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Resolution on Area and Biomass Estimation 
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4099-002 Porto, Portugal 
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* Correspondence: anabio@ciimar.up.pt 

Abstract: This study assesses the applicability of different-resolution multispectral remote sensing images for 
mapping and estimating the aboveground biomass (AGB) of Carpobrotus edulis, a prominent invasive species 
in European coastal areas. The performance of three sets of multispectral images with different resolutions was 
compared: (i) 2.5 cm Ground Sample Distance (GSD), 5 cm GSD and 10 cm GSD images. The images were 
classified using the supervised classification algorithm Random Forest and later improved applying a sieve 
filter. The results show that the three tested image resolutions allow constructing reliable coverage maps of C. 

edulis, with Overall Accuracy values of 89%, 85% and 88% for the classification of the 2.5 cm, 5 cm and 10 cm 
GSD images, respectively. Samples were also collected, dried and weighed to estimate AGB using the 
relationship between the Dry Weight and Vegetation Indices (VI). The regressions were evaluated based on 
their R² and Normalised RMSE. The best-performing VI-DW regression models achieved: R² = 0.87 and NRMSE 
= 0.09 for the 2.5 cm resolution; R² = 0.77 and NRMSE = 0.12 for the 5 cm resolution; and, R² = 0.64 and NRMSE 
= 0.15 for the 10 cm resolution. C. edulis area and total AGB were: 3441.10 m² and 28,327.1 kg (with a Relative 
Error (RE) = 0.08), for the 2.5 cm resolution; 3070.04 m² and 29,170.8 kg (RE = 0.08), for the 5 cm resolution; and, 
2305.06 m² and 22,135.7 kg (RE = 0.11), for the 10 cm resolution. Differences were analysed in detail, spatially, 
to determine their causes. Final analyses suggest that, for C. edulis, multispectral imagery of up to 5 cm GSD is 
adequate for the estimation of the species’ distribution and biomass. 

Keywords: Carpobrotus edulis; unoccupied aerial vehicle; above-ground biomass; GIS; QGIS; 
landcover classification 

 

1. Introduction 

In the ever-evolving field of remote sensing (RS), the selection of the appropriate scale to 
investigate an object plays a central role in the accuracy and relevance of information, as geographical 
phenomena, distributions, and processes are generally scale-dependent [1]. As new sensors and 
platforms are developed through new technological advancements, from aeroplanes to drones as 
observation platforms, from panchromatic to hyperspectral sensors, an RS study overall effectiveness 
is still strongly related to its images’ Ground Sample Distance (GSD). There is, however, a trade-off 
between efficiency and accuracy, which are usually inversely proportional, with accuracy depending 
on image spatial and spectral resolutions, and with high resolutions liked to smaller areas. 

Many studies use information from small areas, obtained with high-resolution sensors, to 
extrapolate the results to more extensive areas surveyed with lower-resolution sensors [2–4].  Even 
though good results can be achieved this way, these studies do not consider the scale effect, i.e. they 
do not address that, for a given area and object of study, there should be an optimum scale for 
monitoring [5].  

Remote sensing techniques constitute a valuable tool for the management of invasive species. 
Unoccupied Aerial Systems (UAS) equipped with multispectral sensors have been increasingly used 
to identify and monitor different invasive species in many ecosystems, and their application can be 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 January 2024                   doi:10.20944/preprints202401.0010.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202401.0010.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

considered a well-established technique [6–9]. Adding to that, multispectral UAS have also gained 
importance in commercial agriculture, where vegetation indices (VI) are used for crop health 
assessment and yield estimation [10–13]. Some recent studies of natural habitats have combined a 
species identification methodology with yield estimations to assess the vegetation’s Above-Ground 
Biomass (AGB) using multi- or hyperspectral UAS [14,15]. The measurement of AGB of invasive 
species can play a central role in the planning and execution of removal campaigns. 

Original from South Africa, Carpobrotus edulis is a prominent invasive species in Europe, with its 
genus Carpobrotus, having the largest number of records of control actions in Mediterranean countries 
[16]. Remote-sensing methods are an obvious choice to facilitate its monitoring and management. 
This article examines three sets of multispectral images with different spatial resolutions, specifically 
focusing on the impact each resolution has on the estimation of C. edulis AGB. Data processing, 
classification algorithms, and the subsequent implications for AGB estimates accuracies were 
evaluated to gain insights into resolution impacts and improve decision making process on 
monitoring and removal campaigns.  

2. Study Area 

The study area was part of the Parque Natural do Litoral Norte (PNLN), administered by the 
national Nature and Forest Conservation Institute (Instituto da Conservação da Natureza e das 
Florestas – ICNF) (Figure 1). The park spreads along 16km of the coast, located between the Neiva 
estuary (41°36'46.56"N, 8°48'32.55"W) and the south border of Apúlia (41°28'10.68"N, 8°46'31.30"O), 
extending 5 km offshore into the ocean. It covers a total of 8887 ha, of which 7653 ha are marine areas.  

 
 

(a) (b) 

Figure 1. Location of study area (red) in Iberian Peninsula (a); study area (b). 

The PNLN was created to protect the littoral of Esposende, preserve its natural resources and 
elements, and promote a rational use of the site. With its mainland consisting essentially of a strip of 
sandy shores, the park houses 15 different habitats described in the Habitat Directive, four of which 
being marked as priority habitats: 1150 - Coastal lagoons, 2130 - Fixed coastal dunes with herbaceous 
vegetation (grey dunes), 2270 - Wooded dunes with Pinus pinea and/or Pinus pinaster, and 91E0 - 
Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae). 

Almost all in-land park terrain is located less than 10 m above mean sea level, with only some 
dunes between the 10 and 20 m high. There are 240 different vegetation species identified on the 
NLNP, most of them native to the north Iberic littoral, including some endangered species. This 
native vegetation is vital for preserving the morphological and biotic characteristics of the ecosystems 
[17]. However, like many other coastal environments, the dunes of the Cávado Estuary suffer not 
only from erosion risks but also from the constant pressure of climate change, urbanisation, recreation 
trampling and invasive species [18]. Twelve invasive species were identified within the flora, with 
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the most prominent ones considered the Acacia longifolia and Carpobrotus edulis, which pose significant 
pressure on the dunar habitats [19]. 

