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Abstract: This study assesses the applicability of different-resolution multispectral remote sensing images for
mapping and estimating the aboveground biomass (AGB) of Carpobrotus edulis, a prominent invasive species
in European coastal areas. The performance of three sets of multispectral images with different resolutions was
compared: (i) 2.5 cm Ground Sample Distance (GSD), 5 cm GSD and 10 cm GSD images. The images were
classified using the supervised classification algorithm Random Forest and later improved applying a sieve
filter. The results show that the three tested image resolutions allow constructing reliable coverage maps of C.
edulis, with Overall Accuracy values of 89%, 85% and 88% for the classification of the 2.5 cm, 5 cm and 10 cm
GSD images, respectively. Samples were also collected, dried and weighed to estimate AGB using the
relationship between the Dry Weight and Vegetation Indices (VI). The regressions were evaluated based on
their R? and Normalised RMSE. The best-performing VI-DW regression models achieved: R2=0.87 and NRMSE
=0.09 for the 2.5 cm resolution; R2=0.77 and NRMSE = 0.12 for the 5 cm resolution; and, R2= 0.64 and NRMSE
= 0.15 for the 10 cm resolution. C. edulis area and total AGB were: 3441.10 m? and 28,327.1 kg (with a Relative
Error (RE) = 0.08), for the 2.5 cm resolution; 3070.04 m? and 29,170.8 kg (RE = 0.08), for the 5 cm resolution; and,
2305.06 m? and 22,135.7 kg (RE = 0.11), for the 10 cm resolution. Differences were analysed in detail, spatially,
to determine their causes. Final analyses suggest that, for C. edulis, multispectral imagery of up to 5 cm GSD is
adequate for the estimation of the species’ distribution and biomass.

Keywords: Carpobrotus edulis; unoccupied aerial vehicle; above-ground biomass; GIS; QGIS;
landcover classification

1. Introduction

In the ever-evolving field of remote sensing (RS), the selection of the appropriate scale to
investigate an object plays a central role in the accuracy and relevance of information, as geographical
phenomena, distributions, and processes are generally scale-dependent [1]. As new sensors and
platforms are developed through new technological advancements, from aeroplanes to drones as
observation platforms, from panchromatic to hyperspectral sensors, an RS study overall effectiveness
is still strongly related to its images” Ground Sample Distance (GSD). There is, however, a trade-off
between efficiency and accuracy, which are usually inversely proportional, with accuracy depending
on image spatial and spectral resolutions, and with high resolutions liked to smaller areas.

Many studies use information from small areas, obtained with high-resolution sensors, to
extrapolate the results to more extensive areas surveyed with lower-resolution sensors [2-4]. Even
though good results can be achieved this way, these studies do not consider the scale effect, i.e. they
do not address that, for a given area and object of study, there should be an optimum scale for
monitoring [5].

Remote sensing techniques constitute a valuable tool for the management of invasive species.
Unoccupied Aerial Systems (UAS) equipped with multispectral sensors have been increasingly used
to identify and monitor different invasive species in many ecosystems, and their application can be
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considered a well-established technique [6-9]. Adding to that, multispectral UAS have also gained
importance in commercial agriculture, where vegetation indices (VI) are used for crop health
assessment and yield estimation [10-13]. Some recent studies of natural habitats have combined a
species identification methodology with yield estimations to assess the vegetation’s Above-Ground
Biomass (AGB) using multi- or hyperspectral UAS [14,15]. The measurement of AGB of invasive
species can play a central role in the planning and execution of removal campaigns.

Original from South Africa, Carpobrotus edulis is a prominent invasive species in Europe, with its
genus Carpobrotus, having the largest number of records of control actions in Mediterranean countries
[16]. Remote-sensing methods are an obvious choice to facilitate its monitoring and management.
This article examines three sets of multispectral images with different spatial resolutions, specifically
focusing on the impact each resolution has on the estimation of C. edulis AGB. Data processing,
classification algorithms, and the subsequent implications for AGB estimates accuracies were
evaluated to gain insights into resolution impacts and improve decision making process on
monitoring and removal campaigns.

2. Study Area

The study area was part of the Parque Natural do Litoral Norte (PNLN), administered by the
national Nature and Forest Conservation Institute (Instituto da Conservacao da Natureza e das
Florestas — ICNF) (Figure 1). The park spreads along 16km of the coast, located between the Neiva
estuary (41°36'46.56"N, 8°48'32.55"W) and the south border of Apulia (41°28'10.68"N, 8°46'31.30"0),
extending 5 km offshore into the ocean. It covers a total of 8887 ha, of which 7653 ha are marine areas.
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Figure 1. Location of study area (red) in Iberian Peninsula (a); study area (b).

The PNLN was created to protect the littoral of Esposende, preserve its natural resources and
elements, and promote a rational use of the site. With its mainland consisting essentially of a strip of
sandy shores, the park houses 15 different habitats described in the Habitat Directive, four of which
being marked as priority habitats: 1150 - Coastal lagoons, 2130 - Fixed coastal dunes with herbaceous
vegetation (grey dunes), 2270 - Wooded dunes with Pinus pinea and/or Pinus pinaster, and 91EQ -
Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae).

Almost all in-land park terrain is located less than 10 m above mean sea level, with only some
dunes between the 10 and 20 m high. There are 240 different vegetation species identified on the
NLNP, most of them native to the north Iberic littoral, including some endangered species. This
native vegetation is vital for preserving the morphological and biotic characteristics of the ecosystems
[17]. However, like many other coastal environments, the dunes of the Cavado Estuary suffer not
only from erosion risks but also from the constant pressure of climate change, urbanisation, recreation
trampling and invasive species [18]. Twelve invasive species were identified within the flora, with
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the most prominent ones considered the Acacia longifolia and Carpobrotus edulis, which pose significant
pressure on the dunar habitats [19].

3. Materials and Methods

This study was divided into four phases: In situ work (section 3.1), Laboratory Work (section
3.2), Imagery Processing (section 3.3), and C. edulis area and biomass estimation (section 3.4).

