
Review

Not peer-reviewed version

NRF1 or NRF2: Emerging role of redox

homeostasis on PERK/NRF/autophagy

mediated antioxidant in tumor and

patient dependent chemo sensitivity

Sanaz Dastghaib , Seyed Mohammad Shafiee , Fatemeh Ramezani , Niloufar Ashtari , Farhad Tabasi ,

Javad Saffari-Chaleshtori , Omid Vakili , Morvarid Siri , Somayeh Igder , Mojdeh Zamani ,

Mahshid Moballegh Nasery , Fariba Kokabi , Emilia Wiechec , Zohreh Mostafavi-Pour 

*

 , Pooneh Mokarram 

*

 ,

Saeid Ghavami 

*

Posted Date: 3 January 2024

doi: 10.20944/preprints202401.0079.v1

Keywords: NF-E2-related factor 2; Drug resistance; Reactive oxygen species; Autophagy; Unfolded protein

response

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1407967
https://sciprofiles.com/profile/2728347
https://sciprofiles.com/profile/1650578
https://sciprofiles.com/profile/880649
https://sciprofiles.com/profile/756044
https://sciprofiles.com/profile/3012765
https://sciprofiles.com/profile/2163592
https://sciprofiles.com/profile/134198


 

Review 

NRF1 or NRF2: Emerging Role of Redox Homeostasis 
on PERK/NRF/Autophagy Mediated Antioxidant in 
Tumor and Patient Dependent Chemo Sensitivity 
Sanaz Dastghaib 1, Seyed Mohammad Shafiee 2, Fatemeh Ramezani 3, Niloufar Ashtari 4, Farhad 
Tabasi 5, Javad Saffari-Chaleshtori 2,6, Omid Vakili 7,8, Morvarid Siri 7, Somayeh Igder 9, Mozhdeh 
Zamani 7, Mahshid Moballegh Nasery 10, Fariba kokabi 11, Emilia Wiechec 12, 16, Zohreh 
Mostafavi-Pour 13,*, Pooneh Mokarram 13,* and Saeid Ghavami 4,14,15,16,* 

1 Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 
dastghaib@sums.ac.ir   

2 Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; 
shafieem@sums.ac.ir (SM.S); j_saffari@yahoo.com(J.S.Ch)  

3 Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical 
Sciences, Tabriz, Iran; ramezanif@tbzmed.ac.ir  

4 Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of 
Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; niloofar.ashtari@gmail.com (N.A.); 
saeid.ghavami@umanitoba.ca (S.G.) 

5 Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242 USA, farhad-
tabasi@uiowa.edu 

6 Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical 
Sciences, Shahrekord, Iran; 

7 Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 
omidvakili@pharm.mui.ac.ir (O.V.); morvarid.siri@gmail.com (M.S.); mozamani@sums.ac.ir (M.Z.) 

8 Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University 
of Medical Sciences, Isfahan, Iran 

9 Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical 
Sciences, Ahvaz, Iran; igder_s@ajums.ac.ir 

10 Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network 
(USERN), Tehran 7616911319, Iran; Nasery278@gmail.com 

11 Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, 
Mashhad, Iran; KokabiSF3@mums.ac.ir  

12 Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Liköping, 
Sweden; emilia.wiechec@liu.se  

13 Autophagy Research center, Department of Biochemistry, School of Medicine, Shiraz University of Medical 
Sciences, Shiraz, Iran; Zmostafavipour88@yahoo.co.uk (Z.M.); mokaramp@sums.ac.ir (P.M.) 

14 Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, 
Winnipeg, MB R3E 0V9, Canada  

15 Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, 
Winnipeg, MB R3E 0V9, Canada 

16 Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland 

* Correspondence: mokaram2@gmail.com or mokaramp@sums.ac.ir (P.M.); saeid.ghavami@umanitoba.ca or 
saeid.ghavami@gmail.com (S.G.); zmostafavipour88@yahoo.co.uk (Z.M) Tel.: +98-71-32303029 or +98-917-
7160754 (P.M.); +1-204-272-3061 or +1-204-2723071 (S.G.); Fax: +98-711-2303029 (S.G.) 