3. Materials and Methods 

This study was divided into four phases: In situ work (section 3.1), Laboratory Work (section 
3.2), Imagery Processing (section 3.3), and C. edulis area and biomass estimation (section 3.4). 

3.1. In Situ Work 

The in-situ work was developed as follows: (i) marking of Ground Control Points, (ii) Placement 
of quadrats for sampling delimitation, and (iii) capture of aerial images. 

Ground Control Points 

Ground Control Points (GCP) were strategically distributed over the study area and marked 

with spray paint. These points were georeferenced with a GNSS receiver Emlid Reach M2 and a 

Novatel antenna (Novatel GPS-702-GG) in Real Time Kinematic (RTK) mode, with corrections 

from RENEP, the Portuguese CORS (Continuously Operating Reference Station) network, and 

later used to enhance the orthomosaic geometry and geolocation precision during imagery 

processing. 
Sample quadrats 

Thirty 50x50 cm² quadrats were placed over areas containing only C. edulis vegetation with 
different, visually identified biomass and health characteristics (Figure 2a). This distribution was 
designed to cover a range of conditions, with more or less lush plants and different biomasses per 
sample, to optimise the Dry Weight (DW) x Vegetation Indices (VI) regression models. The quadrats 
were also placed with a north-south orientation, which helps to reduce the number of pixels the 
frames occupy in the RS image and the number of neighbouring pixels affected by reflectance 
interference.  

These quadrats have an essential role in identifying the sample areas; they are georeferenced 
with the GNSS receiver and, since they can be identified in the aerial images, they are used as visual 
marks for the samples. 

Aerial images 

Once the quadrats and ground control points were in place, marked and georeferenced, four 
different sets of aerial images were acquired using: a built-in RGB sensor from a DJI Phantom 4 to 
obtain images with 1 cm Ground Sample Distance (GSD); a five-band (R,G,B, RedEdg, NIR) 
Micasense RedEdge -MX sensor to obtain images with 2.5 cm GSD; and a four-band (R,G,B,NIR) Ultra 
Cam Falcon f100 M1 to obtain images with 5 and 10 cm GSD.  

The RGB camera from the DJI Phantom 4 UAV was only used to provide a very high-resolution 
RGB orthomosaic to allow a reliable cover identification. The other three sets of images were 
processed to assess their capability to identify and estimate the AGB of C. edulis. 

To avoid the effect of the reflectance interference of the quadrat frames on the VI of the sample 
areas, only the central part of the quadrats was sampled and analysed. Therefore, after the aerial 
survey, all the AGB within the central 30x30 cm² of each of the 30 quadrats was collected, bagged, 
tagged and taken to the lab for biomass determination. To do so, the smaller quadrat was visually 
positioned in the centre of the 50x50 cm² quadrat, as shown in Figure 2b, and the AGB was cut out 
with a saw and scissors. After AGB collection, the samples were taken to the lab and processed. 
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Figure 2. placement of a quadrat on a C. edulis patch, with other vegetation covers visible to the left 
(various herbaceous species) and in the back (acacia) (a); delimitation of the central 30 × 30 cm2 area 
within a quadrat for AGB removal (b); brown layer of C. edulis after removal of the top green layer 
(c). 

3.2. Laboratory Work 

It is essential to address that Carpobrotus edulis has the characteristic of growing in two distinct 
layers, an upper layer – which absorbs and reflects the sunlight and is visible in the aerial images – 
and a lower layer composed of older and dryer stems and leaves that are generally not visible from 
above. The two layers of the collected plant material were therefore separated and weighted 
separately on a scale to the nearest 0.01g to obtain the wet weight (WW) of each layer for each sample.  

After weighing, green and brown parts were placed in the lab stove at 60°C to be dried, being 
weighed daily until they presented no weight difference between two consecutive weightings. After 
drying, all samples were weighted on the same scale to the nearest 0.01g. The DW was later used to 
(i) relate biomass with VIs (section 3.2), (ii) compare DW and WW, and (iii) assess the biomass ratio 
between the green and brown parts of the plants.  

3.3. Image Processing and Analyses 

Each set of images, with 2.5, 5 and 10 cm GSD, respectively, was processed according to the 
following steps: (i) orthomosaic production, (ii) Vegetation Indices calculation and DW-VI empirical 
modelling for AGB estimation, and (iii) land cover classification, accuracy assessment and error 
analysis. 

Orthomosaics 

RGB and multispectral orthomosaics were computed with Agisoft Metashape Professional 
version 1.8.3 built 14331 (64bit), using the georeferenced sample quadrats and GCP for image 
orthorectification. 

Vegetation Indices and Biomass  

AGB was estimated based on the relationship between vegetation DW and VI derived from the 
image bands. Based on a previous study, where sixteen VI were evaluated for their ability to estimate 
the AGB of C. edulis [20], the best performing VI (with DW-VI model R² ≥ 0.75) (Table 1) were selected 
to compare the performances of the different spatial resolution images in estimating C. edulis AGB. 
The indices were computed using the QGIS 3.28.3 raster calculator tool, creating VI maps for the 
study area. 

Table 1. Vegetation indices formulas used in this work. Bands: Blu—Blue; Gre—Green; RDG—Red 
Edge; NIR—Near Infrared. 