3.1. In Situ Work

The in-situ work was developed as follows: (i) marking of Ground Control Points, (ii) Placement
of quadrats for sampling delimitation, and (iii) capture of aerial images.

Ground Control Points

Ground Control Points (GCP) were strategically distributed over the study area and marked
with spray paint. These points were georeferenced with a GNSS receiver Emlid Reach M2 and a
Novatel antenna (Novatel GPS-702-GG) in Real Time Kinematic (RTK) mode, with corrections
from RENEP, the Portuguese CORS (Continuously Operating Reference Station) network, and
later used to enhance the orthomosaic geometry and geolocation precision during imagery
processing.

Sample quadrats

Thirty 50x50 cm? quadrats were placed over areas containing only C. edulis vegetation with
different, visually identified biomass and health characteristics (Figure 2a). This distribution was
designed to cover a range of conditions, with more or less lush plants and different biomasses per
sample, to optimise the Dry Weight (DW) x Vegetation Indices (VI) regression models. The quadrats
were also placed with a north-south orientation, which helps to reduce the number of pixels the
frames occupy in the RS image and the number of neighbouring pixels affected by reflectance
interference.

These quadrats have an essential role in identifying the sample areas; they are georeferenced
with the GNSS receiver and, since they can be identified in the aerial images, they are used as visual
marks for the samples.

Aerial images

Once the quadrats and ground control points were in place, marked and georeferenced, four
different sets of aerial images were acquired using: a built-in RGB sensor from a DJI Phantom 4 to
obtain images with 1 cm Ground Sample Distance (GSD); a five-band (R,G,B, RedEdg, NIR)
Micasense RedEdge -MX sensor to obtain images with 2.5 cm GSD; and a four-band (R,G,B,NIR) Ultra
Cam Falcon f100 M1 to obtain images with 5 and 10 cm GSD.

The RGB camera from the DJI Phantom 4 UAV was only used to provide a very high-resolution
RGB orthomosaic to allow a reliable cover identification. The other three sets of images were
processed to assess their capability to identify and estimate the AGB of C. edulis.

To avoid the effect of the reflectance interference of the quadrat frames on the VI of the sample
areas, only the central part of the quadrats was sampled and analysed. Therefore, after the aerial
survey, all the AGB within the central 30x30 cm? of each of the 30 quadrats was collected, bagged,
tagged and taken to the lab for biomass determination. To do so, the smaller quadrat was visually
positioned in the centre of the 50x50 cm? quadrat, as shown in Figure 2b, and the AGB was cut out
with a saw and scissors. After AGB collection, the samples were taken to the lab and processed.
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Figure 2. placement of a quadrat on a C. edulis patch, with other vegetation covers visible to the left
(various herbaceous species) and in the back (acacia) (a); delimitation of the central 30 x 30 cm2 area
within a quadrat for AGB removal (b); brown layer of C. edulis after removal of the top green layer

(©)-

3.2. Laboratory Work

It is essential to address that Carpobrotus edulis has the characteristic of growing in two distinct
layers, an upper layer — which absorbs and reflects the sunlight and is visible in the aerial images —
and a lower layer composed of older and dryer stems and leaves that are generally not visible from
above. The two layers of the collected plant material were therefore separated and weighted
separately on a scale to the nearest 0.01g to obtain the wet weight (WW) of each layer for each sample.

After weighing, green and brown parts were placed in the lab stove at 60°C to be dried, being
weighed daily until they presented no weight difference between two consecutive weightings. After
drying, all samples were weighted on the same scale to the nearest 0.01g. The DW was later used to
(i) relate biomass with VIs (section 3.2), (ii) compare DW and WW, and (iii) assess the biomass ratio
between the green and brown parts of the plants.

3.3. Image Processing and Analyses

Each set of images, with 2.5, 5 and 10 cm GSD, respectively, was processed according to the
following steps: (i) orthomosaic production, (ii) Vegetation Indices calculation and DW-VI empirical
modelling for AGB estimation, and (iii) land cover classification, accuracy assessment and error
analysis.

Orthomosaics

RGB and multispectral orthomosaics were computed with Agisoft Metashape Professional
version 1.8.3 built 14331 (64bit), using the georeferenced sample quadrats and GCP for image
orthorectification.

Vegetation Indices and Biomass

AGB was estimated based on the relationship between vegetation DW and VI derived from the
image bands. Based on a previous study, where sixteen VI were evaluated for their ability to estimate
the AGB of C. edulis [20], the best performing VI (with DW-VI model R? >0.75) (Table 1) were selected
to compare the performances of the different spatial resolution images in estimating C. edulis AGB.
The indices were computed using the QGIS 3.28.3 raster calculator tool, creating VI maps for the
study area.

Table 1. Vegetation indices formulas used in this work. Bands: Blu—Blue; Gre—Green; RDG—Red
Edge; NIR—Near Infrared.

Index Formula Reference
NIR
Green Chlorophyll Index (GCI) 2od [21]
e
Difference Vegetation Index (DVI) NIR — Red [22]

Green Difference Vegetation Index (GDVI) NIR — Gre [23]
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(NIR — Gre) — 2Red

Enhanced Normalized Difference Vegetation Index (ENDVI) (NIR —Gre) + 2Red [24]
. . . NIR — Gre
Green Normalized Difference Vegetation Index (GNDVI) ~——— [25]
NIR + Gre
NIR — Red
Normalized Difference Vegetation Index (NDVI) T red [26]
NIR + Red
Photochemical Reflectance Index (PRI) Gre — Blu [27]
Gre + Blu
R lized Diff Vegetation Index (RDVI) NIR — Red [28]
enormalized Difference Vegetation Index —
8 VNIR + Red
Ratio Vegetation Index (RVI) % [29]

Mean VI values were computed for each AGB sample collection area. Notice that the pixels used
coincided with the 30x30 cm collection area square in the centre of the 50x50 quadrats. The obtained
VI values were later used to assess their relationship with the sample DW of the plants’ green parts

Each sample’s DW of the green parts (y-axis) was plotted against the mean VI (x-axis) to evaluate
the relationship between the two parameters. One linear and three exponential regression models
were evaluated to select the best fitting model for each VI and image resolution:

Linear model (lin) y = a+bx (1)

Exponential model 1 (xpo1) y = ab* (2)

Exponential model 2 (xpo2) y = ae*® (3)

Exponential model 3 (xpo3) y = ax? 4)
where:

y = Dry Weight

x = Vegetation Index

a = coefficient 1

b = coefficient 2

Only the green parts DW was used because of the limitations of the aerial images, which only
capture the reflectance of the top layer of C. edulis. The best fitting regression model was selected
based on the R? p-value and a Normalised Root Mean Square Error (NRMSE), calculated dividing
the RMSE by the difference between maximum and minimum observed DW of green parts.