Abstract: Chemo-resistance is a substantial challenge in the realm of cancer treatment that requires exploring 
new therapeutic approaches for effective mitigation. Achieving this goal requires examination of the molecular 
mechanisms involved in both tumor growth and therapeutic interventions. The potential of NRF2 (Nuclear 
factor E2-related factor 2) in addressing resistance to chemotherapy across diverse cancer types highlights its 
value as a promising therapeutic approach based on cancer characteristics. Manipulating the NRF2 signaling 
pathway has a dual impact, offering promise for both preventing and treating cancer, as well as inhibiting 
carcinogenesis. The influence of the NRF2/KEAP1 pathway on the progression of tumor formation and 
resistance to drugs has been well-documented. The interplay between the NRF2 signaling pathway and 
processes such as endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and autophagy plays 
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a crucial protective role. A deeper understanding of NRF2's role in the modulating these pathways is necessary 
to develop novel approaches for improving chemotherapeutic efficacy. This article discusses the significance 
of the NRF2-KEAP1 pathway in preventing/promoting cancer and resistance mechanisms to various 
chemotherapeutic agents, with a focus on the complementary effects of antioxidants via NRF2-mediated 
signaling pathways. This study aims to provide a molecular basis for targeting NRF2 via inhibitors/activators 
as promising therapeutic strategies to overcome chemo-resistance. 

Keywords: NF-E2-related factor 2; drug resistance; reactive oxygen species; autophagy; unfolded 
protein response 
 

1. Introduction 

Cytotoxic chemotherapy (CTX) is repeatedly employed for early-stage cancers; primarily 
serving  to monitor further spread [1]. In reality, adjuvant CTX is the principal approach in anti-
cancer therapy. It involves a wide spectrum of medications with influential cytotoxic outputs that 
beneficially, though not exclusively, target the rapidly dividing tumor cells [2,3].  Despite 
remarkable achievements in cancer treatment over the last decade, failure of cancer chemotherapy 
and/or resistance to new anticancer agents persists, leading to tumor recurrence and metastasis, 
poorer prognosis, and emerging as a primary obstacle in cancer treatment[4].  

The chemo-resistance can be pre-existent (primary resistance) or acquired (secondary 
resistance), governed by the molecular characteristics of an individual cancer.  Primary resistance 
may be identified early at diagnosis when tumor cells do not initially respond to classical 
chemotherapeutic agents [5]. On the contrary, secondary resistance may emerge following 
chemotherapy [6]. Consequently, it is crucial to comprehend molecular systems of cancer, 
carcinogenesis, and chemo-resistance mechanisms to develop efficient and appropriate care 
procedures for anticancer treatment.  Based on current knowledge, the molecular patterns of 
chemotherapy insensitivity are associated with DNA repair, proto-oncogenes, anti-oncogene, genes, 
autophagy, epithelial mesenchymal transition (EMT), tumor cell survival, transporter pumps, 
mitochondrial alteration, redox controlling complex, and exosomes [7-10] , as outlined in (Table1). 

Solid tumors are the most common type of tumor affected by cancer hypoxia-induced responses 
associated with genomic imbalances, which results in increased production of reactive oxygen 
species (ROS) and abnormalities in damaged DNA re-synthesis pathways [11]. The ROS imbalance 
under these circumstances, can activate the autophagy pathway through either endoplasmic 
reticulum (ER) stress or unfolded response protein (UPR) approach, and induces chemoresistance 
associated with cell cycle arrest and  intensifying EMT or cancer stem-like cells [12].  Essentially, 
autophagy plays an underlying role in cellular viability and survival by eliminating aggregated or 
misfolded proteins and damaged cellular organelles [13]. The recruitment of autophagy in cancer 
therapy can play a dual role. Initially, it plays a pro-death role by eliminating transformed cells and 
damaged cell compartments. However, in in later stages, it plays a pro-survival role by providing 
protection against hypoxic stress, energy deficits, and chemotherapeutic medications associated with 
chemo resistance [14].  