Index Formula Reference 

Green Chlorophyll Index (GCI) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅 − 1 [21] 

Difference Vegetation Index (DVI) 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅 [22] 
Green Difference Vegetation Index (GDVI) 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝐺𝐺𝑅𝑅 [23] 
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Enhanced Normalized Difference Vegetation Index (ENDVI) 
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝐺𝐺𝑅𝑅) − 2𝑁𝑁𝑅𝑅𝑅𝑅
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝐺𝐺𝑅𝑅) + 2𝑁𝑁𝑅𝑅𝑅𝑅 [24] 

Green Normalized Difference Vegetation Index (GNDVI) 
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝐺𝐺𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺𝐺𝐺𝑅𝑅 [25] 

Normalized Difference Vegetation Index (NDVI) 
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅 [26] 

Photochemical Reflectance Index (PRI) 
𝐺𝐺𝐺𝐺𝑅𝑅 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝐺𝐺𝑅𝑅 + 𝐵𝐵𝐵𝐵𝐵𝐵 [27] 

Renormalized Difference Vegetation Index (RDVI) 
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅√𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅 [28] 

Ratio Vegetation Index (RVI) 
𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 [29] 

Mean VI values were computed for each AGB sample collection area. Notice that the pixels used 
coincided with the 30x30 cm collection area square in the centre of the 50x50 quadrats. The obtained 
VI values were later used to assess their relationship with the sample DW of the plants’ green parts 

Each sample’s DW of the green parts (y-axis) was plotted against the mean VI (x-axis) to evaluate 
the relationship between the two parameters. One linear and three exponential regression models 
were evaluated to select the best fitting model for each VI and image resolution:  

Linear model (lin)                        𝑦𝑦 =  𝑎𝑎 + 𝑏𝑏𝑏𝑏 (1)                 

Exponential model 1 (xpo1)             𝑦𝑦 =  𝑎𝑎𝑏𝑏𝑥𝑥   (2)                

Exponential model 2 (xpo2)             𝑦𝑦 =  𝑎𝑎𝑅𝑅𝑥𝑥𝑥𝑥  (3)                 
Exponential model 3 (xpo3)             𝑦𝑦 = 𝑎𝑎𝑏𝑏𝑥𝑥    (4)                   

where: 𝑦𝑦 = Dry Weight 𝑏𝑏 = Vegetation Index 𝑎𝑎 = coefficient 1 𝑏𝑏 = coefficient 2 
Only the green parts DW was used because of the limitations of the aerial images, which only 

capture the reflectance of the top layer of C. edulis. The best fitting regression model was selected 
based on the R², p-value and a Normalised Root Mean Square Error (NRMSE), calculated dividing 
the RMSE by the difference between maximum and minimum observed DW of green parts.  

Cover Classification 

The orthomosaics were classified through a supervised classification with the random forest 
algorithm. The random forest algorithm, was selected based of its performance in previous studies 
on identifying C. edulis [20].  

The number of cover classes was determined by visual identification of the most relevant covers 
in the image, and 30 Regions Of Interest (ROI) of 20x20 cm were selected for each class for the training 
of the classification, resulting in approximately 13,000 pixels. For the target C. edulis class, the ROIs 
were created near to the vegetation sampling areas (Figure 3).  
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Figure 3. Othomosaic image with 10cm GSD and ROI points marked. 

The number of ROI for the different spatial resolutions was defined to approximate 13,000 
training pixels (Table 2), a number of pixels that resulted in a satisfactory classification in the previous 
study [20]. 

Table 2. ROIs and training pixels count per resolution. 

GSD 

(cm) 

Individual ROI area 

(cm) 

Pixels per 

ROI 

Number of ROIs per 

class 

Total training pixel 

count 

2.5 20 x 20 64 – 81 30 13,269 
5.0 20 x 20 16 120 11,520 

10.0 20 x 20 4 460 11,524 
For the lower-resolution orthomosaics, the ROI were positioned as close as possible to the ROI 

of the 2.5 cm GSD orthomosaic. Notice that the ROI of 2.5 cm is also part of the ROI of 5 cm, which, 
in turn, is also part of the ROI for the 10 cm GSD orthostatic (Figure 4). Examples of ROI distribution 
are provided in Figure 4 a) and b), showing 1 ROI for 2.5 cm GSD, 4 ROIs for 5 cm GSD, and 16 ROIs 
for 10 cm GSD, in order to achieve approximately similar numbers of training pixels. 

  
(a) (b) 

Figure 4. ROI for C. edulis when located over a homogeneous area (a), and located over a non-
homogeneous area (b). 
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The accuracy of each classification was assessed based on a large set of randomly selected pixels, 
from which the ground truth cover class was visually identified in the 1 cm GSD RGB image and 
compared to the classified class. The number of pixels for the accuracy test was defined based on the 
proportion of each class and the expected standard deviation of each class [30] according to the 
following equation. 

𝑁𝑁 = (�(𝑊𝑊𝑖𝑖 ∗ 𝑆𝑆𝑖𝑖)/𝑆𝑆0)26
𝑖𝑖=1  (5) 

where: 𝑁𝑁 = total number of pixels 𝑊𝑊𝑖𝑖 = mapped area proportion of class I; 𝑆𝑆𝑖𝑖 = standard deviation of stratum I; 𝑆𝑆0 = expected standard deviation of overall accuracy; 
The classifications were evaluated in terms of the F1 score of the C. edulis cover class, i.e. 

considering a harmonic mean between User Accuracy (UA) and Producer Accuracy (PA). 𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑅𝑅 = 2 
𝑈𝑈𝑈𝑈 ×  𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈 + 𝑃𝑃𝑈𝑈  (5) 

Sieve filters with progressive strength were applied, using QGIS (3.28), to reduce the number of 
small patches of possibly incorrectly classified pixels (considered noise), aiming to improve accuracy. 
Two types of sieve filters were used: a 4-pixel filter, which only considers the pixels on the edges of 
the target pixel as neighbour pixel; and an 8-pixel filter, which considers all pixels connected to the 
edges and corners of the target pixel as neighbours. The two filters were used with progressively 
larger thresholds (i.e. larger areas used to re-calculate the pixel(s)’ class) doubling at every interaction 
(1, 2, 4, 8, 16, (…), 2048) until the accuracy of the classification stopped increasing and started to fall. 
The increase in the accuracy with increasing threshold can be linked to classification noise reduction, 
but as the filter becomes larger, the classification begins to lose information, reducing its accuracy.  

The classification was performed using the QGIS dzetsaka: Classification Tool Plugin (version 
3.70) [31]. Sieve filtering and accuracy assessments were realized using QGIS (3.28) and the Semi-
Automatic Classification Plugin (version 7.10.11) [32]. 

3.4. C. edulis Area and Biomass Estimation 

For each image resolution, the land cover classification with the highest F1 score was used to 
obtain the total area of C. edulis (Figure 5). 