Cover Classification

The orthomosaics were classified through a supervised classification with the random forest
algorithm. The random forest algorithm, was selected based of its performance in previous studies
on identifying C. edulis [20].

The number of cover classes was determined by visual identification of the most relevant covers
in the image, and 30 Regions Of Interest (ROI) of 20x20 cm were selected for each class for the training
of the classification, resulting in approximately 13,000 pixels. For the target C. edulis class, the ROIs
were created near to the vegetation sampling areas (Figure 3).
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Figure 3. Othomosaic image with 10cm GSD and ROI points marked.

The number of ROI for the different spatial resolutions was defined to approximate 13,000
training pixels (Table 2), a number of pixels that resulted in a satisfactory classification in the previous
study [20].

Table 2. ROIs and training pixels count per resolution.

GSD Individual ROI area  Pixels per =~ Number of ROIs per  Total training pixel

(cm) (cm) ROI class count
2.5 20 x 20 64 - 81 30 13,269
5.0 20 x 20 16 120 11,520
10.0 20 x 20 4 460 11,524

For the lower-resolution orthomosaics, the ROI were positioned as close as possible to the ROI
of the 2.5 cm GSD orthomosaic. Notice that the ROI of 2.5 cm is also part of the ROI of 5 cm, which,
in turn, is also part of the ROI for the 10 cm GSD orthostatic (Figure 4). Examples of ROI distribution
are provided in Figure 4 a) and b), showing 1 ROI for 2.5 cm GSD, 4 ROIs for 5 cm GSD, and 16 ROIs
for 10 cm GSD, in order to achieve approximately similar numbers of training pixels.

(@) T

Figure 4. ROI for C. edulis when located over a homogeneous area (a), and located over a non-

homogeneous area (b).
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The accuracy of each classification was assessed based on a large set of randomly selected pixels,
from which the ground truth cover class was visually identified in the 1 cm GSD RGB image and
compared to the classified class. The number of pixels for the accuracy test was defined based on the
proportion of each class and the expected standard deviation of each class [30] according to the
following equation.

N =(

4

6
Wi+ $/50)? ©)

=1
where:

N = total number of pixels

W; = mapped area proportion of class I;

S; = standard deviation of stratum I;

So = expected standard deviation of overall accuracy;

The classifications were evaluated in terms of the F1 score of the C. edulis cover class, i.e.
considering a harmonic mean between User Accuracy (UA) and Producer Accuracy (PA).
UA X PA

F, score = 2 TATPA

®)

Sieve filters with progressive strength were applied, using QGIS (3.28), to reduce the number of
small patches of possibly incorrectly classified pixels (considered noise), aiming to improve accuracy.
Two types of sieve filters were used: a 4-pixel filter, which only considers the pixels on the edges of
the target pixel as neighbour pixel; and an 8-pixel filter, which considers all pixels connected to the
edges and corners of the target pixel as neighbours. The two filters were used with progressively
larger thresholds (i.e. larger areas used to re-calculate the pixel(s)’ class) doubling at every interaction
(1, 2,4, 8,16, (...), 2048) until the accuracy of the classification stopped increasing and started to fall.
The increase in the accuracy with increasing threshold can be linked to classification noise reduction,
but as the filter becomes larger, the classification begins to lose information, reducing its accuracy.

The classification was performed using the QGIS dzetsaka: Classification Tool Plugin (version
3.70) [31]. Sieve filtering and accuracy assessments were realized using QGIS (3.28) and the Semi-
Automatic Classification Plugin (version 7.10.11) [32].

3.4. C. edulis Area and Biomass Estimation

For each image resolution, the land cover classification with the highest F1 score was used to
obtain the total area of C. edulis (Figure 5).

Legend
[ Water
M C. edulis
Sand
Wet Sand
I Dry Vegetation
[ Green Vegetation

0 10 20m
—

s

Figure 5. Representative area of the Land Cover Classification for each of the resolutions.

To estimate the total C. edulis biomass for the classified area, the following information is
necessary, (i) C. edulis classified area; (ii) pixel VI values in the C. edulis area; (iii) the regression model
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correlating the VI value with the DW of the green parts of C. edulis; (iv) the relation between the DW
and WW; and (v) the ratio between the WW of green and brown parts.

For the biomass estimation, the pixel VI values were converted to AGB DW using the best-fitting
regression model. This allowed calculation of the green-part DW of each pixel classified as C. edulis.
After that, the DW was converted to WW, using the previously established WW-DW relationship.
Finally, to assess the total weight of C. edulis in the study area, an estimate of the brown-part AGB
had to be added, since only the green parts have been accounted for in the regression model. This
was achieved using the ratio between the WW of green and brown parts.

There are different errors to be considered using the proposed methodology: (i) geometric
distortions, which depend on sensor perspective and motion, platform stability, terrain relief and the
curvature and rotation of the earth (less relevant for small surveyed areas); (ii) sensor errors, causing
image deformation; (iii) Classification errors; (iv) Regression model errors; (v) the natural variability
of the relationship between DW and WW, largely dependent on environmental conditions and plant
moisture, which can produce AGB estimation errors; and (vi) the variability in the ratio between
green and brown parts, which will depend on the age and development of the vegetation, also
contributing to AGB estimation errors. For this study, only the (iii) classification and (iv) regression
errors were considered in the final AGB estimation. The classification error (expressed in m?) is
directly related to the accuracy evaluation procedure, from which an area Standard Error (SE) and
a 95% Confidence Interval (CI) can be extracted. The RMSE (kg/m?) was extracted from the
regression model and also considered in the total AGB estimation. The two errors were added for a
conservative evaluation of the methodology. Further discussion can be found in section 4.2.