Autophagy as a multi-step process involved in scavenging damaged cellular components (such 
as proteins and organelles), engages approximately 40 proteins called autophagy-related proteins 
(ATGs) [15]. These ATGs are responsible for the formation  of autophagosomes, which are double 
membrane structures that remove their contents upon fusion with lysosomes [16,17]. Initiation, 
nucleation, elongation, maturation, and fusion are the four phases of the autophagy process [18,19].  

In normal biological processes, autophagy maintains cellular health by recycling damaged 
organelles and proteins, fostering cellular homeostasis, and adapting to stress.[20,21]. Conversely, 
dysregulation of autophagy is implicated in various pathological conditions. For instance, 
neurodegenerative diseases such as Alzheimer's and Parkinson's arise from aggregated proteins due 
to flawed autophagy. Cancer displays a complex relationship with autophagy—promoting tumor 
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survival under stress while also preventing tumor initiation. Recognizing autophagy's role in both 
physiological balance and disease progression unveils potential avenues for therapeutic 
interventions and disease management[22]. 

Both in vitro and in vivo studies reveal that oncogenic activation, intrinsic stresses of tumor cells, 
and extrinsic pressures from the tumor microenvironment (TME), collectively contribute to an 
increase in misfolded protein levels in the ER and subsequent activation of the UPR pathway.  The 
Unfolded Protein Response (UPR) is coordinated by three proteins located within the endoplasmic 
reticulum (ER) membrane: activated transcription factor 6 (ATF6), protein kinase RNA-like ER kinase 
(PERK), and serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1α (IRE1α) 
[22]. Once initiated, UPR signaling can lead to either cellular adaptation to stress or cell death, 
depending on variables such as cell type, the specific stress trigger, and the duration and intensity of 
cellular stress[23]. Proliferating cancer cells might utilize different aspects of the UPR to enhance their 
existing oncogenic mechanisms for resisting chemotherapy[24]. The UPR has a dual function in the 
progression of cancer. Initially, it acts as a survival mechanism, enabling cancer cells to maneuver the 
challenging tumor microenvironment by managing issues like misfolded proteins and limited 
nutrients. This adaptive reaction supports the survival and adjustment of tumor cells[25]. Conversely, 
prolonged UPR activation can drive cancer progression. Excessive UPR signaling has the potential to 
stimulate tumor growth, angiogenesis, and resistance to treatments. Furthermore, UPR-induced 
inflammation and microenvironment changes can facilitate tumor invasion and metastasis, 
contributing to aggressive behavior. The paradoxical nature of the UPR underscores the intricate 
interplay between its safeguarding and harmful effects in the context of cancer[26].  The UPR has 
emerged as a therapeutic target for the treatment of cancer, given its over-activation in cancer 
compared to healthy, non-proliferative cells.  

Still, cancer-originated hypoxic niches are able to additionally stimulate a large proportion of 
leader antioxidant gene directors, including the nuclear factor erythroid 2-related factor 2 (NRF2), a 
family of transcription factors [27,28], existing in various tumors with chemo-resistant  phenotypes 
[29-31]. Previous studies focused on the activators of NRF2 members and their chemo-preventive 
functions suggest that NRF2 has both have a dark/ negative and light/positive side. The positive 
aspect shields cells against external stress factors and is deliberately activated to safeguard organisms 
from diverse diseases. In a similar manner to how NRF2 guards’ healthy cells against injury, it can 
also shield malignant cells. As cells undergo transformation, they encounter numerous stressors, and 
excessive activation of NRF2 can aid this transformation, supporting cancer cells' growth, 
dissemination, and resistance to treatment [32,33]. Consequently, research indicates that inhibiting 
NRF2 may sensitize cancer cells to chemical treatments[34]. 

