium-Based Deep Eutectic Solvents: Efficient and Sustainable Eco-Friendly Medium for One-Pot N-Heterocycles Synthesis. ChemistrySelect 2020, 5, 12697–12703. [CrossRef]
- Komar, M.; Molnar, M.; Konjarević, A. Screening of Natural Deep Eutectic Solvents for Green Synthesis of 2-Methyl-3-Substituted Quinazolinones and Microwave-Assisted Synthesis of 3-Aryl Quinazolinones in Ethanol. Craot Chem Acta 2019, 92, 511–517. [CrossRef]
- Molnar, M.; Komar, M.; Brahmbhatt, H.; Babić, J.; Jokić, S.; Rastija, V. Deep Eutectic Solvents as Convenient Media for Synthesis of Novel Coumarinyl Schiff Bases and Their QSAR Studies. Molecules 2017, 22, 1482. [CrossRef]
- Cicco, L.; Vitale, P.; Perna, F.M.; Capriati, V.; García-Álvarez, J. Cu-Catalysed Chan–Evans–Lam Reaction Meets Deep Eutectic Solvents: Efficient and Selective C–N Bond Formation under Aerobic Conditions at Room Temperature. RSC Sustain. 2023, 1, 847–852. [CrossRef]
- Balaji, R.; Ilangeswaran, D. Choline Chloride – Urea Deep Eutectic Solvent an Efficient Media for the Preparation of Metal Nanoparticles. J Indian Chem Soc 2022, 99, 100446. [CrossRef]
- Dai, Y.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents Providing Enhanced Stability of Natural Colorants from Safflower (Carthamus Tinctorius). Food Chem 2014, 159, 116–121. [CrossRef]
- Kalyniukova, A.; Holuša, J.; Musiolek, D.; Sedlakova-Kadukova, J.; Płotka-Wasylka, J.; Andruch, V. Application of Deep Eutectic Solvents for Separation and Determination of Bioactive Compounds in Medicinal Plants. Ind. Crops Prod 2021, 172, 114047. [CrossRef]
- Yadav, N.; Venkatesu, P. Current Understanding and Insights towards Protein Stabilization and Activation in Deep Eutectic Solvents as Sustainable Solvent Media. Phys Chem Chem Phys 2022, 24, 13474–13509. [CrossRef]
- Elgharbawy, A.A. Shedding Light on Lipase Stability in Natural Deep Eutectic Solvents. Chem Biochem Eng Q 2018, 32, 359–370. [CrossRef]
- Xu, P.; Zheng, G.-W.; Zong, M.-H.; Li, N.; Lou, W.-Y. Recent Progress on Deep Eutectic Solvents in Biocatalysis. Bioresour Bioprocess 2017, 4, 34. [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Ngoh, G.C.; Wong, W.F.; Looi, C.Y. Emerging Frontiers of Deep Eutectic Solvents in Drug Discovery and Drug Delivery Systems. J Control Release 2019, 316, 168–195. [CrossRef]
- Stott, P.W.; Williams, A.C.; Barry, B.W. Transdermal Delivery from Eutectic Systems: Enhanced Permeation of a Model Drug, Ibuprofen. J Control Release 1998, 50, 297–308. [CrossRef]
- Park, C.-W.; Kim, J.-U.; Rhee, Y.-S.; Oh, T.-O.; Ha, J.-M.; Choi, N.-Y.; Chi, S.-C.; Park, E.-S. Preparation and Valuation of a Topical Solution Containing Eutectic Mixture of Itraconazole and Phenol. Arch Pharm Res 2012, 35, 1935–1943. [CrossRef]
- Procentese, A.; Rehmann, L. Fermentable Sugar Production from a Coffee Processing By-Product after Deep Eutectic Solvent Pretreatment. Biores Technol Rep 2018, 4, 174–180. [CrossRef]
- Procentese, A.; Johnson, E.; Orr, V.; Garruto Campanile, A.; Wood, J.A.; Marzocchella, A.; Rehmann, L. Deep Eutectic Solvent Pretreatment and Subsequent Saccharification of Corncob. Bioresour Technol 2015, 192, 31–36. [CrossRef]
- Procentese, A.; Raganati, F.; Olivieri, G.; Russo, M.E.; Rehmann, L.; Marzocchella, A. Deep Eutectic Solvents Pretreatment of Agro-Industrial Food Waste. Biotechnol Biofuels 2018, 11, 37. [CrossRef]
- Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep Eutectic Solvents: The Organic Reaction Medium of the Century. Eur J Org Chem 2016, 2016, 612–632. [CrossRef]
- Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep Eutectic Solvents (DESs) as Eco-Friendly and Sustainable Solvent/Catalyst Systems in Organic Transformations. J Mol Liq 2016, 215, 345–386. [CrossRef]
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jérôme, F. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chem Soc Rev 2012, 41, 7108–7146. [CrossRef]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of Water Addition on Choline Chloride/Glycol Deep Eutectic Solvents: Characterization of Their Structural and Physicochemical Properties. J Mol Liq 2019, 291, 111301. [CrossRef]
- Hayyan, M.; Hashim, M.A.; Hayyan, A.; Al-Saadi, M.A.; AlNashef, I.M.; Mirghani, M.E.S.; Saheed, O.K. Are Deep Eutectic Solvents Benign or Toxic? Chemosphere 2013, 90, 2193–2195. [CrossRef]
- Lucarini, M.; Durazzo, A.; Bernini, R.; Campo, M.; Vita, C.; Souto, E.B.; Lombardi-Boccia, G.; Ramadan, M.F.; Santini, A.; Romani, A. Fruit Wastes as a Valuable Source of Value-Added Compounds: A Collaborative Perspective. Molecules 2021, 26, 6338. [CrossRef]
- Deng, G.-F.; Shen, C.; Xu, X.-R.; Kuang, R.-D.; Guo, Y.-J.; Zeng, L.-S.; Gao, L.-L.; Lin, X.; Xie, J.-F.; Xia, E.-Q.; et al. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds. Int J Mol Sci 2012, 13, 8308–8323. [CrossRef]
- Rudra, S.; Nishad, J.; Jakhar, N.; Kaur, C. Food industry waste: mine of nutraceuticals. Int J Environ Sci Technol 2015, 4, 205-229.