4. Results
4.1. Image Classification Results

Cover Classification

Six most relevant covers could be identified in the orthomosaic: Water, C. edulis, Sand, Wet
Sand, Dry Vegetation and Green Vegetation. The Dry Vegetation and Green Vegetation classes
included all vegetation species in the study area that were not identified as C. edulis. The mean
spectral signatures of the ROI training areas for each class and for the different image resolutions are
displayed in figure 6.

Classification Accuracy Assessment

Applying Equation (v) for every classification resolution, while accounting for a class-specific
standard deviation of 0.3 and an overall accuracy standard deviation of 0.01, resulted in an accuracy
assessment using 780 pixels. An equal distribution was applied with 130 randomly generated pixels
for each class, aiming to enhance the reliability of accuracy for C. edulis cover class. The first accuracy
assessment presented the following results: 2.5 cm GSD - C. edulis F1 score 72.6 an OA 85.9; 5cm GSD
- F1 score 70.6 and OA 87.1; 10 cm GSD - F1 score 75.5 and OA 87.2.

Sieve Filter Effects

When applying the sieve filter, the different resolution classifications presented overall similar
behaviour (Figure 8). In general, as the filter threshold increased, the F1 Score for C. edulis increased,
while the classification noise decreased, until it dropped significantly, when too much information
was lost. This happened at different thresholds for the different imagery resolutions.
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Figure 6. Mean spectral signatures of ROI divided by class and GSD orthomosaic.

The different resolution images resulted in classifications with different cover class distributions
(Figure 7), with varying proportions, particularly for the of target class C. edulis and for green
vegetation.
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Figure 7. Cover class distribution for the classification results obtained with each spatial resolution.
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Figure 8. Comparison of F1 Score for the C. edulis class for different filters (4: 4-pixel filter; 8: 8-pixel
filter), thresholds and resolutions. Highest F1 score marked in red.

The sieve filter that achieved the highest F1 Score for C. edulis for each survey resolution
(identified in Figure 8), was used for the C. edulis area estimation. Given that C. edulis is the target
species and its class accuracy is the central object in the present study, the F1 Score was the only
criterion considered for the sieve filters selection. However, the overall accuracy (OA) was still
relevant and was also analysed.

For 2.5 and 10 cm GSD, the classifications’” OA increased by 4.4% and 1.4% respectively, if
compared with the classification with no filter applied. The 5 cm GSD classification presented a 1.8%
decline of its OA, but the F1 Score for C. edulis increased 9.9%, which justified the use of the filter.

The best results in terms of F1 scores for all resolutions were achieved using the sieve filter with
a connectedness of 4 pixels. However, the threshold was different for every resolution, and each
classification resulted in a different final classified C. edulis area (Table 5). A complete area-based
classification error matrix of each resolution can be found in Appendix A (Table Al to A3).
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4.2. Biomass Estimation

The samples’ wet and dry weights for the green and brown parts of the collected C. edulis AGB
are presented in Table 3. Notice that some samples did not present any brown plant parts.

Table 3. Summary statistics of C. edulis sample wet weights (WW) and dry weights (DW) for the
plants” green and brown parts (SD: standard deviation).

GREEN BROWN
WW (kg/m?) DW (kg/m?) WW (kg/m?) DW (kg/m?)
Highest 27.12 2.86 3.65 2.64
Lowest 2.09 4.66 0 0
Mean 9.68 1.27 1.01 0.62
Median 8.16 1.07 0.51 0.29
SD 6.43 0.71 1.13 0.73

To estimate the proportions of the WW of the Green (WWgreen) and Brown (WWbrown) plant
parts, a simple mean ratio was calculated using all the samples, WWgreen/WWbrown = 15.9. The
relationship between the WW and DW of the Green parts resulted in a mean ratio
WWgreen/DWgreen = 7.0. The mean ratio considered the mean of the ratio between
WWgreen/DWgreen of each sample area.

The best model for the relationship between the sample’s DWgreen and the sample area mean
VIvalues, obtained for each image resolution, are presented in Table 4. All DWgreen— VI regressions
were significant (p-value < 0.001). Plots of the best performing empirical regression models can be
found in Appendix A (Figure Al to A3).

Table 4. Best DWgeen — VI regression model for each resolution with respective R?, RMSE, NRMSE,
model and respective coefficients 2 and b.

GSD (cm) Index Rz RMSE NRMSE Model Coefa Coefb

25 RDVI 087 227.18 0.09 y=ab* 15194 81.11
5 ENDVI 0.77 300.67 0.12 y =ab* 259648 13.48
10 GCI  0.64 364.55 0.15 y =ab* 506.44 3.07

Different indices performed best for the different resolution images. The best-performing VI was
the Renormalized Difference Vegetation Index (RDVI) for 2.5cm GSD, the Enhanced Normalized
Difference Vegetation Index (ENDVI) for 5cm GSD, and the Green Chlorophyll Index (GCI) for 10 cm
GSD. These indices were therefore applied to estimate the total biomass of C. edulis in the study area,
computing the DWgreen for all pixels classified as C. edulis. Notice that, even though these were the
best-performing indices, many of the other indices tested also presented a satisfactory performance.
Seven of eight other indices from the 2.5 GSD images presented an R? that was less than 10% lower
than the R? of the best performing index. Likewise, seven of the eight other indices applied to the 5
and 10 cm GSD images presented R? values that were less than 5 % lower than that of the best VI. A
complete table with the best-performing regression models for each VI can be found in Appendix A
— Table A4.