 

Figure 5. Representative area of the Land Cover Classification for each of the resolutions. 

To estimate the total C. edulis biomass for the classified area, the following information is 
necessary, (i) C. edulis classified area; (ii) pixel VI values in the C. edulis area; (iii) the regression model 
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correlating the VI value with the DW of the green parts of C. edulis; (iv) the relation between the DW 
and WW; and (v) the ratio between the WW of green and brown parts. 

For the biomass estimation, the pixel VI values were converted to AGB DW using the best-fitting 
regression model. This allowed calculation of the green-part DW of each pixel classified as C. edulis.  
After that, the DW was converted to WW, using the previously established WW-DW relationship. 
Finally, to assess the total weight of C. edulis in the study area, an estimate of the brown-part AGB 
had to be added, since only the green parts have been accounted for in the regression model. This 
was achieved using the ratio between the WW of green and brown parts.  

There are different errors to be considered using the proposed methodology: (i) geometric 
distortions, which depend on sensor perspective and motion, platform stability, terrain relief and the 
curvature and rotation of the earth (less relevant for small surveyed areas); (ii) sensor errors, causing 
image deformation; (iii) Classification errors; (iv) Regression model errors; (v) the natural variability 
of the relationship between DW and WW, largely dependent on environmental conditions and plant 
moisture, which can produce AGB estimation errors; and (vi) the variability in the ratio between 
green and brown parts, which will depend on the age and development of the vegetation, also 
contributing to AGB estimation errors. For this study, only the (iii) classification and (iv) regression 
errors were considered in the final AGB estimation. The classification error (expressed in m²) is 

directly related to the accuracy evaluation procedure, from which an area Standard Error (SE) and 

a 95% Confidence Interval (CI) can be extracted. The RMSE (kg/m²) was extracted from the 
regression model and also considered in the total AGB estimation. The two errors were added for a 
conservative evaluation of the methodology. Further discussion can be found in section 4.2. 

4. Results 

4.1. Image Classification Results 

Cover Classification 

Six most relevant covers could be identified in the orthomosaic:  Water, C. edulis, Sand, Wet 
Sand, Dry Vegetation and Green Vegetation. The Dry Vegetation and Green Vegetation classes 
included all vegetation species in the study area that were not identified as C. edulis. The mean 
spectral signatures of the ROI training areas for each class and for the different image resolutions are 
displayed in figure 6. 

Classification Accuracy Assessment 

Applying Equation (v) for every classification resolution, while accounting for a class-specific 
standard deviation of 0.3 and an overall accuracy standard deviation of 0.01, resulted in an accuracy 
assessment using 780 pixels. An equal distribution was applied with 130 randomly generated pixels 
for each class, aiming to enhance the reliability of accuracy for C. edulis cover class. The first accuracy 
assessment presented the following results: 2.5 cm GSD – C. edulis F1 score 72.6 an OA 85.9; 5cm GSD 
- F1 score 70.6 and OA 87.1; 10 cm GSD – F1 score 75.5 and OA 87.2.  

Sieve Filter Effects 

When applying the sieve filter, the different resolution classifications presented overall similar 
behaviour (Figure 8). In general, as the filter threshold increased, the F1 Score for C. edulis increased, 
while the classification noise decreased, until it dropped significantly, when too much information 
was lost. This happened at different thresholds for the different imagery resolutions. 
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Figure 6. Mean spectral signatures of ROI divided by class and GSD orthomosaic. 

The different resolution images resulted in classifications with different cover class distributions 
(Figure 7), with varying proportions, particularly for the of target class C. edulis and for green 
vegetation. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 January 2024                   doi:10.20944/preprints202401.0010.v1

https://doi.org/10.20944/preprints202401.0010.v1


 10 

 

 

Figure 7. Cover class distribution for the classification results obtained with each spatial resolution. 

 

Figure 8. Comparison of F1 Score for the C. edulis class for different filters (4: 4-pixel filter; 8: 8-pixel 
filter), thresholds and resolutions. Highest F1 score marked in red. 

The sieve filter that achieved the highest F1 Score for C. edulis for each survey resolution 
(identified in Figure 8), was used for the C. edulis area estimation. Given that C. edulis is the target 
species and its class accuracy is the central object in the present study, the F1 Score was the only 
criterion considered for the sieve filters selection. However, the overall accuracy (OA) was still 
relevant and was also analysed.  

For 2.5 and 10 cm GSD, the classifications’ OA increased by 4.4% and 1.4% respectively, if 
compared with the classification with no filter applied. The 5 cm GSD classification presented a 1.8% 
decline of its OA, but the F1 Score for C. edulis increased 9.9%, which justified the use of the filter. 

The best results in terms of F1 scores for all resolutions were achieved using the sieve filter with 
a connectedness of 4 pixels. However, the threshold was different for every resolution, and each 
classification resulted in a different final classified C. edulis area (Table 5). A complete area-based 
classification error matrix of each resolution can be found in Appendix A (Table A1 to A3). 
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4.2. Biomass Estimation 

The samples’ wet and dry weights for the green and brown parts of the collected C. edulis AGB 
are presented in Table 3. Notice that some samples did not present any brown plant parts. 

Table 3. Summary statistics of C. edulis sample wet weights (WW) and dry weights (DW) for the 
plants’ green and brown parts (SD: standard deviation). 

  GREEN BROWN 
  WW (kg/m²) DW (kg/m²) WW (kg/m²) DW (kg/m²) 

Highest 27.12 2.86 3.65 2.64 
Lowest 2.09 4.66 0 0 
Mean 9.68 1.27 1.01 0.62 

Median 8.16 1.07 0.51 0.29 
SD 6.43 0.71 1.13 0.73 

To estimate the proportions of the WW of the Green (WWgreen) and Brown (WWbrown) plant 
parts, a simple mean ratio was calculated using all the samples, WWgreen/WWbrown = 15.9. The 
relationship between the WW and DW of the Green parts resulted in a mean ratio 
WWgreen/DWgreen = 7.0. The mean ratio considered the mean of the ratio between 
WWgreen/DWgreen of each sample area. 