- Bhardwaj, K.; Najda, A.; Sharma, R.; Nurzyńska-Wierdak, R.; Dhanjal, D.S.; Sharma, R.; Manickam, S.; Kabra, A.; Kuča, K.; Bhardwaj, P. Fruit and Vegetable Peel-Enriched Functional Foods: Potential Avenues and Health Perspectives. Evid Based Complementary Altern Med 2022, 2022, e8543881. [CrossRef]
- Sha, S.P.; Modak, D.; Sarkar, S.; Roy, S.K.; Sah, S.P.; Ghatani, K.; Bhattacharjee, S. Fruit Waste: A Current Perspective for the Sustainable Production of Pharmacological, Nutraceutical, and Bioactive Resources. Front Microbiol 2023, 14, 1260071. [CrossRef]
- Ali, T.; Kim, T.; Rehman, S.U.; Khan, M.S.; Amin, F.U.; Khan, M.; Ikram, M.; Kim, M.O. Natural Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a Mouse Model of Alzheimer’s Disease. Mol Neurobiol 2018, 55, 6076–6093. [CrossRef]
- Ali, A.; Riaz, S.; Sameen, A.; Naumovski, N.; Iqbal, M.W.; Rehman, A.; Mehany, T.; Zeng, X.-A.; Manzoor, M.F. The Disposition of Bioactive Compounds from Fruit Waste, Their Extraction, and Analysis Using Novel Technologies: A Review. Processes 2022, 10, 2014. [CrossRef]
- Shimizu, S.; Matsushita, H.; Morii, Y.; Ohyama, Y.; Morita, N.; Tachibana, R.; Watanabe, K.; Wakatsuki, A. Effect of Anthocyanin-Rich Bilberry Extract on Bone Metabolism in Ovariectomized Rats. Biomed Rep 2018, 8, 198–204. [CrossRef]
- Richa, R.; Kohli, D.; Vishwakarma, D.; Mishra, A.; Kabdal, B.; Kothakota, A.; Richa, S.; Sirohi, R.; Kumar, R.; Naik, B. Citrus Fruit: Classification, Value Addition, Nutritional and Medicinal Values, and Relation with Pandemic and Hidden Hunger. J Agric Food Res 2023, 14, 100718. [CrossRef]
- Panwar, D.; Panesar, P.S.; Chopra, H.K. Recent Trends on the Valorization Strategies for the Management of Citrus By-Products. Food Rev Int 2021, 37, 91–120. [CrossRef]
- Andrade, M.A.; Barbosa, C.H.; Shah, M.A.; Ahmad, N.; Vilarinho, F.; Khwaldia, K.; Silva, A.S.; Ramos, F. Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants 2023, 12, 38. [CrossRef]
- Moni Bottu, H.; Mero, A.; Husanu, E.; Tavernier, S.; Pomelli, C.S.; Dewaele, A.; Bernaert, N.; Guazzelli, L.; Brennan, L. The Ability of Deep Eutectic Solvent Systems to Extract Bioactive Compounds from Apple Pomace. Food Chem 2022, 386, 132717. [CrossRef]
- Rashid, R.; Mohd Wani, S.; Manzoor, S.; Masoodi, F.A.; Masarat Dar, M. Green Extraction of Bioactive Compounds from Apple Pomace by Ultrasound Assisted Natural Deep Eutectic Solvent Extraction: Optimisation, Comparison and Bioactivity. Food Chem 2023, 398, 133871. [CrossRef]
- Hu, T.; Wang, W.; Gu, J.; Xia, Z.; Zhang, J.; Wang, B. Research on Apple Object Detection and Localization Method Based on Improved YOLOX and RGB-D Images. Agronomy 2023, 13, 1816. [CrossRef]
- Ahmed, D.-N.; Kumar, K.; Kaur, J.; Rizvi, Q.U.E.H.; Rizvi, H.; Jan, S.; Chauhan, D.; Thakur, P.; Kumar, S. Apple Wastes and By-Products Chemistry, Processing, and Utilization. In Handbook of Fruit Wastes and By-Products 2022; pp. 73–86 ISBN 978-0-367-72474-0.
- Huamán-Castilla, N.L.; Gajardo-Parra, N.; Pérez-Correa, J.R.; Canales, R.I.; Martínez-Cifuentes, M.; Contreras-Contreras, G.; Mariotti-Celis, M.S. Enhanced Polyphenols Recovery from Grape Pomace: A Comparison of Pressurized and Atmospheric Extractions with Deep Eutectic Solvent Aqueous Mixtures. Antioxidants 2023, 12, 1446. [CrossRef]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020, 7. [CrossRef]
- Zhang, X.-J.; Liu, Z.-T.; Chen, X.-Q.; Zhang, T.-T.; Zhang, Y. Deep Eutectic Solvent Combined with Ultrasound Technology: A Promising Integrated Extraction Strategy for Anthocyanins and Polyphenols from Blueberry Pomace. Food Chem 2023, 422, 136224. [CrossRef]
- Manzoor, M.F.; Xu, B.; Khan, S.; Shukat, R.; Ahmad, N.; Imran, M.; Rehman, A.; Karrar, E.; Aadil, R.M.; Korma, S.A. Impact of High-Intensity Thermosonication Treatment on Spinach Juice: Bioactive Compounds, Rheological, Microbial, and Enzymatic Activities. Ultrason Sonochem 2021, 78, 105740. [CrossRef]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as Natural Antioxidants in Cosmetics Applications. J Cosmet Dermatol 2020, 19, 33–37. [CrossRef]
- Manzoor, M.F.; Siddique, R.; Hussain, A.; Ahmad, N.; Rehman, A.; Siddeeg, A.; Alfarga, A.; Alshammari, G.M.; Yahya, M.A. Thermosonication Effect on Bioactive Compounds, Enzymes Activity, Particle Size, Microbial Load, and Sensory Properties of Almond (Prunus Dulcis) Milk. Ultrason Sonochem 2021, 78, 105705. [CrossRef]
- Kumar, N.; Daniloski, D.; Pratibha; Neeraj; D’Cunha, N.M.; Naumovski, N.; Petkoska, A.T. Pomegranate Peel Extract – A Natural Bioactive Addition to Novel Active Edible Packaging. Food Res Int 2022, 156, 111378. [CrossRef]
- Manzoor, M.F.; Hussain, A.; Tazeddinova, D.; Abylgazinova, A.; Xu, B. Assessing the Nutritional-Value-Based Therapeutic Potentials and Non-Destructive Approaches for Mulberry Fruit Assessment: An Overview. Comput Intell Neurosci 2022, 2022, e6531483. [CrossRef]