Notice that, even though the classification accuracy did not decrease much with the increase of
the GSD (i.e. decrease in image resolution), the coefficient of determination R? of the regression model
significantly decreased with increasing GSD (Table 5). This is probably due to the amount of
information available in the sample areas. For the 2.5 cm GSD there are up to 144 pixels in each sample
area, while for 5 and 10 cm GSD there are only 36 and 9 pixels, respectively. The lower amount of
information will reduce the efficiency of the regression models.

For each image resolution, C. edulis green-part DW was calculated applying the regression
models to the classified area of C. edulis. The resulting values were subsequently converted to
WWagreen, using the above-mentioned WW/DW ratio of 7.0. Finally, the area's total AGB of C. edulis
was estimated using the WWgreen/WWbrown ratio of 15.9, resulting in values of total AGB for each
classification (Table 5).

doi:10.20944/preprints202401.0010.v1
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Table 5. Classification results, AGB values and Total AGB estimates, considering the classified and

estimated areas.

Image resolution

2.5 cm 5cm 10 cm
Filter Threshold 1024 4096 256
C. edulis Classified Area (m?) 3441 3070 2305
F1 Score C. edulis 84.5 80.5 81.1
L Overall Accuracy 89.5% 85.3% 88.6%
Classification
Kappa hat 0.871 0.808 0.859
C. edulis Estimated area (m?) 2982 2616 2431
Standard Error of estimated area (m?) 176 160 160
95% confidence Interval estimated area (m?) 345 314 313
RMSE (kg/m?) 0.23 0.30 0.36
Highest Value (kg/m?) 29.13 29.18 24.50
AGB values Lowest Value (kg/m?) 1.23 1.80 3.58
(WW) Mean (kg/m?) 8.23 9.50 9.60
Based on VI Median (kg/m?) 7.67 9.44 9.41
empirical
models Standard Deviation (kg/m?) 3.66 3.16 2.88
Total AGB (kg) 28,327 29,170 22,135
Regression model error (RMSE * Classified
Total AGB area) (kg) 782 923 840
classified area Classified area error (kg) 1449 1520 1537
Total AGB error (kg) 2231 2443 2377
Relative error 0.08 0.08 0.11
Total AGB (kg) 24,548 24,857 23,345
Total AGB error (kg) 2231 2443 2377
Total AGB 95% CI AGB error (kg) 3518 3770 3892
Estimated area
Fractional error (Total AGB error) 0.09 0.10 0.10
Fractional error (95% CI AGB error) 0.14 0.15 0.17

In terms of error analysis, the regression model error and the classification error were estimated.
The regression error considered the root mean square error of the model, the RMSE (kg/m?), which
was multiplied by the total classified area, resulting in an error in kg for the total AGB. The
classification error was based on the estimated classified area's Standard Error (SE). A more detailed
explanation of the estimated area and its SE can be found in section 4.4 of Olofsson et al. (2014)[30].
Even though the SE is related to the estimated reference area, it is intrinsically linked to the accuracy
of the classification. The SE was multiplied by the mean value of AGB to estimate the total error of
classified area (Table 5).

5. Discussion

5.1. Image Classification

The present study assessed the cover of the invasive species C. edulis through land cover
classification of multispectral imagery (orthomosaics) of different resolutions. The supervised
random-forest classification presented satisfactory results in identifying C. edulis (Table 5) for all three
analysed resolutions, if compared to similar studies [33-35]. However, despite the satisfactory
accuracies, the areas classified as C. edulis varied considerably in size. The difference was more
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prominent for the 10cm GSD image classification, which estimated C. edulis area was 33% and 25%
less than the area estimated for the 2.5 cm GSD and the 5 cm GSD image classifications, respectively.
Examination of Table 5 (Classification) indicates that some aspects deserve further investigation,
in order to: (i) determine where the differences in the area of C. edulis between classifications occur;
(ii) identify the different attributed classes for the different resolutions and investigate the possible
reasons for these differences; (iii) assess if the reference raster estimated area can be utilised with the
mean vegetation values to estimate total AGB, considering that the estimated C. edulis areas for the
reference rasters for all three resolutions were within the 95% confidence intervals of each other.

Notice that, even though all resolutions presented some relevant results, the total biomass of C.
edulis obtained from the 2.5 cm GSD images captured by the MicaSense RedEdge-MX was considered
the most accurate. This was justified by the higher image spatial resolution, and thus more detailed
information available, by the higher number of bands available for classification (5 bands as opposed
to the 4 bands from the lower resolution images), which provided more spectral information,
probably resulting in better classification results, and the better DW-VI regression model results,
which increase the confidence in the total AGB estimation.

To better understand the marked differences between resolutions in the areas classified as C.
edulis , the classifications were compared in detail (Tables 6 to 8). A representative area of the
orthomosaics cover changes is presented in Figure 9. The comparison between the 2.5 GSD
classification and the other imagery classifications showed that the changes from smaller to larger
GSD are characterised by the reduction of C. edulis classified cover area (Table 5), replaced mainly by
Green and Dry Vegetation. These changes occur in small patches, close to the border of C. edulis areas
and inside bigger C. edulis areas (Figure 9). The observed differences may be due to a scale effect of
the resolution, an imprecision in the superposition of orthomosaics, a miss-classification due to
overlapping spectral signatures or a mixture of these effects. The scale effect can be defined as the
influence of spatial resolution on classification accuracy [36].

Legend
C. edulis to Water

I C. edulis to C. edulis

C. edulis to Dry Sand

C. edulis to Wet Sand
I C. edulis to Dry Vegetation
[ C. edulis to Green Vegetation

Changes

a) 2.5to 5 cm GSD
b) 5to 10 cm GSD
¢} 2.5 to 10 cm GSD

A ] 15 30 45m

Figure 9. Orthomosaic cover changes comparison between resolutions, for the areas classified as C.
edulis using the 2.5cm GSD imagery.
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The different cover classes observed at the border of the C. edulis areas might be attributed to
imprecision in the superposition of orthomosaics and to the scale effect. These effects are more
relevant at the border of classified cover areas, where the reflectance of C. edulis areas may mix with
the reflectance of neighbouring covers due to the larger GSD. As seen in Figure 9, some of these
changes are at the border between C. edulis and Green Vegetation cover, which are the two classes
with the less distinct spectral signatures. It is also interesting to notice that these differences are
distributed on all sides of C. edulis borders, suggesting that these changes cannot be explained by
orthomosaic superposition imprecisions alone (as these would produce a lateral shift). Some changes
are also on the border between C. edulis and dry sand, where C. edulis pixels (according to the 2.5 cm
classification) were classified as green vegetation, also likely due to the scale effect and spectral
signature inaccuracy in larger pixels, which are more likely to display mixed cover than smaller
pixels.