Given the inconclusive findings on the role of NRF2 in cancer, a clear picture of NRF2 is 
necessary to assist researchers in clarifying this intricate arrangement of antioxidant regulation 
pathways in tumor progression. In addition, it is also essential to define when NRF2 is triggered or 
repressed in different environments or how it can be affected by the influence of diverse stimuli [35]. 
In the following parts of the current review, we will explain the complementary effects of 
antioxidants via NRF2-mediated signaling pathways in more detail, in addition to considering the 
interplay between oxidative stress/redox regulatory networks, autophagy, and UPR-dependent 
chemo-resistance pathways. 

1.1. The Family of Nuclear Factor (Erythroid 2)-Like (NRF) Transcription Factors 

Among redox-responsive transcription factors (TFs), NRF2 stands out as one of the most crucial 
controllers of the cellular defense mechanisms against xenobiotics and oxidative stress [36]. The NF-
E2-like  BZIP Transcription Factor 2 (NFE2L2) gene encodes the NRF 2, which belongs to the cap 'n' 
collar basic region leucine zipper (CNC-bZIP) family with four closely related members, including 
NRF 1, NRF 2, NRF 3, and p45 nuclear factor erythroid-derived 2 (NFE2) protein [37]. These protein 
members feature seven functional NRF2-ECH homology (Neh) domains with high evolutionary 
conservation, each playing specific roles in modulating its transcriptional activity. The Neh1 region, 
which holds a bZIP binding sequence, engages with members of the small musculoaponeurotic 
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fibrosarcoma (sMAFs) family (MAFF, MAFG, and MAFK), along with other bZIP motifs. This 
interaction enables the binding to functional antioxidant response elements (AREs), prompting the 
initiation of transcriptional gene expression. On the other hand, the Neh2 domain comprises two 
distinct binding sequences, namely DLG and ETGE. These sequences independently form dimers 
with the Kelch domains of Kelch-like-ECH-associated protein 1 (KEAP1), ultimately facilitating the 
degradation of NRF2 through UPR-mediated processes.[38,39]. The Neh3-5 transcription activation 
domains interact with different elements of the core-transcriptional machinery.  

Two highly conserved redox-insensitive motifs in Neh6-domain, namely DSGIS and DSAPGS, 
form dimers with β-transducin repeat-containing E3 ubiquitin protein ligase (β-TrCP), inducing 
NRF2 degradation in oxidative stressed cells [40]. Neh7 domain of NRF2 characteristically 
heterodimerizes with retinoid X receptor alpha (RXRα) and suppresses the NRF2 function  [41]. 
These domains regulate NRF2 integrity and the trans-activation of the downstream target genes 
across transcriptional and post-transcriptional modifications along with post-translational directive 
pathways against different lesions [42]. All four members of the NRF family are characterized by a 
unique  N-terminal 43-aa CNC domain and play crucial roles during embryo development and in 
response to environmental stresses [37,43]. However, recent studies have identified novel NRF2 
target genes with a number of additional features of NRF2 beyond its redox-managing roles, 
including regulation of inflammatory responses, cell metabolism, autophagy, proteostasis, ER stress, 
and the UPR, especially in tumorigenesis [44-47]. Recognizing the diverese features and functions of 
NRF2 and its emerging activities will pose additional challenges beyond exploring its potential in 
NRF2-targeted anti-cancer drugs.  

The expression profiles of NRF transcription factors vary significantly based to tissue specificity. 
While NRF1 and NRF2 exhibit widespread expression, NRF3 is notably confined to the placenta and 
liver. Additionally, NF-E2 is specifically limited to megakaryocytes, mast cells, erythrocytes, and 
hematopoietic progenitors. [48-50]. It appears NRF1 assists in the the proteasome transcriptional 
bounce-back response to proteasome blocker processing [51]. The Activated NRF1 accumulates, 
migrates across the ER membrane, and then acts as a nuclear transcription factors following de -
glycosylation and partial proteolytic cleavage processing in the nucleus [52]. However, its 
proteasome-mediated degradation activity and transcriptional capabilities have not been fully 
elucidated [53].  