- Speer, H.; D’Cunha, N.M.; Alexopoulos, N.I.; McKune, A.J.; Naumovski, N. Anthocyanins and Human Health-A Focus on Oxidative Stress, Inflammation and Disease. Antioxidants 2020, 9, 366. [CrossRef]
- Tapia-Quirós, P.; Granados, M.; Sentellas, S.; Saurina, J. Microwave-Assisted Extraction with Natural Deep Eutectic Solvents for Polyphenol Recovery from Agrifood Waste: Mature for Scaling-Up? Sci Total Environ 2024, 912, 168716. [CrossRef]
- Liu, X.-Y.; Ou, H.; Gregersen, H.; Zuo, J. Deep Eutectic Solvent-Based Ultrasound-Assisted Extraction of Polyphenols from Cosmos Sulphureus. J Appl Res Med Arom Plants 2023, 32, 100444. [CrossRef]
- Hong, S.M.; Kamaruddin, A.H.; Nadzir, M.M. Sustainable Ultrasound-Assisted Extraction of Polyphenols from Cinnamomum Cassia Bark Using Hydrophilic Natural Deep Eutectic Solvents. Process Biochem 2023, 132, 323–336. [CrossRef]
- Li, J.; Chen, W.; Niu, D.; Wang, R.; Xu, F.-Y.; Chen, B.-R.; Lin, J.-W.; Tang, Z.-S.; Zeng, X.-A. Efficient and Green Strategy Based on Pulsed Electric Field Coupled with Deep Eutectic Solvents for Recovering Flavonoids and Preparing Flavonoid Aglycones from Noni-Processing Wastes. J Cleaner Prod 2022, 368, 133019. [CrossRef]
- Hernández-Corroto, E.; Boussetta, N.; Marina, M.; García, M.; Vorobiev, E. High Voltage Electrical Discharges Followed by Deep Eutectic Solvents Extraction for the Valorization of Pomegranate Seeds (Punica Granatum L.). Innov Food Sci Emerg Technol 2022, 79, 103055. [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Microwave-Assisted Extraction for Recovery of Polyphenolic Antioxidants from Ripe Mango (Mangifera Indica L.) Peel Using Lactic Acid/Sodium Acetate Deep Eutectic Mixtures. Food Sci Technol Int 2020, 26, 78–92. [CrossRef]
- El Kantar, S.; Rajha, H.N.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Green Extraction of Polyphenols from Grapefruit Peels Using High Voltage Electrical Discharges, Deep Eutectic Solvents and Aqueous Glycerol. Food Chem 2019, 295, 165–171. [CrossRef]
- Panić, M.; Andlar, M.; Tišma, M.; Rezić, T.; Šibalić, D.; Cvjetko Bubalo, M.; Radojčić Redovniković, I. Natural Deep Eutectic Solvent as a Unique Solvent for Valorisation of Orange Peel Waste by the Integrated Biorefinery Approach. Waste Manag 2021, 120, 340–350. [CrossRef]
- Zhang, X.-J.; Liu, Z.-T.; Chen, X.-Q.; Zhang, T.-T.; Zhang, Y. Deep Eutectic Solvent Combined with Ultrasound Technology: A Promising Integrated Extraction Strategy for Anthocyanins and Polyphenols from Blueberry Pomace. Food Chem 2023, 422, 136224. [CrossRef]
- Liu, Y.; Gao, L.; Chen, L.; Zhou, W.; Wang, C.; Ma, L. Exploring Carbohydrate Extraction from Biomass Using Deep Eutectic Solvents: Factors and Mechanisms. iScience 2023, 26, 107671. [CrossRef]
- Antony, A.; Thottiam, V.; thottiam Vasudevan, R. Comprehensive Review on Ultrasound and Microwave Extraction of Pectin from Agro-Industrial Wastes. Drug Invent Today 2018, 10, 2773–2782.
- Martins, L.C.; Monteiro, Ca.C.; Semedo, P.M.; Sá-Correia, I. Valorisation of Pectin-Rich Agro-Industrial Residues by Yeasts: Potential and Challenges. Appl Microbiol Biotechnol 2020, 104, 6527–6547.
- Waldbauer, K.; McKinnon, R.; Kopp, B. Apple Pomace as Potential Source of Natural Active Compounds. Planta Med 2017, 83, 994–1010. [CrossRef]
- Nagel, A.; Winkler, C.; Carle, Re.; Endress, H.-U. Processes Involving Selective Precipitation for the Recovery of Purified Pectins from Mango Peel. Carbohydr Polym 2017, 174, 1144–1155. [CrossRef]
- Moorthy, I.G.; Maran, J.P.; Surya, S.M.@; Naganyashree, S.; Shivamathi, C.S. Response Surface Optimization of Ultrasound Assisted Extraction of Pectin from Pomegranate Peel. Int J Biol Macromol 2015, 72, 1323–1328. [CrossRef]
- Yuliarti, O.; Goh, K.K.T.; Matia-Merino, L.; Mawson, J.; Brennan, C. Extraction and Characterisation of Pomace Pectin from Gold Kiwifruit (Actinidia Chinensis). Food Chem 2015, 187, 290–296. [CrossRef]
- Zhang, W.; Zeng, G.; Pan, Y.; Chen, W.; Huang, W.; Chen, H.; Li, Y. Properties of Soluble Dietary Fiber-Polysaccharide from Papaya Peel Obtained through Alkaline or Ultrasound-Assisted Alkaline Extraction. Carbohydr Polym 2017, 172, 102–112. [CrossRef]
- Viganó, J.; Zabot, G.; Martínez, J. Supercritical Fluid and Pressurized Liquid Extractions of Phytonutrients from Passion Fruit By-Products: Economic Evaluation of Sequential Multi-Stage and Single-Stage Processes. J Supercrit Fluids 2016, 122. [CrossRef]
- Xu, S.-Y.; Liu, J.-P.; Huang, X.; Du, L.-P.; Shi, F.-L.; Dong, R.; Huang, X.-T.; Zheng, K.; Liu, Y.; Cheong, K.-L. Ultrasonic-Microwave Assisted Extraction, Characterization and Biological Activity of Pectin from Jackfruit Peel. LWT 2018, 90, 577–582. [CrossRef]
- Hosseini, S.S.; Khodaiyan, F.; Kazemi, M.; Najari, Z. Optimization and Characterization of Pectin Extracted from Sour Orange Peel by Ultrasound Assisted Method. Int J Biol Macromol 2019, 125, 621–629. [CrossRef]
- Spinei, M.; Oroian, M. Microwave-Assisted Extraction of Pectin from Grape Pomace. Sci Rep 2022, 12, 12722.