Larger areas of cover change, especially in the central part of C. edulis classified areas, cannot be
explained by superposition imprecision or by the scale effect. These changes are probably related to
misclassifications due to overlapping spectral signatures. Figure 6 shows that even though there was
sufficient differentiation between the spectral signature of Green Vegetation and of C. edulis to
provide a satisfactory classification accuracy, a considerable overlapping of theses signatures must
be acknowledged. This overlapping might result in uncertainties and miss classification of C. edulis
and Green Vegetation covers.

Mis-classifications may further be accentuated by the lack of the RedEdge band in the plane-
based aerial photographs, i.e. the 5 and 10 cm GSD images. Analysing the pairwise comparisons
(Tables 6 to 8) it is possible to see that most cover changes occurred between C. edulis and Green
Vegetation, which may point to an inaccuracy related to the lower spectral resolutions from the 5 and
10 cm GSD. The extra RedEdge band of the UAS camera seems to provide some additional
information that enhances classification accuracy.

A further and deeper investigation may allow identification of the most significant factors
influencing cover discrepancies between resolutions in larger areas. An analysis of the classification
confidence map for these areas may provide some helpful information.

Table 6. Comparison of the cover class areas resulting from the 2.5 and 5 cm GSD classifications.

5 cm GSD
We
Wat €. Dry t Dry . Green . Total 2.5cm GSD
edul San Vegetati Vegetati
. San Area (m?)
is d d on on
Water 5555 3 2 103 298 16 5979
C. edulis 0 2548 9 6 300 574 3440
7 Dry Sand 0 1 168 26 04 16 232
) ry San 8 5 5 5 8
g
" Wet Sand 37 9 88 234 45 0 2532
[\l
Dry Vegetation 23 143 327 131 3274 197 4098
Green Vegetation 4 349 23 8 225 3609 4221
Toral5em GSD 57y 3069 213 22 49 a4t 22602
area (m?) 8 7

Table 7. Comparison of the cover class areas resulting from the 5 and 10 cm GSD classifications.

10 cm GSD
C. Dry Dry Green

er l l \ egetatl V egelat] E ]:
1S d o) o Al 2
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San
d
Water 5604 0 0 14 85 0 5704
202
C. edulis 1 g 5 0 84 946 3069
Q
O Dry Sand 0 9 117 76 263 13 2138
g
2 218
ok Wet Sand 83 10 13 - 324 8 2627
Dry Vegetation 41 79 295 8 3654 565 4645
Green Vegetation 66 175 6 0 96 4069 4413
Total 10 cm GSD 5798 230 209 228 4509 5603 29599
area (m?) 4 5 7
Table 8. Comparison of the cover class areas resulting from the 2.5 and 10 cm GSD classifications.
10 cm GSD
Dr We
Wat e;tl y ot VeDZati Vfr:gti Total 2.5cm GSD
er . San San & & Area (m?)
is on on
d d
Water 5564 0 5 30 367 11 5979
C. edulis 10 227 14 0 143 1194 3438
Q
& 177
LED Dry Sand U O 414 12 2327
o
217
o Wet Sand 53 8 36 ’ 256 6 2532
Dry Vegetation 33 87 252 48 3204 468 4093
Green Vegetation 52 118 14 3 122 3909 4219
Total 10 cm GSD 5794 230 209 228 4508 5602 29592
area (m?) 4 4 7

5.2. Biomass Estimation

For the quantification of vegetation through regression models, RDVI, ENDVI and GCI
exhibited the best performance for 2.5, 5 and 10 cm GSD respectively. Several previous investigations
have achieved promising outcomes when employing NDVI to assess various measurable attributes
of vegetation [37-41], consolidating NDVI's status as the predominant index in vegetation research
[42]. However, within the context of this study, NDVI occupied a relatively low position as the eighth,
seventh and fifth most effective model for DW prediction for 2.5, 5 and 10 cm GSD respectively
(Appendix A — Table A4). This corroborates prior research indicating that various vegetation indices
(VIs) may exhibit stronger correlations with vegetation AGB and quantitative attributes, compared
to the conventional NDVI [40]. Consequently, the development of a specific methodology for
evaluating the predictive accuracy of diverse VIs in relation to vegetation attributes still requires
investigation. To do so, it is crucial to consider a wide spectrum of variables, including species
diversity, topographical features, as well as weather and lighting conditions [34]. Additionally,
opposed to commercial crops, the inherent morphological variability among natural vegetation
species poses an additional challenge when seeking a universal relationship between image-derived
data and quantifiable vegetation attributes. Consequently, a possible relationship between plant AGB
and VI must be investigated and modelled case by case [40].

Even though there is a significant difference in C. edulis classified area between resolutions, the
total AGB estimated presented similar values for the 2.5 and 5 cm GSD, yet a considerably different

doi:10.20944/preprints202401.0010.v1
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value for the 10 cm GSD images. For the above-mentioned reasons, the AGB estimates for the 2.5 cm
resolution images were considered the most accurate. In comparison, the 5 cm GSD C. edulis area was
25% smaller but the AGB 3% larger, and the 10 cm GSD area was 33% smaller, with a 22% smaller
AGB. These values show that the discrepancy in the results of the classified areas are somewhat
compensated by the estimated vegetation densities, obtained from the empirical model, as the AGB
per square meter was higher for the aeroplane images than for the UAV images (Table 5).