It is now established that NRF1 plays an important role in the development of resistance to 
cancer treatments[54,55]. Apparently, NRF1 protects tumor cells from proteotoxicity, which is 
enhanced by antitumor proteasome blockers [56]. Amongst the NRF transcription factor members, 
recent studies on NRF3 protein have demonstrated that it drives key functions of 20S in tumor 
proliferation and progression of malignant tumors by down- modulating  the tumor suppressor 
proteins p53 and retinoblastoma-associated protein (pRB) over driving the 20S proteasome in 
different tumor cell types [57-60]. Moreover, these actions directly contribute to the subsequent 
metastasis and induction of angiogenesis in malignant tumors [61]. 

1.2. Deciphering the transcriptional NRF2 -regulated target genes 

The NRF2 function is meticulously regulated. Despite the binding of activated NRF2 to DNA, it 
has been observed through DNA transcription profiling that not all genes in close proximity to the 
activated NRF2 are transcriptionally controlled by NRF2 attachment [62]. These NRF2 target genes 
need the cooperative recruitment of NRF2 and NRF2 interactive co-activators, such as cofactors and 
transcription factors or mediator proteins for a full stimulation [63]. The small MAF-TFs, namely 
MAF-F, MAF-G, and MAF-K, interact with transcriptional NRF2 across the associated bZIP motifs to 
make NRF2/ MAF heterodimer identify the ARE and trigger transcriptional regulatory function of 
NRF2 about genes encoding detoxification enzymes [64].  

Transcriptional modulator BTB and CNC homology 1 (BACH1) is required to repress heme 
oxygenase (HO)-1 gene transcription, which goes against NRF2/ sMAFs interplay in the upstream 
promotor region and target NRF2-dependent transcription NAD(P)H: quinone oxidoreductase1 
(NQO1) [65,66]. The upregulation of the NRF2/HO-1 binding results in HO-1 expression and requires 
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the deactivation of BACH1[67,68]. Intrestingly, NRF2- activating transcription factor 4 (ATF4) dimers 
bind with NRF2 at ARE sites to activate HO-1 transcription as well. Physical Interaction of the 
Activator protein 1 (AP-1) subunit c-Jun with NRF2 stimulates NRF2-driven transcriptional inducers, 
although another AP-1 subunit c-FOS can inhibit favorable NRF2 activity [69]. The collaboration 
between the cAMP-response element binding protein (CREB)-binding protein (CBP) and its co-
activator p300 is utilized to jointly bind to the antioxidant response element (ARE) by employing the 
transactivation domains Neh4/5 of NRF2. This interaction plays a role in facilitating the activation of 
gene transcription. Both histone acetyltransferases CBP and p300 cause chromatin decompaction to 
be conducive to the employment of the transcription apparatus [68,70].  

Nonetheless, ATF3 mediator can interact with CBP, inhibiting the binding of NRF2 and 
repressing transcription arising from the NRF2–CBP complex. Remarkably, the removal of Atf3  
increases NRF2 destruction via overexpression of the KEAP1 gene and the loss of human DJ-1 in the 
H157 NSCLC squamous cell line [71]. Hence, ATF3 functions as a potential regulator, either 
positively or negatively, involved in the modulation of NRF2 activity [72,73].  