- Ping, L.; Brosse, N.; Sannigrahi, P.; Ragauskas, A. Evaluation of Grape Stalks as a Bioresource. Ind Crops Prod 2011, 33, 200–204. [CrossRef]
- Vallejo, M.; Cordeiro, R.; Dias, P.; Monteiro de Moura, C.S.; Henriques, M.; Seabra, I.; Malça, C.; Morouço, P. Recovery and Evaluation of Cellulose from Agroindustrial Residues of Corn, Grape, Pomegranate, Strawberry-Tree Fruit and Fava. Biores Bioproc 2021, 8. [CrossRef]
- Husanu, E.; Mero, A.; Gonzalez, J.; Mezzetta, A. Exploiting Deep Eutectic Solvents and Ionic Liquids for the Valorization of Chestnut Shell Waste. ACS Sust Chem Eng 2020, 8, 18386–18399. [CrossRef]
- Lapo, B.; Bou, J.J.; Hoyo, J.; Carrillo, M.; Peña, K.; Tzanov, T.; Sastre, A.M. A Potential Lignocellulosic Biomass Based on Banana Waste for Critical Rare Earths Recovery from Aqueous Solutions. Environ Pollut 2020, 264, 114409. [CrossRef]
- Bicu, I.; Mustata, F. Cellulose Extraction from Orange Peel Using Sulfite Digestion Reagents. Biores Technol 2011, 102, 10013–10019. [CrossRef]
- Omran, A.A.B.; Mohammed, A.A.B.A.; Sapuan, S.M.; Ilyas, R.A.; Asyraf, M.R.M.; Rahimian Koloor, S.S.; Petrů, M. Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers 2021, 13, 231. [CrossRef]
- Andreeva, A.P.; Budenkova, E.; Babich, O.; Sukhikh, S.; Dolganyuk, V.; Michaud, P.; Ivanova, S. Influence of Carbohydrate Additives on the Growth Rate of Microalgae Biomass with an Increased Carbohydrate Content. Marine Drugs 2021, 19, 381. [CrossRef]
- Lovegrove, A.; Edwards, C.H.; De Noni, I.; Patel, H.; El, S.N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.J.; et al. Role of Polysaccharides in Food, Digestion, and Health. Crit Rev Food Sci Nutr 2017, 57, 237–253. [CrossRef]
- Świątek, K.; Gaag, S.; Klier, A.; Kruse, A.; Sauer, J.; Steinbach, D. Acid Hydrolysis of Lignocellulosic Biomass: Sugars and Furfurals Formation. Catalysts 2020, 10, 437. [CrossRef]
- Münster, L.; Fojtů, M.; Capáková, Z.; Muchová, M.; Musilová, L.; Vaculovič, T.; Balvan, J.; Kuřitka, I.; Masařík, M.; Vícha, J. Oxidized Polysaccharides for Anticancer-Drug Delivery: What Is the Role of Structure? Carbohydrate Polymers 2021, 257, 117562. [CrossRef]
- Elgharbawy, A.; Hayyan, A.; Hayyan, M.; Mirghani, M.; Salleh, H.; Rashid, S.; Ngoh, G.; Shan Qin, L.; Mohd Nor, M.R.; Nor, M.; et al. Natural Deep Eutectic Solvent-Assisted Pectin Extraction from Pomelo Peel Using Sonoreactor: Experimental Optimization Approach. Processes 2019, 7. [CrossRef]
- Chen, M.; Lahaye, M. Natural Deep Eutectic Solvents Pretreatment as an Aid for Pectin Extraction from Apple Pomace. Food Hydrocoll 2021, 115, 106601. [CrossRef]
- Jalal, H.; Pal, M.A.; Ahmad, S.R.; RAther, M.; Andrabi, M.; Hamdani, S. Physico-Chemical and Functional Properties of Pomegranate Peel and Seed Powder. Pharma Innov J 2018, 7, 1127–1131.
- Rowayshed, G.; Emad, A.; Mohamed; Aboulfadl, M. Nutritional and Chemical Evaluation for Pomegranate (Punica Granatum L.) Fruit Peel and Seeds Powders By Products. Middle East J Appl Sci 2013, 3(4), 169-179.
- Koochi, Z.H.; Jahromi, K.G.; Kavoosi, G.; Ramezanian, A. Fortification of Chlorella Vulgaris with Citrus Peel Amino Acid for Improvement Biomass and Protein Quality. Biotech Rep 2023, 39, e00806. [CrossRef]
- Rodríguez-Llorente, D.; Cañada-Barcala, A.; Álvarez-Torrellas, S.; Águeda, V.I.; García, J.; Larriba, Ma. A Review of the Use of Eutectic Solvents, Terpenes and Terpenoids in Liquid–Liquid Extraction Processes. Processes 2020, 8, 1220. [CrossRef]
- Manurung, R.; Hutauruk, G.; Arief, A. Vitamin E Extraction from Red Palm Biodiesel by Using K2CO3 Based Deep Eutectic Solvent with Glycerol as Hydrogen Bond Donor. In Human-Dedicated Sustainable Product and Process Design: Materials, Resources, and Energy AIP Conf. Proc 2018, 1977, p. 020011.