To investigate alternative calculations for AGB estimation, a comparison was undertaken
between the, already presented, total AGB obtained using the VI of individual classified C. edulis
pixels and the total AGB derived using the mean VIin conjunction with the reference raster estimated
C. edulis area. The results (Table 5) suggest that the mean VI and the reference raster estimated area
of C. edulis can reasonably estimate the total AGB in the study area. Even though the errors were
higher, since the 95% CI Area was used, relative errors of up to 0.17 show that this method might still
provide relevant insights. The final result can be compared with the result using the classified area,
with both sharing a relevant overlap considering the errors. However, there is a fundamental
difference between these estimations; while the total AGB based on the classified area have a
geospatial distribution, meaning that it is possible to locate the C. edulis AGB inside the study area,
the total AGB based on the estimated area has no spatiality, it only provides an overall estimate for
the total AGB inside the study area.

5.3. Estimation Uncertainties

While this investigation has achieved favourable outcomes in forecasting DWgreen through VI,
certain uncertainties persist in the computation of total above-ground biomass (AGB). In addition to
the widely acknowledged uncertainties inherent in classification and regression models, it is
imperative to account for additional uncertainties that remain unquantifiable. For instance, the WW-
DW ratio demonstrates a linear correlation, and employing a mean ratio can be a reasonably accurate
approximation. Nevertheless, this approach involves many variables that exhibit spatial and
temporal variations. For instance, certain plants may thrive in more humid microenvironments
compared to others, and their life stages may also differ, potentially affecting the ratio.

An even higher uncertainty is associated with the morphology of C. edulis, characterised by the
presence of two distinct layers: an upper succulent green layer and a drier brown layer. This
peculiarity poses a considerable challenge when estimating AGB for a generic location using a model-
based approach. Notably, no identifiable correlation was noticed between DWgreen and DWbrown,
and all regression models presented p-values greater than 0.05. Consequently, the most viable
approach used a mean ratio as the best estimate. This ratio could be influenced by many factors,
including plant age, growth rate, decay velocity, seasonality, and availability of water and light.

The ability to distinguish between various vegetation covers may be more or less successful,
depending upon the season and the plants' state, with spectral signatures likely varying between
seasons and across regions. In the current investigation, data collection occurred during the spring
season, specifically prior to flowering. This choice was made based on the belief that flowers could
potentially influence on classification outcomes and biomass estimation via vegetation indices.
However, a recent study [43], which involved the classification of C. edulis during the flowering
season, revealed that flowers do not poses a significant impact on image classification results.

The estimation of C. edulis' AGB plays an important role in the management of invasive species,
where the biomass estimates offer critical insights for planning and executing removal campaigns.
Nonetheless, the approach adopted in this research holds the potential for broader applications,
extending beyond C. edulis and can be reproduced with various low stratum plant species.
Furthermore, it can be leveraged for estimating the total carbon content in ecosystems, employing
established biomass—carbon correlations.

Moreover, the exploration of the feasibility of constructing a general model for predicting C.
edulis DW-VI relationships could be an interesting future investigation. This endeavour requires
conducting an array of new tests, mirroring the methodology employed in the current investigation,
to recognize potential patterns associating VIs with AGB. These future investigations can also search
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into the utility of VIs for refining land cover classifications, thus assessing their viability in enhancing
the identification of C. edulis. Relevant future research may also include an evaluation of the
applicability and precision of this methodology using imagery characterized by even lower
resolutions, including satellite-based images. Such assessments can serve to monitor the distribution
and biomass of C. edulis in regional scale.

6. Conclusions

In conclusion, the results obtained in this study suggest that multispectral images have a
relevant potential for monitoring the invasive species C. edulis. Even though some differences were
detected, all three spatial resolutions presented relevant results for monitoring, with the 2.5 and 5cm
GSD resolution being the most accurate ones. Still, the 10cm GSD resolution can provide valuable
insight on the area and AGB of C. edulis, especially when considering multipurpose samples
campaign, which might have larger pixels for monitoring more extensive areas. Regarding the
spectral resolution, no significant difference was attributed to the RedEdge band on the 2.5 GSD
imagery, with four bands imagery presenting a satisfactory result. Finally, it is interesting to address
that the applied methodology has the potential to be applied to a wide variety of coastal (and other)
environment monitoring.
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Appendix A

The classification accuracy results for each resolution are detailed from Tables A1 — A3.

Table Al. - Area-based classification error matrix for the 2.5 cm GSD classification.

2.5 cm GSD Reference

Wate C . DY et Dry . Green- % of
eduli  San Vegetatio Vegetatio Area

r Sand Area

S d n n

= Water 0.262 0.000 0.000 0.002 0.000 0.000 26.5% 5980
& C. edulis 0.000 0.120 0.000 0.000 0.002 0.030 15.2% 3441
§ Dry Sand 0.000 0.000 0.091 0.000 0.010 0.002 10.3% 2329
5 Wet Sand 0.002 0.000 0.002 0.108 0.000 0.000 11.2% 2533

Dry Vegetation 0.001 0.005 0.016 0.005 0.134 0.019 18.1% 4100
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Green 0.000 0.006 0000 0000  0.002 0.179 187% 4223
Vegetation
% of Area 26.6 132 110115 14.7% 23.0% 100.000
% % % %
2260
Area (m2) 6011 2982 2478 2606 3331 5198 5
SE area 66 176 128 90 177 201
95% CI area 129 345 252 177 347 393
987 910 833 935
PA 1.2% 77.7%
% % % % o1.2% &
99.2 789 887 96.2 o o
UA % % o o 74.1% 95.7%
Overall 89.5
accuracy %
Kappa hat 0.871
Table A2. - Area-based classification error matrix for the 5 ecm GSD classification.
5cm GSD Reference
Wate C. . Dry Wet Dry - Green . % of Area
eduli. San San Vegetati Vegetati
r Area (m?2)
S d d on on
Water 0.247 0.000 0.80 0.20 0.000 0.000 25.2% 5705
C. edulis 0.000 0.101 0’20 0.(())0 0.002 0.030 13.6% 3070
-] . .
& Dry Sand 0.000 0.000 0 28 0 ;)O 0.010 0.001 9.5% 2140
B
1]
6 Wet Sand 0.001 0.000 O'SO 0'71 0 0.003 0.001 11.6% 2628
Dry 0007 0004 0% 00l a9 0014  206% 4651
Vegetation 0 2
Green 0000 0011 00 000006 0.177 195% 4416
Vegetation 2 0
% of Area 5 116 121 126 16.1% 22.2% 100.0%
% % % %
Area (m?2) 5761 2616 2727 2845 3638 5023 22610
SE area 104 160 160 133 200 190
95% CI area 203 314 313 261 392 372
967 875 684 849
PA 5% 79.6%
o o o o 86.5% 9.6%
97.7 746 872 919 o o
UA % % o o 67.7% 90.6%
Overall 85.3
accuracy %
Kappa hat 0.820
Table A3. - Area-based classification error matrix for the 10 cm GSD classification.
10 cm GSD Reference
C. Dry Wet Dry Green % of
Water eduli San San Vegetatio Vegetatio Aorea Area