Additional transcription complex co-regulators, including SIRT6, an NAD+-dependent histone 
deacetylase, the ATPase subunit of the chromatin-remodeling complex SWI/SNF, RAC3, a co-
activator linked to receptors, CHD6, a chromodomain helicase DNA-binding protein, BRG-1, a gene 
associated with Brahma, and subunit 16 of the mediator involved in RNA polymerase II transcription, 
have the capability to activate NRF2, thereby influencing the transactivation process of genes that are 
targeted by NRF2 [39]. Nevertheless, the actual implication of such interactions are not yet fully 
understood. The nuclear receptors estrogen receptors α and peroxisome proliferator-activated 
receptor gamma (PPARγ) can selectively bind to NRF2, inhibiting its transcriptional activity [74]. 
Notably, gene expression profiles from the livers of Keap1 knockout/knockdown and Nfe2l2-null 
mice relative to the corresponding control wild-type mice in a gene dose response 
experiment, demonstrated that Nrf2 activity is correlated with the expression level of Nrf2[75]. A 
comprehensive understanding of the gene transactivation orchestrated by NRF2 necessitates a 
concentrated examination of the synergistic interplay and potential rivalry between NRF2 and 
various other categories of transcription factors and co-regulators that are intricately linked to both 
ARE sequences and similar ARE-like regions.  

1.3. NRF2- driven response to oxidative stress and drug metabolizing  

Antioxidant detoxification and drug metabolizing control via transcriptional activation of ARE-
mediated β-globin genes are recognized as significant emerging activities of NRF2 as a well-known 
NC-bZIP TF [76]. Recent studies have shown that the activation of antioxidant cytoprotective 
genes over the Nrf2/antioxidant response component in response to cellular oxidative stress results 
in a complex of collaborating enzymes complicated in phase I, II, and III biotransformation reactions 
and the removal of oxidative inducers to maintain homeostasis  [77-80]. Phase I reactions of 
xenobiotic metabolism correspond to oxidoreductase and hydrolysis, catalyzed by NQO1, aldo-keto 
reductases (AKRs), adenine dinucleotide phosphate (NADPH)–oxidoreductases cytochrome P450s 
(CYPs), and carbonyl reductases (CBRs) as well as aldehyde dehydrogenase 1 (ALDH1) enzymes 
[81]. Enzymatic conjugation, UDP-glucuronic acid production enzymes UDP-
glucuronosyltransferase (UGT), glutathione S-transferase (GST), and heme oxygenase 1 (HO-1) are 
all included in Phase II. Phase III mechanisms of xenobiotic conjugation and transport primarily 
revolve around the accumulation of non-toxic or conjugated metabolites subsequent to phase II 
reactions. These mechanisms predominantly involve drug efflux pumps such as the breast cancer 
resistance-related protein (BCRP/ABCG2), multidrug-resistance-associated-proteins (MDR), and 
ATP-binding cassette G8 (ABCG8) [82,83].  

Conventional antioxidant defense systems triggered by NRF2-driven enzymes participate in the 
biosynthesis of reduced glutathione (GSH) (glutathione synthetase (GSS)) and its usage and recycling 
(glutamate-cysteine ligase catalytic (GCLC) and modulator (GCLM) subunits)[84]. In 
addition, several other antioxidant enzymes, involved in the removal of reactive oxygen and nitrogen 
products (ROS/RNS) (glutathione s-transferases, peroxiredoxins, superoxide 
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dismutase, thioredoxins, and thioredoxins reductases) are all known target genes of NRF2  [85].  
play a crucial role in maintaining normal homeostasis disturbed by redox signaling. They are 
instrumental in addressing various disorders characterized by oxidative stress, including 
neurodegenerative and cardiovascular diseases, autoimmune disorders with metabolic syndrome, 
and cancer. [86].  

Studies  suggest that the induction of the NRF2 signaling pathway is a powerful approach in 
tumor suppression, and  a feasible strategy in anticancer therapy [87,88]. Furthermore, 
pharmaceutical induction of NRF2, can reduce carcinogenesis and perform a protective function 
compared to tumor initiation in normal cells. The absence of NRF2 decreases prompt GST expression, 
leading to an increases in ROS level, resulting in DNA damage and a predisposition to carcinogenesis 
[89]. Besides, other investigations suggest that NRF2 may also support cancer development. For 
example, there is a focus on developing NRF2 inhibitors to reverse the resistance of cancer cells to 
chemotherapy. Simultaneously, researchers are exploring Nrf2 activators as potential safeguards 
against the harmful impacts or undesirable outcomes of chemotherapy treatments [90]. 