- Fakayode, O.A.; Aboagarib, E.A.A.; Yan, D.; Li, M.; Wahia, H.; Mustapha, A.T.; Zhou, C.; Ma, H. Novel Two-Pot Approach Ultrasonication and Deep Eutectic Solvent Pretreatments for Watermelon Rind Delignification: Parametric Screening and Optimization via Response Surface Methodology. Energy 2020, 203, 117872. [CrossRef]
- Gómez-Urios, C.; Viñas-Ospino, A.; Puchades-Colera, P.; López-Malo, D.; Frígola, A.; Esteve, M.J.; Blesa, J. Sustainable Development and Storage Stability of Orange By-Products Extract Using Natural Deep Eutectic Solvents. Foods 2022, 11, 2457. [CrossRef]
- Jokic, S.; Šafranko, S.; Jakovljević Kovač, M.; Cikoš, A.-M.; Kajić, N.; Kolarević, F.; Babic, J.; Molnar, M. Sustainable Green Procedure for Extraction of Hesperidin from Selected Croatian Mandarin Peels. Processes 2019, 7, 469. [CrossRef]
- Kalogiouri, N.; Palaiologou, E.; Papadakis, E.-N.; Makris, D.; Biliaderis, C.; Mourtzinos, I. Insights on the Impact of Deep Eutectic Solvents on the Composition of the Extracts from Lemon (Citrus Limon L.) Peels Analyzed by a Novel RP-LC–QTOF-MS/MS Method. Eur Food Res Technol 2022, 248. [CrossRef]
- Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-Dependent Extraction of Flavonoids from Citrus Peel Waste Using a Tailor-Made Deep Eutectic Solvent. Food Chem 2019, 297, 124970. [CrossRef]
- El Kantar, S.; Rajha, H.N.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Green Extraction of Polyphenols from Grapefruit Peels Using High Voltage Electrical Discharges, Deep Eutectic Solvents and Aqueous Glycerol. Food Chem 2019, 295, 165–171. [CrossRef]
- Rashid, R.; Mohd Wani, S.; Manzoor, S.; Masoodi, F.A.; Masarat Dar, M. Green Extraction of Bioactive Compounds from Apple Pomace by Ultrasound Assisted Natural Deep Eutectic Solvent Extraction: Optimisation, Comparison and Bioactivity. Food Chem 2023, 398, 133871. [CrossRef]
- Moni Bottu, H.; Mero, A.; Husanu, E.; Tavernier, S.; Pomelli, C.S.; Dewaele, A.; Bernaert, N.; Guazzelli, L.; Brennan, L. The Ability of Deep Eutectic Solvent Systems to Extract Bioactive Compounds from Apple Pomace. Food Chem 2022, 386, 132717. [CrossRef]
- Panić, M.; Radić Stojković, M.; Kraljić, K.; Škevin, D.; Radojcic Redovnikovic, I.; Srček, V.; Radošević, K. Ready-to-Use Green Polyphenolic Extracts from Food by-Products. Food Chem 2019, 283. [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojcic Redovnikovic, I. Enabling Technologies for the Extraction of Grape-Pomace Anthocyanins Using Natural Deep Eutectic Solvents in up-to-Half-Litre Batches Extraction of Grape-Pomace Anthocyanins Using NADES. Food Chem 2019, 300, 125185. [CrossRef]
- Punzo, A.; Porru, E.; Silla, A.; Simoni, P.; Galletti, P.; Roda, A.; Tagliavini, E.; Samorì, C.; Caliceti, C. Grape Pomace for Topical Application: Green NaDES Sustainable Extraction, Skin Permeation Studies, Antioxidant and Anti-Inflammatory Activities Characterization in 3D Human Keratinocytes. Biomolecules 2021, 11, 1181. [CrossRef]
- Panić, M.; Gunjević, V.; Radošević, K.; Cvjetko Bubalo, M.; Ganić, K.K.; Redovniković, I.R. COSMOtherm as an Effective Tool for Selection of Deep Eutectic Solvents Based Ready-To-Use Extracts from Graševina Grape Pomace. Molecules 2021, 26, 4722. [CrossRef]
- Huamán-Castilla, N.L.; Gajardo-Parra, N.; Pérez-Correa, J.R.; Canales, R.I.; Martínez-Cifuentes, M.; Contreras-Contreras, G.; Mariotti-Celis, M.S. Enhanced Polyphenols Recovery from Grape Pomace: A Comparison of Pressurized and Atmospheric Extractions with Deep Eutectic Solvent Aqueous Mixtures. Antioxidants 2023, 12, 1446. [CrossRef]
- Dabetić, N.; Todorović, V.; Panić, M.; Radojčić Redovniković, I.; Šobajić, S. Impact of Deep Eutectic Solvents on Extraction of Polyphenols from Grape Seeds and Skin. Appl Sci 2020, 10. [CrossRef]
- Plaza, M.; Domínguez-Rodríguez, G.; Sahelices, C.; Marina, M. A Sustainable Approach for Extracting Non-Extractable Phenolic Compounds from Mangosteen Peel Using Ultrasound-Assisted Extraction and Natural Deep Eutectic Solvents. Appl Sci 2021, 11, 5625. [CrossRef]
- Rajha, H.; Mhanna, T.; El Kantar, S.; el Khoury, A.; Louka, N.; G, R.; Maroun, R. Innovative Process of Polyphenol Recovery from Pomegranate Peels by Combining Green Deep Eutectic Solvents and a New Infrared Technology. LWT 2019, 111. [CrossRef]
- Kyriakidou, A.; Makris, D.P.; Lazaridou, A.; Biliaderis, C.G.; Mourtzinos, I. Physical Properties of Chitosan Films Containing Pomegranate Peel Extracts Obtained by Deep Eutectic Solvents. Foods 2021, 10, 1262. [CrossRef]
- Kim, H.J.; Yoon, K.Y. Optimization of Ultrasound-Assisted Deep Eutectic Solvent Extraction of Bioactive Compounds from Pomegranate Peel Using Response Surface Methodology. Food Sci Biotechnol 2023, 32, 1851–1860. [CrossRef]
- Benvenutti, L.; Sanchez-Camargo, A. del P.; Zielinski, A.A.F.; Ferreira, S.R.S. NADES as Potential Solvents for Anthocyanin and Pectin Extraction from Myrciaria Cauliflora Fruit By-Product: In Silico and Experimental Approaches for Solvent Selection. J Mol Liq 2020, 315, 113761. [CrossRef]
- Grillo, G.; Gunjević, V.; Radošević, K.; Redovniković, I.R.; Cravotto, G. Deep Eutectic Solvents and Nonconventional Technologies for Blueberry-Peel Extraction: Kinetics, Anthocyanin Stability, and Antiproliferative Activity. Antioxidants 2020, 9, 1069. [CrossRef]