s d d n n



https://doi.org/10.20944/preprints202401.0010.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 January 2024

doi:10.20944/preprints202401.0010.v1

19
Water 0247 0004 0000 0000  0.000 0.006 25.7% 5804
- C. edulis 0.000 0.085 0000 0000  0.003 0.014 102% 2305
ke Dry Sand 0.000 0.000 0090 0000  0.003 0.000 93% 2098
3 WetSand 0000 0000 0.003 0.099  0.000 0.000 101% 2289
& Dry Vegetaton 0000 0.006 0023 0028 0136 0.006 20.0% 4511
Green 0.000 0013 0000 0000  0.005 0.230 248% 5604
Vegetation
%of Area  24.7% 13‘8 13/‘5 13/'7 14.8% 256%  100.0%
2261
e 5578 2431 2603 2865 3339 5795 )
SE area 100 160 123 127 186 176
95% Clarea 196 313 241 248 364 345
1000 790 778 779
PA
o o . 92.3% 89.8%
UA 9619 O3 965 976 o 92.8%
% % 9%
Overall 88.6%
aCCuraCy
Kappa hat 0.859

The regression models relating C. edulis DW to the best performing VI for each GSD resolution,
and their respective residuals plotted are show in Figure A1, A2 and A3.
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Figure A1l. Regression model relating C. edulis DW to the best performing VI for the 2.5 cm GSD
survey - sample points and regression line with equation (a), and residuals plot (b).

ENDVI

2500

20004

1500

1000

C. edulis green DW / m?

5004

y=2596483 *1348*x

Rz 0.77
NRMSE: 0.12

04

ENDVI_mean

(@)

0.2

5004

Residuals

ENDVI

0.6 04 0.2
ENDVI_mean

(b)


https://doi.org/10.20944/preprints202401.0010.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 January 2024 doi:10.20944/preprints202401.0010.v1

20

Figure A2. — Regression model relating C. edulis DW to the best performing VI for the 5 cm GSD
survey - sample points and regression line with equation (a), and residuals plot (b).
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Figure A3. — Regression model relating C. edulis DW to the best performing VI for the 10 cm GSD
survey - sample points and regression line with equation (a), and residuals plot (b)..

Table A4. — Vegetation Indices empirical regression results, ordered by R2. Best performing indices
for each GSD resolution are marked in green.

Resolution GSD Vegetation Empirical model

. R? p-value RMSE NRMSE  Coef.o Coef. b
Rank Index equation

1 25cm RDVI y=ahk" 0.868 «<00001 227178 0094 151945 81.109
2 25 cm oV y=ahk" 0.846 <0.0001 234418 0.096 204 547 380.533
3 25cm  GDVI y=ax® 0.841 <00001 234851 0097 15205471 1984
4 25cm RVI y=ax® 0.828 <0.0001 271856 0.112 264.764 -0.733
5 25 cm GCl y=ax® 0.808 <00001 292922 0121 355.145 0613
6 25cm  ENDVI y=ah" 0.807 <0.0001 306380 0.126 530.993 5.144
7 25cm  GNDVI y=ae™ 0795 <00001 301812 0124 31.944 5201
3 25cm NDWI y=ahk" 0793 <0.0001 316796 0130 130453 19.155
1 scm ENDVI y=abk" 0767 <00001 300675 0124 25965.483 13.480
g 25cm PRI y=ahk" 0766 <0.0001 334371 0.138 199.192 111.099
2 scm GCl y=ah" 0763 <00001 286278 0118  439.550 2762
3 scm RVI y=ax® 0.757 <0.0001 305370 0.126 357.892 -1.826
4 Scm GNDVI y=ahk" 0755 <00001 312075 0128 128654 326561
5 scm NDWVI y=ah" 0.753 <0.0001 311993 0128 341.068 53.151
[ Scm GDVI y=ahk" 0752 «<00001 299784 0123 118.118 174225
7 Scm RDVI y=ahk" 0750 <0.0001 310310 0.128 327.380 41328
2 scm ovI y=ah" 0740 <00001 314435 0129 316124 31.858
1 10cm GCl y=ahk" 0.644 <00001 364552 0150 506.436 3068
2 10cm DVI y=ab" 0.641 <00001 363282 0150 420967 33223
3 10cm ROVI y=abk" 0.639 <0.0001 369599 0.152 429327 38.289
4 10cm RVI y=ax® 0.637 <00001 375040 0154 4483837 -1787
5 10cm ENDWI y=ah" 0.634 <0.0001 374650 0154 3111199 11.267
6 10cm NDVI y=ab" 0.634 <00001 378191 0156  439.312 43577
7 10cm GDVI y=ahk" 0.630 <0.0001 353406 0.148 213.865 123.690
2 10cm  GNDVI y=ah" 0.620 <00001 383228 0158 223962 155.699
g scm PRI y=abk" 0.601 <0.0001 411631 0.169 257.451 6134559.699
g

10cm PRI vy =ab" 0449 00001 457038 0.188 381.250 4745123015.506
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