1.4. NRF2 signaling pathway in cancer 

The significance of NRF2 in cancer is widely recognized. It is crucial to understand its  negative 
regulator, KEAP1, which modulates NRF2 to decrease its cellular expression and effectively control 
metabolic balance [91]. The KEAP1 activity is closely correlated with cellular levels of NRF2 protein 
after normal or low/moderate responses to stressful situations to monitor cellular antioxidant 
responses, as well as detoxification responses involved in cancer prevention and treatment 
[92].Understanding these regulators would enable researchers to channel NRF2's footprint into a 
more targeted approach aiming to completely eradicate tumors, while also addressingits pro-
oncogenic effects, most of which are associated with the  "dark side" of NRF2, clearly linked to the 
metastatic behavior of tumor cells [93].  

Numerous studies have shown that the activation of NRF2 preserves the health of cells exposed 
to diverse toxic components and illnesses; it has also been observed that the over-activation of NRF2 
promotes tumor development and protects tumor cells from oxidative injury, which can further 
induce chemo-resistance [94]. The elevated levels of NRF2 observed in cancer contributes to an 
increased expression of key metabolic enzymes including transketolase (TKT), phosphogluconate 
dehydrogenase (PGD), glucose 6-phosphate dehydrogenase (G6PD), and several others [95]. This 
heightened activity of glucose metabolic enzymes promotes the production of purine and amino 
acids, along with the regeneration of the NADPH pool through the pentose phosphate pathway 
(PPP). Consequently,, there is a reconfiguration of metabolic pathways to faciliate cellular growth 
and enhance antioxidant capacity [96].   

As a key regulator in carcinogenesis, the cell cycle is closely linked to Nrf2 over-activation, as 
Nrf2 deficiency leads to arrest in the G2/M phase of the cell cycle. It appears that Nrf2 is a controller 
in the regulation of the cell cycle through the phosphoinositide 3-kinase (PI3K)/protein kinase B 
(AKT) signaling [97]. Some studies have indicated that the over-expression of NRF2 induces the 
phosphorylation of AKT, glycogen synthase kinase-3 (GSK3), PPP, and KRAS activation[98,99]. In 
addition, cooperation between the PI3K/AKT and KRAS/MAPK pathways can lead to an increase in 
the anabolic pathways efficiency, the inhibition of the apoptosis, and induce survival and self-
renewal inducement in cancer stem cells (CSCs) by anti-apoptotic factor B-cell lymphoma 2 (Bcl-2) 
[100]. These mechanisms contribute to the development and progression of cancer[101].  

Furthermore, the activation of Nrf2 is associated with the inhibition of chronic inflammation, a 
factor linked to cancer[102]. Inthe absence of Nrf2, certain pro-inflammatory factors such as inducible 
nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), and cyclooxygenase-2 (COX-2), 
are increased significantly [103]. The iNOS can produce nitric oxide, which contributes in 
inflammation and tumor development[104]. It also can cause mutagenesis and DNA degradation 
[105]. The TNF-α is one of the main cytokines regulating the progression of inflammation through 
different signaling pathways [105,106]. Additionally, Cox-2 serves as another regulator of 
inflammatory diseases [106] (Figure 1). 
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Figure 1. NRF-affected pathways. A perspective of the pathways affecting chemical resistance. 