- Fu, X.; Wang, D.; Belwal, T.; Xie, J.; Xu, Y.; Li, L.; Zou, L.; Zhang, L.; Luo, Z. Natural Deep Eutectic Solvent Enhanced Pulse-Ultrasonication Assisted Extraction as a Multi-Stability Protective and Efficient Green Strategy to Extract Anthocyanin from Blueberry Pomace. LWT 2021, 144, 111220. [CrossRef]
- Xue, H.; Tan, J.; Li, Q.; Tang, J.; Cai, X. Ultrasound-Assisted Deep Eutectic Solvent Extraction of Anthocyanins from Blueberry Wine Residues: Optimization, Identification, and HepG2 Antitumor Activity. Molecules 2020, 25, 5456. [CrossRef]
- Alrugaibah, M.; Yagiz, Y.; Gu, L. Use Natural Deep Eutectic Solvents as Efficient Green Reagents to Extract Procyanidins and Anthocyanins from Cranberry Pomace and Predictive Modeling by RSM and Artificial Neural Networking. Sep Purif Technol 2021, 255, 117720. [CrossRef]
- Vázquez-González, M.; Fernández-Prior, Á.; Bermúdez Oria, A.; Rodríguez-Juan, E.M.; Pérez-Rubio, A.G.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Utilization of Strawberry and Raspberry Waste for the Extraction of Bioactive Compounds by Deep Eutectic Solvents. LWT 2020, 130, 109645. [CrossRef]
- Lin, S.; Meng, X.; Tan, C.; Tong, Y.; Wan, M.; Wang, M.; Zhao, Y.; Deng, H.; Kong, Y.; Ma, Y. Composition and Antioxidant Activity of Anthocyanins from Aronia Melanocarpa Extracted Using an Ultrasonic-Microwave-Assisted Natural Deep Eutectic Solvent Extraction Method. Ultrason Sonochem 2022, 89, 106102. [CrossRef]
- Popovic, B.M.; Micic, N.; Potkonjak, A.; Blagojevic, B.; Pavlovic, K.; Milanov, D.; Juric, T. Novel Extraction of Polyphenols from Sour Cherry Pomace Using Natural Deep Eutectic Solvents - Ultrafast Microwave-Assisted NADES Preparation and Extraction. Food Chem 2022, 366, 130562. [CrossRef]
- Gómez, A.V.; Tadini, C.C.; Biswas, A.; Buttrum, M.; Kim, S.; Boddu, V.M.; Cheng, H.N. Microwave-Assisted Extraction of Soluble Sugars from Banana Puree with Natural Deep Eutectic Solvents (NADES). LWT 2019, 107, 79–88. [CrossRef]
- Chen, X.; Zhang, Q.; Yu, Q.; Chen, L.; Sun, Y.; Wang, Z.; Yuan, Z. Depolymerization of Holocellulose from Chinese Herb Residues by the Mixture of Lignin-Derived Deep Eutectic Solvent with Water. Carbohydrate Polym 2020, 248, 116793. [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Deep Eutectic Solvent-Based Extraction of Polyphenolic Antioxidants from Onion (Allium Cepa L.) Peel. J Sci Food Agric 2019, 99, 1969–1979. [CrossRef]
- Dai, Y.; Row, K. Application of Natural Deep Eutectic Solvents in the Extraction of Quercetin from Vegetables. Molecules 2019, 24, 2300. [CrossRef]
- Cao, Y.; Song, Z.; Dong, C.; Ni, W.; Xin, K.; Yu, Q.; Han, L. Green Ultrasound-Assisted Natural Deep Eutectic Solvent Extraction of Phenolic Compounds from Waste Broccoli Leaves: Optimization, Identification, Biological Activity, and Structural Characterization. LWT 2023, 190, 115407. [CrossRef]
- Liu, Y.; Li, J.; Fu, R.; Zhang, L.; Wang, D.; Wang, S. Enhanced Extraction of Natural Pigments from Curcuma Longa L. Using Natural Deep Eutectic Solvents. Ind Crops Prod 2019, 140, 111620. [CrossRef]
- Hernández-Aguirre, O.A.; Muro, C.; Hernández-Acosta, E.; Alvarado, Y.; Díaz-Nava, M. del C. Extraction and Stabilization of Betalains from Beetroot (Beta Vulgaris) Wastes Using Deep Eutectic Solvents. Molecules 2021, 26, 6342. [CrossRef]
- Vlachoudi, D.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E. Enhanced Extraction of Carotenoids from Tomato Industry Waste Using Menthol/Fatty Acid Deep Eutectic Solvent. Waste 2023, 1, 977–992. [CrossRef]
- Friedman, M.; Huang, V.; Quiambao, Q.; Noritake, S.; Liu, J.; Kwon, O.; Chintalapati, S.; Young, J.; Levin, C.E.; Tam, C.; et al. Potato Peels and Their Bioactive Glycoalkaloids and Phenolic Compounds Inhibit the Growth of Pathogenic Trichomonads. J Agric Food Chem 2018, 66, 7942–7947. [CrossRef]
- Palos-Hernández, A.; Gutiérrez Fernández, M. Y.; Escuadra Burrieza, J.; Pérez-Iglesias, J.L.; González-Paramás, A.M. Obtaining green extracts rich in phenolic compounds from underexploited food by-products using natural deep eutectic solvents. Opportunities and challenges. Sust Chem Pharm 2022, 29, 100773. [CrossRef]
- Toprak, P.; Ünlü, A.E. Screening of Natural Deep Eutectic Solvents for the Recovery of Valuable Phenolics From Waste of Shalgam Juice Process. Turkish J Agric Food Sci Technol 2023, 11, 1784–1790. [CrossRef]
- Farajzadeh, M.A.; Shahedi Hojghan, A.; Afshar Mogaddam, M.R. Development of a New Temperature-Controlled Liquid Phase Microextraction Using Deep Eutectic Solvent for Extraction and Preconcentration of Diazinon, Metalaxyl, Bromopropylate, Oxadiazon, and Fenazaquin Pesticides from Fruit Juice and Vegetable Samples Followed by Gas Chromatography-Flame Ionization Detection. J Food Comp Anal 2018, 66, 90–97. [CrossRef]
- Ji, Q.; Yu, X.; Yagoub, A.E.-G.A.; Chen, L.; Zhou, C. Efficient Removal of Lignin from Vegetable Wastes by Ultrasonic and Microwave-Assisted Treatment with Ternary Deep Eutectic Solvent. Ind Crops Prod 2020, 149, 112357. [CrossRef]
- Thangaraju, S.; Pulivarthi, M.; Venkatachalapathy, N. Waste from Oil-Seed Industry: A Sustainable Approach. In; 2020; pp. 177–190 ISBN 9789811589669.