The best model for the relationship between the sample’s DWgreen and the sample area mean 
VI values, obtained for each image resolution, are presented in Table 4. All DWgreen—VI regressions 
were significant (p-value < 0.001). Plots of the best performing empirical regression models can be 
found in Appendix A (Figure A1 to A3). 

Table 4. Best DWgeen – VI regression model for each resolution with respective R², RMSE, NRMSE, 
model and respective coefficients a and b. 

GSD (cm) Index R² RMSE NRMSE Model Coef a Coef b 

2.5 RDVI 0.87 227.18 0.09 𝑦𝑦 = 𝑎𝑎𝑏𝑏𝑥𝑥 151.94 81.11 
5 ENDVI 0.77 300.67 0.12 𝑦𝑦 = 𝑎𝑎𝑏𝑏𝑥𝑥 2596.48 13.48 

10 GCI 0.64 364.55 0.15 𝑦𝑦 = 𝑎𝑎𝑏𝑏𝑥𝑥 506.44 3.07 
Different indices performed best for the different resolution images. The best-performing VI was 

the Renormalized Difference Vegetation Index (RDVI) for 2.5cm GSD, the Enhanced Normalized 
Difference Vegetation Index (ENDVI) for 5cm GSD, and the Green Chlorophyll Index (GCI) for 10 cm 
GSD. These indices were therefore applied to estimate the total biomass of C. edulis in the study area, 
computing the DWgreen for all pixels classified as C. edulis. Notice that, even though these were the 
best-performing indices, many of the other indices tested also presented a satisfactory performance. 
Seven of eight other indices from the 2.5 GSD images presented an R² that was less than 10% lower 
than the R2 of the best performing index. Likewise, seven of the eight other indices applied to the 5 
and 10 cm GSD images presented R² values that were less than 5 % lower than that of the best VI. A 
complete table with the best-performing regression models for each VI can be found in Appendix A 
– Table A4.   

Notice that, even though the classification accuracy did not decrease much with the increase of 
the GSD (i.e. decrease in image resolution), the coefficient of determination R2 of the regression model 
significantly decreased with increasing GSD (Table 5). This is probably due to the amount of 
information available in the sample areas. For the 2.5 cm GSD there are up to 144 pixels in each sample 
area, while for 5 and 10 cm GSD there are only 36 and 9 pixels, respectively. The lower amount of 
information will reduce the efficiency of the regression models.  

For each image resolution, C. edulis green-part DW was calculated applying the regression 
models to the classified area of C. edulis. The resulting values were subsequently converted to 
WWgreen, using the above-mentioned WW/DW ratio of 7.0. Finally, the area's total AGB of C. edulis 
was estimated using the WWgreen/WWbrown ratio of 15.9, resulting in values of total AGB for each 
classification (Table 5). 
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Table 5. Classification results, AGB values and Total AGB estimates, considering the classified and 
estimated areas. 

  Image resolution 

    2.5 cm 5 cm 10 cm 

Classification 

Filter Threshold 1024 4096 256 

C. edulis Classified Area (m²) 3441 3070 2305 

F1 Score C. edulis 84.5 80.5 81.1 

Overall Accuracy 89.5% 85.3% 88.6% 

Kappa hat 0.871 0.808 0.859 

C. edulis Estimated area (m²) 2982 2616 2431 

Standard Error of estimated area (m²) 176 160 160 

95% confidence Interval estimated area (m²) 345 314 313 

AGB values 

(WW) 

Based on VI 

empirical 

models 

RMSE (kg/m²) 0.23 0.30 0.36 

Highest Value (kg/m²) 29.13 29.18 24.50 

Lowest Value (kg/m²) 1.23 1.80 3.58 

Mean (kg/m²) 8.23 9.50 9.60 

Median (kg/m²) 7.67 9.44 9.41 

Standard Deviation (kg/m²) 3.66 3.16 2.88 

Total AGB 

classified area 

Total AGB (kg) 28,327 29,170 22,135 
Regression model error (RMSE * Classified 

area) (kg) 782 923 840 

Classified area error (kg) 1449 1520 1537 

Total AGB error (kg) 2231 2443 2377 

Relative error 0.08 0.08 0.11 

Total AGB 

Estimated area 

Total AGB (kg) 24,548 24,857 23,345 

Total AGB error (kg) 2231 2443 2377 

95% CI AGB error (kg) 3518 3770 3892 

Fractional error (Total AGB error) 0.09 0.10 0.10 

Fractional error (95% CI AGB error) 0.14 0.15 0.17 
In terms of error analysis, the regression model error and the classification error were estimated. 

The regression error considered the root mean square error of the model, the RMSE (kg/m²), which 
was multiplied by the total classified area, resulting in an error in kg for the total AGB. The 
classification error was based on the estimated classified area's Standard Error (SE). A more detailed 
explanation of the estimated area and its SE can be found in section 4.4 of Olofsson et al. (2014)[30]. 
Even though the SE is related to the estimated reference area, it is intrinsically linked to the accuracy 
of the classification. The SE was multiplied by the mean value of AGB to estimate the total error of 
classified area (Table 5). 

5. Discussion 

5.1. Image Classification  

The present study assessed the cover of the invasive species C. edulis through land cover 
classification of multispectral imagery (orthomosaics) of different resolutions. The supervised 
random-forest classification presented satisfactory results in identifying C. edulis (Table 5) for all three 
analysed resolutions, if compared to similar studies [33–35]. However, despite the satisfactory 
accuracies, the areas classified as C. edulis varied considerably in size. The difference was more 
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prominent for the 10cm GSD image classification, which estimated C. edulis area was 33% and 25% 
less than the area estimated for the 2.5 cm GSD and the 5 cm GSD image classifications, respectively.  

Examination of Table 5 (Classification) indicates that some aspects deserve further investigation, 
in order to: (i) determine where the differences in the area of C. edulis between classifications occur; 
(ii) identify the different attributed classes for the different resolutions and investigate the possible 
reasons for these differences; (iii) assess if the reference raster estimated area can be utilised with the 
mean vegetation values to estimate total AGB, considering that the estimated C. edulis areas for the 
reference rasters for all three resolutions were within the 95% confidence intervals of each other. 