- García, A.; Rodríguez-Juan, E.; Rodríguez-Gutiérrez, G.; Rios, J.J.; Fernández-Bolaños, J. Extraction of Phenolic Compounds from Virgin Olive Oil by Deep Eutectic Solvents (DESs). Food Chem 2016, 197, 554–561. [CrossRef]
- Chanioti, S.; Tzia, C. Extraction of Phenolic Compounds from Olive Pomace by Using Natural Deep Eutectic Solvents and Innovative Extraction Techniques. Innov Food Sci Emerg Technol 2018, 48, 228–239. [CrossRef]
- Chanioti, S.; Siamandoura, P.; Tzia, C. Evaluation of Extracts Prepared from Olive Oil By-Products Using Microwave-Assisted Enzymatic Extraction: Effect of Encapsulation on the Stability of Final Products. Waste Biomass Valor 2016, 7. [CrossRef]
- Fernandez-Bolanos, J.; Rodriguez, G.; Rodríguez Arcos, R.; Guillen, R.; Jiménez, A. Extraction of Interesting Organic Compounds from Olive Oil Waste. Grasas Aceites 2006, 57. [CrossRef]
- Yao, X.-H.; Zhang, D.-Y.; Duan, M.-H.; Cui, Q.; Xu, W.-J.; Luo, M.; Li, C.-Y.; Zu, Y.-G.; Fu, Y.-J. Preparation and Determination of Phenolic Compounds from Pyrola Incarnata Fisch. with a Green Polyols Based-Deep Eutectic Solvent. Sep Pur Technol 2015, 149, 116–123. [CrossRef]
- Cvjetko Bubalo, M.; Ćurko, N.; Tomašević, M.; Kovačević Ganić, K.; Radojčić Redovniković, I. Green Extraction of Grape Skin Phenolics by Using Deep Eutectic Solvents. Food Chem 2016, 200, 159–166. [CrossRef]
- Chanioti, S.; Tzia, C. Optimization of Ultrasound-Assisted Extraction of Oil from Olive Pomace Using Response Surface Technology: Oil Recovery, Unsaponifiable Matter, Total Phenol Content and Antioxidant Activity. LWT - Food Sci Technol 2017, 79, 178–189. [CrossRef]
- Barrajón-Catalán, E.; Taamalli, A.; Quirantes-Piné, R.; Roldan-Segura, C.; Arráez-Román, D.; Segura-Carretero, A.; Micol, V.; Zarrouk, M. Differential Metabolomic Analysis of the Potential Antiproliferative Mechanism of Olive Leaf Extract on the JIMT-1 Breast Cancer Cell Line. J Pharm Biomed Anal 2015, 105, 156–162. [CrossRef]
- Fu, S.; Arráez-Roman, D.; Segura-Carretero, A.; Menéndez, J.A.; Menéndez-Gutiérrez, M.P.; Micol, V.; Fernández-Gutiérrez, A. Qualitative Screening of Phenolic Compounds in Olive Leaf Extracts by Hyphenated Liquid Chromatography and Preliminary Evaluation of Cytotoxic Activity against Human Breast Cancer Cells. Anal Bioanal Chem 2010, 397, 643–654. [CrossRef]
- Lee, O.-H.; Lee, B.-Y. Antioxidant and Antimicrobial Activities of Individual and Combined Phenolics in Olea Europaea Leaf Extract. Bioresour Technol 2010, 101, 3751–3754. [CrossRef]
- Micol, V.; Caturla, N.; Pérez-Fons, L.; Más, V.; Pérez, L.; Estepa, A. The Olive Leaf Extract Exhibits Antiviral Activity against Viral Haemorrhagic Septicaemia Rhabdovirus (VHSV). Antiviral Res 2005, 66, 129–136. [CrossRef]
- Susalit, E.; Agus, N.; Effendi, I.; Tjandrawinata, R.R.; Nofiarny, D.; Perrinjaquet-Moccetti, T.; Verbruggen, M. Olive (Olea Europaea) Leaf Extract Effective in Patients with Stage-1 Hypertension: Comparison with Captopril. Phytomedicine 2011, 18, 251–258. [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Zarrouk, M.; Valverde, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. The Occurrence and Bioactivity of Polyphenols in Tunisian Olive Products and By-Products: A Review. J Food Sci 2012, 77, R83-92. [CrossRef]
- Alanon, M.; Ivanović, M.; Caravaca, A.M.G.; Arráez-Román, D.; Segura Carretero, A. Choline Chloride Derivative-Based Deep Eutectic Liquids as Novel Green Alternative Solvents for Extraction of Phenolic Compounds from Olive Leaf. Arab J Chem 2018, 13. [CrossRef]
- Mora, L.; Toldrá-Reig, F.; Prates, J.A.M.; Toldrá, F. Cattle Byproducts. In Byproducts from Agriculture and Fisheries; John Wiley & Sons, Ltd, 2019; pp. 43–55 ISBN 978-1-119-38395-6.