Notice that, even though all resolutions presented some relevant results, the total biomass of C. 

edulis obtained from the 2.5 cm GSD images captured by the MicaSense RedEdge-MX was considered 
the most accurate. This was justified by the higher image spatial resolution, and thus more detailed 
information available, by the higher number of bands available for classification (5 bands as opposed 
to the 4 bands from the lower resolution images), which provided more spectral information, 
probably resulting in better classification results, and the better DW-VI regression model results, 
which increase the confidence in the total AGB estimation.  

To better understand the marked differences between resolutions in the areas classified as C. 

edulis , the classifications were compared in detail (Tables 6 to 8). A representative area of the 
orthomosaics cover changes is presented in Figure 9. The comparison between the 2.5 GSD 
classification and the other imagery classifications showed that the changes from smaller to larger 
GSD are characterised by the reduction of C. edulis classified cover area (Table 5), replaced mainly by 
Green and Dry Vegetation. These changes occur in small patches, close to the border of C. edulis areas 
and inside bigger C. edulis areas (Figure 9). The observed differences may be due to a scale effect of 
the resolution, an imprecision in the superposition of orthomosaics, a miss-classification due to 
overlapping spectral signatures or a mixture of these effects. The scale effect can be defined as the 
influence of spatial resolution on classification accuracy [36].  

 

Figure 9. Orthomosaic cover changes comparison between resolutions, for the areas classified as C. 

edulis using the 2.5cm GSD imagery. 
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The different cover classes observed at the border of the C. edulis areas might be attributed to 
imprecision in the superposition of orthomosaics and to the scale effect. These effects are more 
relevant at the border of classified cover areas, where the reflectance of C. edulis areas may mix with 
the reflectance of neighbouring covers due to the larger GSD. As seen in Figure 9, some of these 
changes are at the border between C. edulis and Green Vegetation cover, which are the two classes 
with the less distinct spectral signatures. It is also interesting to notice that these differences are 
distributed on all sides of C. edulis borders, suggesting that these changes cannot be explained by 
orthomosaic superposition imprecisions alone (as these would produce a lateral shift). Some changes 
are also on the border between C. edulis and dry sand, where C. edulis pixels (according to the 2.5 cm 
classification) were classified as green vegetation, also likely due to the scale effect and spectral 
signature inaccuracy in larger pixels, which are more likely to display mixed cover than smaller 
pixels.  

Larger areas of cover change, especially in the central part of C. edulis classified areas, cannot be 
explained by superposition imprecision or by the scale effect. These changes are probably related to 
misclassifications due to overlapping spectral signatures. Figure 6 shows that even though there was 
sufficient differentiation between the spectral signature of Green Vegetation and of C. edulis to 
provide a satisfactory classification accuracy, a considerable overlapping of theses signatures must 
be acknowledged. This overlapping might result in uncertainties and miss classification of C. edulis 
and Green Vegetation covers.  

Mis-classifications may further be accentuated by the lack of the RedEdge band in the plane-
based aerial photographs, i.e. the 5 and 10 cm GSD images. Analysing the pairwise comparisons 
(Tables 6 to 8) it is possible to see that most cover changes occurred between C. edulis and Green 
Vegetation, which may point to an inaccuracy related to the lower spectral resolutions from the 5 and 
10 cm GSD. The extra RedEdge band of the UAS camera seems to provide some additional 
information that enhances classification accuracy.   

A further and deeper investigation may allow identification of the most significant factors 
influencing cover discrepancies between resolutions in larger areas. An analysis of the classification 
confidence map for these areas may provide some helpful information. 

Table 6. Comparison of the cover class areas resulting from the 2.5 and 5 cm GSD classifications. 

    5 cm GSD   

   
Wat

er 

C. 

edul

is 

Dry 

San

d 

We

t 

San

d 

Dry 

Vegetati

on 

Green 

Vegetati

on 

Total 2.5cm GSD 

Area (m²) 

2.
5 

cm
 G

SD
 

Water 5555 3 2 103 298 16 5979 
C. edulis 0 2548 9 6 300 574 3440 

Dry Sand 80 15 
168
5 

26 504 16 2328 

Wet Sand 37 9 88 
234
9 

45 0 2532 

Dry Vegetation 23 143 327 131 3274 197 4098 
Green Vegetation 4 349 23 8 225 3609 4221 

  
Total 5cm GSD 

area (m²) 
5701 3069 

213
8 

262
7 

4649 4416 22602 

Table 7. Comparison of the cover class areas resulting from the 5 and 10 cm GSD classifications. 

    10 cm GSD   

   
Wat
er 

C. 

edul

is 

Dry 
San
d 

We
t 

Dry 
Vegetati

on 

Green 
Vegetati

on 

Total 5cm GSD 
Area (m²) 
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San
d 

5 
cm

 G
SD

 

Water 5604 0 0 14 85 0 5704 

C. edulis 1 
202

9 
5 0 84 946 3069 

Dry Sand 0 9 
177

4 
76 263 13 2138 

Wet Sand 83 10 13 
218

7 
324 8 2627 

Dry Vegetation 41 79 295 8 3654 565 4645 
Green Vegetation 66 175 6 0 96 4069 4413 

  
Total 10 cm GSD 

area (m²) 
5798 

230
4 

209
5 

228
7 

4509 5603 22599 

Table 8. Comparison of the cover class areas resulting from the 2.5 and 10 cm GSD classifications. 

    10 cm GSD   

   
Wat
er 

C. 

edul

is 

Dr
y 

San
d 

We
t 

San
d 

Dry 
Vegetati

on 

Green 
Vegetati

on 

Total 2.5cm GSD 
Area (m²) 

2.
5 

cm
 G

SD
 

Water 5564 0 5 30 367 11 5979 

C. edulis 10 
207
5 

14 0 143 1194 3438 

Dry Sand 80 15 
177
2 

32 414 12 2327 

Wet Sand 53 8 36 
217
2 

256 6 2532 

Dry Vegetation 33 87 252 48 3204 468 4093 
Green Vegetation 52 118 14 3 122 3909 4219 

  
Total 10 cm GSD 

area (m²) 
5794 

230
4 

209
4 

228
7 

4508 5602 22592 

5.2. Biomass Estimation 

For the quantification of vegetation through regression models, RDVI, ENDVI and GCI 
exhibited the best performance for 2.5, 5 and 10 cm GSD respectively. Several previous investigations 
have achieved promising outcomes when employing NDVI to assess various measurable attributes 
of vegetation [37–41], consolidating NDVI's status as the predominant index in vegetation research 
[42]. However, within the context of this study, NDVI occupied a relatively low position as the eighth, 
seventh and fifth most effective model for DW prediction for 2.5, 5 and 10 cm GSD respectively 
(Appendix A – Table A4). This corroborates prior research indicating that various vegetation indices 
(VIs) may exhibit stronger correlations with vegetation AGB and quantitative attributes, compared 
to the conventional NDVI [40]. Consequently, the development of a specific methodology for 
evaluating the predictive accuracy of diverse VIs in relation to vegetation attributes still requires 
investigation. To do so, it is crucial to consider a wide spectrum of variables, including species 
diversity, topographical features, as well as weather and lighting conditions [34]. Additionally, 
opposed to commercial crops, the inherent morphological variability among natural vegetation 
species poses an additional challenge when seeking a universal relationship between image-derived 
data and quantifiable vegetation attributes. Consequently, a possible relationship between plant AGB 
and VI must be investigated and modelled case by case [40]. 

Even though there is a significant difference in C. edulis classified area between resolutions, the 
total AGB estimated presented similar values for the 2.5 and 5 cm GSD, yet a considerably different 
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value for the 10 cm GSD images. For the above-mentioned reasons, the AGB estimates for the 2.5 cm 
resolution images were considered the most accurate. In comparison, the 5 cm GSD C. edulis area was 
25% smaller but the AGB 3% larger, and the 10 cm GSD area was 33% smaller, with a 22% smaller 
AGB. These values show that the discrepancy in the results of the classified areas are somewhat 
compensated by the estimated vegetation densities, obtained from the empirical model, as the AGB 
per square meter was higher for the aeroplane images than for the UAV images (Table 5). 

To investigate alternative calculations for AGB estimation, a comparison was undertaken 
between the, already presented, total AGB obtained using the VI of individual classified C. edulis 
pixels and the total AGB derived using the mean VI in conjunction with the reference raster estimated 
C. edulis area. The results (Table 5) suggest that the mean VI and the reference raster estimated area 
of C. edulis can reasonably estimate the total AGB in the study area. Even though the errors were 
higher, since the 95% CI Area was used, relative errors of up to 0.17 show that this method might still 
provide relevant insights. The final result can be compared with the result using the classified area, 
with both sharing a relevant overlap considering the errors. However, there is a fundamental 
difference between these estimations; while the total AGB based on the classified area have a 
geospatial distribution, meaning that it is possible to locate the C. edulis AGB inside the study area, 
the total AGB based on the estimated area has no spatiality, it only provides an overall estimate for 
the total AGB inside the study area. 

5.3. Estimation Uncertainties 

While this investigation has achieved favourable outcomes in forecasting DWgreen through VI, 
certain uncertainties persist in the computation of total above-ground biomass (AGB). In addition to 
the widely acknowledged uncertainties inherent in classification and regression models, it is 
imperative to account for additional uncertainties that remain unquantifiable. For instance, the WW–
DW ratio demonstrates a linear correlation, and employing a mean ratio can be a reasonably accurate 
approximation. Nevertheless, this approach involves many variables that exhibit spatial and 
temporal variations. For instance, certain plants may thrive in more humid microenvironments 
compared to others, and their life stages may also differ, potentially affecting the ratio. 

An even higher uncertainty is associated with the morphology of C. edulis, characterised by the 
presence of two distinct layers: an upper succulent green layer and a drier brown layer. This 
peculiarity poses a considerable challenge when estimating AGB for a generic location using a model-
based approach. Notably, no identifiable correlation was noticed between DWgreen and DWbrown, 
and all regression models presented p-values greater than 0.05. Consequently, the most viable 
approach used a mean ratio as the best estimate. This ratio could be influenced by many factors, 
including plant age, growth rate, decay velocity, seasonality, and availability of water and light. 

The ability to distinguish between various vegetation covers may be more or less successful, 
depending upon the season and the plants' state, with spectral signatures likely varying between 
seasons and across regions. In the current investigation, data collection occurred during the spring 
season, specifically prior to flowering. This choice was made based on the belief that flowers could 
potentially influence on classification outcomes and biomass estimation via vegetation indices. 
However, a recent study [43], which involved the classification of C. edulis during the flowering 
season, revealed that flowers do not poses a significant impact on image classification results. 

The estimation of C. edulis' AGB plays an important role in the management of invasive species, 
where the biomass estimates offer critical insights for planning and executing removal campaigns. 
Nonetheless, the approach adopted in this research holds the potential for broader applications, 
extending beyond C. edulis and can be reproduced with various low stratum plant species. 
Furthermore, it can be leveraged for estimating the total carbon content in ecosystems, employing 
established biomass–carbon correlations. 

Moreover, the exploration of the feasibility of constructing a general model for predicting C. 

edulis DW-VI relationships could be an interesting future investigation. This endeavour requires 
conducting an array of new tests, mirroring the methodology employed in the current investigation, 
to recognize potential patterns associating VIs with AGB. These future investigations can also search 
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into the utility of VIs for refining land cover classifications, thus assessing their viability in enhancing 
the identification of C. edulis. Relevant future research may also include an evaluation of the 
applicability and precision of this methodology using imagery characterized by even lower 
resolutions, including satellite-based images. Such assessments can serve to monitor the distribution 
and biomass of C. edulis in regional scale. 