- Chang, C.-Y.; Wu, K.-C.; Chiang, S.-H. Antioxidant Properties and Protein Compositions of Porcine Haemoglobin Hydrolysates. Food Chem 2007, 100, 1537–1543. [CrossRef]
- Bhat, Z.F.; Kumar, S.; Bhat, H.F. Antihypertensive Peptides of Animal Origin: A Review. Crit Rev Food Sci Nutr 2017, 57, 566–578. [CrossRef]
- Nedjar-Arroume, N.; Dubois-Delval, V.; Adje, E.Y.; Traisnel, J.; Krier, F.; Mary, P.; Kouach, M.; Briand, G.; Guillochon, D. Bovine Hemoglobin: An Attractive Source of Antibacterial Peptides. Peptides 2008, 29, 969–977. [CrossRef]
- Etxeberria, A.E.; Uranga, J.; Guerrero, P.; De la Caba, K. Development of Active Gelatin Films by Means of Valorisation of Food Processing Waste: A Review. Food Hydrocoll 2017, 68, 192–198. [CrossRef]
- Liu, R.; Xing, L.; Fu, Q.; Zhou, G.-H.; Zhang, W.-G. A Review of Antioxidant Peptides Derived from Meat Muscle and By-Products. Antioxidants 2016, 5, 32. [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.-N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J Nat Prod 2018, 81, 679–690. [CrossRef]
- López, R.; D’Amato, R.; Trabalza-Marinucci, M.; Regni, L.; Proetti, P.; Maratta, A.; Cerutti, S.; Pacheco, P. Green and Simple Extraction of Free Seleno-Amino Acids from Powdered and Lyophilized Milk Samples with Natural Deep Eutectic Solvents. Food Chem 2020, 326, 126965. [CrossRef]
- Balaraman, H.B.; Rathnasamy, S.K. High Selective Purification of IgY from Quail Egg: Process Design and Quantification of Deep Eutectic Solvent Based Ultrasound Assisted Liquid Phase Microextraction Coupled with Preparative Chromatography. Int J Biol Macromol 2020, 146, 253–262. [CrossRef]
- Ozogul, F.; Cagalj, M.; Šimat, V.; Ozogul, Y.; Tkaczewska, J.; Hassoun, A.; Kaddour, A.A.; Kuley, E.; Rathod, N.B.; Phadke, G.G. Recent Developments in Valorisation of Bioactive Ingredients in Discard/Seafood Processing by-Products. Trends Food Sci Technol 2021, 116, 559–582. [CrossRef]
- Rodrigues, L.; Pereira, C.; Leonardo, I.; Fernández, N.; Gaspar, F.; Silva, J.; Reis, R.L.; Duarte, A.; Paiva, A.; Matias, A. Terpene-Based Natural Deep Eutectic Systems as Efficient Solvents To Recover Astaxanthin from Brown Crab Shell Residues. ACS Sust Chem Eng 2020, 8. [CrossRef]
- Elvevoll, E.O.; James, D. The Emerging Importance of Dietary Lipids, Quantity and Quality, in the Global Disease Burden: The Potential of Aquatic Resources. Nutr Health 2001, 15, 155–167. [CrossRef]
- Liu, Y.; Li, J.; Wang, D. Yang, F.; Zhang, L.; Ji, S.; Wang, S. Enhanced Extraction of Hydroxyapatite from Bighead Carp (Aristichthys Nobilis) Scales Using Deep Eutectic Solvent. J Food Sci 2020, 85, 150–156, doi.org:10.1111/1750-3841.14971.
- Huang, W.C.; Zhao, D.; Guo, N.; Xue, C.; Mao X. Green and Facile Production of Chitin from Crustacean Shells Using a Natural Deep Eutectic Solvent. J Agric Food Chem 2018, 66, 11897–11901. [CrossRef]
- Lin, Z.; Jiao, G.; Zhang, J.; Celli, G.B.; Brooks, M.S.L. Optimization of Protein Extraction from Bamboo Shoots and Processing Wastes Using Deep Eutectic Solvents in a Biorefinery Approach. Biomass Convers Biorefinery 2020, 11, 2763-2774. [CrossRef]
- Amakura, Y., Yoshimura, M., Sugimoto, N., Yamazaki, T., Yoshida, T. Marker constituents of the natural antioxidant eucalyptus leaf extract for the evaluation of food additives. Biosci Biotechnol Biochem 2009, 73, 5 1060–51065. [CrossRef]
- Gullón, B.; Muñiz-Mouro, A.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Green Approaches for the Extraction of Antioxidants from Eucalyptus Leaves. Ind Crops Prod 2019, 138, 111473. [CrossRef]
- Yang, M.; Cao, J.; Cao, F.; Lu, C.; Su, E. Efficient Extraction of Bioactive Flavonoids from Ginkgo Biloba Leaves Using Deep Eutectic Solvent/Water Mixture as Green Media. Chem Biochem Eng Q 2018, 32, 315–324. [CrossRef]
- Noor-E-Tabassum; Das, R.; Lami, M.S; Chakraborty, A.J.; Mitra, S.; Tallei, T.E.; Idroes, R.; Mohamed, A.A.R.; Hossain, J.; Dhama, K.; Mostafa-Hedeab, G.; Emran, T.B. Ginkgo biloba: A Treasure of Functional Phytochemicals with Multimedicinal Applications. Evid-Based Complement Alternat Med, 2022, 2022, 8288818. [CrossRef]
- Belwal, R.S.R.T.; Giri, L.; Amit, B.; Tariq, M.; Kewlani, P. Ginkgo Biloba. In Nonvitamin and Nonmineral Nutritional Supplements. Editor(s): Nabavi, S.M.; Sanches Silva, A. Academic Press, 2019, 241-250. [CrossRef]
- Chan, P.C.; Xia, Q.; Fu, P.P. Ginkgo biloba leave extract: biological, medicinal, and toxicological effects. J Environ Sci Health-Part C: Environ Carcinog Ecotox Rev, 2007, 25, 211-244. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