6. Conclusions 

In conclusion, the results obtained in this study suggest that multispectral images have a 
relevant potential for monitoring the invasive species C. edulis. Even though some differences were 
detected, all three spatial resolutions presented relevant results for monitoring, with the 2.5 and 5cm 
GSD resolution being the most accurate ones. Still, the 10cm GSD resolution can provide valuable 
insight on the area and AGB of C. edulis, especially when considering multipurpose samples 
campaign, which might have larger pixels for monitoring more extensive areas. Regarding the 
spectral resolution, no significant difference was attributed to the RedEdge band on the 2.5 GSD 
imagery, with four bands imagery presenting a satisfactory result. Finally, it is interesting to address 
that the applied methodology has the potential to be applied to a wide variety of coastal (and other) 
environment monitoring.  
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Appendix A 

The classification accuracy results for each resolution are detailed from Tables A1 – A3. 

Table A1. - Area-based classification error matrix for the 2.5 cm GSD classification. 

  2.5 cm GSD  Reference      

    
Wate

r 

C. 

eduli

s 

Dry 

San

d 

Wet 

Sand 

Dry 

Vegetatio

n 

Green 

Vegetatio

n 

% of 

Area 
Area 

C
la

ss
if

ie
d

 Water 0.262 0.000 0.000 0.002 0.000 0.000 26.5% 5980 
C. edulis 0.000 0.120 0.000 0.000 0.002 0.030 15.2% 3441 

Dry Sand 0.000 0.000 0.091 0.000 0.010 0.002 10.3% 2329 
Wet Sand 0.002 0.000 0.002 0.108 0.000 0.000 11.2% 2533 

Dry Vegetation 0.001 0.005 0.016 0.005 0.134 0.019 18.1% 4100 
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Green 
Vegetation 

0.000 0.006 0.000 0.000 0.002 0.179 18.7% 4223 

  % of Area 
26.6
% 

13.2
% 

11.0
% 

11.5
% 

14.7% 23.0% 100.000   

 Area (m²) 6011 2982 2478 2606 3331 5198  2260
5 

 SE area 66 176 128 90 177 201   

  95% CI area 129 345 252 177 347 393     

  PA   
98.7
% 

91.0
% 

83.3
% 

93.5
% 

91.2% 77.7%     

  UA   
99.2
% 

78.9
% 

88.7
% 

96.2
% 

74.1% 95.7%     

  
Overall 

accuracy  
89.5
% 

              

  Kappa hat  0.871               

Table A2. - Area-based classification error matrix for the 5 cm GSD classification. 

  5cm GSD   Reference     

    
Wate

r 

C. 

eduli

s 

Dry 

San

d 

Wet 

San

d 

Dry 

Vegetati

on 

Green 

Vegetati

on 

% of 

Area 

Area 

(m²) 

C
la

ss
if

ie
d

 

Water 0.247 0.000 
0.00

0 
0.00

6 
0.000 0.000 25.2% 5705 

C. edulis 0.000 0.101 
0.00

2 
0.00

0 
0.002 0.030 13.6% 3070 

Dry Sand 0.000 0.000 
0.08

3 
0.00

1 
0.010 0.001 9.5% 2140 

Wet Sand 0.001 0.000 
0.00

5 
0.10

7 
0.003 0.001 11.6% 2628 

Dry 
Vegetation 

0.007 0.004 
0.03

0 
0.01

2 
0.139 0.014 20.6% 4651 

Green 
Vegetation 

0.000 0.011 
0.00

2 
0.00

0 
0.006 0.177 19.5% 4416 

  % of Area 
25.5
% 

11.6
% 

12.1
% 

12.6
% 

16.1% 22.2% 100.0%   

 Area (m²) 5761 2616 2727 2845 3638 5023   22610 
 SE area 104 160 160 133 200 190     
  95% CI area 203 314 313 261 392 372     

  PA  
96.7
% 

87.5
% 

68.4
% 

84.9
% 

86.5% 79.6%     

  UA   
97.7
% 

74.6
% 

87.2
% 

91.9
% 

67.7% 90.6%     

  
Overall 

accuracy 
85.3
% 

        

  Kappa hat  0.820               

Table A3. - Area-based classification error matrix for the 10 cm GSD classification. 

   10 cm GSD  Reference     

    Water 

C. 

eduli

s 

Dry 

San

d 

Wet 

San

d 

Dry 

Vegetatio

n 

Green 

Vegetatio

n 

% of 

Area 
Area 
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C
la

ss
if

ie
d

 
Water 0.247 0.004 0.000 0.000 0.000 0.006 25.7% 5804 

C. edulis 0.000 0.085 0.000 0.000 0.003 0.014 10.2% 2305 
Dry Sand 0.000 0.000 0.090 0.000 0.003 0.000 9.3% 2098 
Wet Sand 0.000 0.000 0.003 0.099 0.000 0.000 10.1% 2289 

Dry Vegetation 0.000 0.006 0.023 0.028 0.136 0.006 20.0% 4511 
Green 

Vegetation 
0.000 0.013 0.000 0.000 0.005 0.230 24.8% 5604 

  % of Area 24.7% 
10.8
% 

11.5
% 

12.7
% 

14.8% 25.6% 100.0%  

 Area 5578 2431 2603 2865 3339 5795  2261
0 

 SE area 100 160 123 127 186 176   

  95% CI area 196 313 241 248 364 345    

  PA  
100.0

% 
79.0
% 

77.8
% 

77.9
% 

92.3% 89.8%     

  UA  96.1% 
83.3
% 

96.5
% 

97.6
% 

68.3% 92.8%    

  
Overall 

accuracy 
88.6%               

  Kappa hat  0.859               
The regression models relating C. edulis DW to the best performing VI for each GSD resolution, 

and their respective residuals plotted are show in Figure A1, A2 and A3. 

  
(a) (b) 

Figure A1. Regression model relating C. edulis DW to the best performing VI for the 2.5 cm GSD 
survey - sample points and regression line with equation (a), and residuals plot (b). 

  
(a) (b) 
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Figure A2. – Regression model relating C. edulis DW to the best performing VI for the 5 cm GSD 

survey - sample points and regression line with equation (a), and residuals plot (b). 

  
(a) (b) 

Figure A3. – Regression model relating C. edulis DW to the best performing VI for the 10 cm GSD 
survey - sample points and regression line with equation (a), and residuals plot (b).. 

Table A4. – Vegetation Indices empirical regression results, ordered by R². Best performing indices 
for each GSD resolution are marked in green. 
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