Furthermore, Nrf2 regulates the fundamental expression of mouse double minute 2 homolog 
(Mdm2), a potential repressor of tumor suppressor p53 [107]. Similarly, the overexpression of the 
transcription factor Nrf2 secondarily down-modulates TP53 and enhances cancer cell self-renewal by 
inhibiting p53-linked apoptotic death signals [108]. In an investigation involving human refractory 
ovarian cancer cells, the elevated expression of NRF2 was observed compared to the non-resistant 
cell line, and NRF2 knockout by siRNA reintroduced drug response. In addition, chemical NRF2 
induction delivered a survivability nature to immortalize neuroblastoma cell lines responding to 
tumor medications such as etoposide, cisplatin, and doxorubicin [109,110]. Based on these findings,, 
Cho and his team confirmed that the knockdown of NRF2 through siRNA treatment enhanced the 
cisplatin sensitivity in ovarian cancer cells [109]. Likewise, Long-term stimulation of NRF2 has been 
found to impair efficacy of combined drug and radiation treatment in human respiratory tract cancer 
cells. Conversely, lower levels of NRF2 increased the cellular response to ionizing radiation and 
cytotoxic drugs [111]. The above results suggest that Nrf2 function alone or in combination with 
complementary drugs can be considered a productive method to improve the response of metastatic 
cells to chemotherapy. Moreover, recent investigations highlight the role of Nrf2 in malignancy, 
where functional Nrf2 promotes lung cancer metastasis by preventing the degradation of the heme-
binding Bach1 transcription regulator [112].  

The overproduction of NRF2 triggers cell growth and metastasis in breast cancer by activating 
the RhoA gene expression along with its downstream effectors [113]. The significant role of NRF2 in 
proliferation and invasion is also observed in hepatocellular carcinoma, where it regulates the post-
transcriptional expression of target genes such as metalloproteinase-9 (MMP-9) and BCL-XL 
transcripts [93]. Recent findings have highlighted that, beyond facilitating tumor advancement, UPR 
activation can also play a role in the development of chemo resistance (as depicted in Table 1) [114-
117]. Silencing all three branches of the UPR has been linked to the restoration of sensitivity in 
previously resistant cancer cells [116,118,119]. Rapidly dividing tumor cells might exploit distinct 
UPR branches to complement their pre-existing mechanisms of chemo-resistance. Furthermore, the 
targeted activation of a specific UPR arm may be intertwined with other inherent mechanisms of 
chemo-resistance [24]. 

Antioxidants play a complex role in cancer therapy, resembling a double-edged sword. While 
they can potentially protect healthy cells from the damaging effects of treatments like chemotherapy 
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and radiation by neutralizing harmful free radicals, they might also inadvertently shield cancer cells 
from these therapies, reducing their effectiveness. This duality underscores the need for a balanced 
approach when considering the use of antioxidants in cancer treatment strategies [120]. This 
regulation exhibits the dual character of ROS: at low concentrations, it acts as a critical second 
intracellular messenger in various signal transduction pathways, whereas at high concentrations, 
through a change in gene expression, cells try to confront stress by converting to antioxidant response 
[27].   

As mentioned earlier, the activation of NRF2 signaling has gained attention for its potential to 
mitigate the adverse effects of chemotherapy. This pathway plays a protective role by shielding cells 
from oxidative harm. However, inhibiting oxidative-induced cell death through NRF2 activation can 
lead to the development of chemo-resistance in cancer cells. Evidently, NRF2 might contribute to the 
promotion of tumor-initiating cell lineage, consequently giving rise to chemo resistance. [35]. 
Increased NRF2 expression has been studied in various cancer types, including head and neck, lung, 
epithelial, gastric, and pancreatic cancer [93,121,122]. It has been found that elevated NRF2 expression 
can lead to resistance to radiation, 5-fluorouracil, and cisplatin, possibly through the induction of 
antioxidants [123]. Therefore, there may be a need to consider inhibiting the NRF2 pathway during 
chemotherapy [34]. 

Table 1. Molecular Mechanisms involved in chemo-resistance. 

Underlying 
molecular 

mechanism 
Cellular effect Reference 

Transporter 
pumps 

(ABC proteins, 
SERCA, V-

ATPase) 
 

These proteins exhibit elevated 
expression levels in chemo-resistant 
cancer cells and play a role in the 
development of drug resistance. 

[124-126] 

Oncogenes 
EGFR 

The overexpression of EGFR 
triggers the activation of NF-κB and 
STAT3, which subsequently leads to 
the development of chemo-
resistance and unfavorable 
treatment outcomes. 

 
[127] 

KRAS 

Oncogenic KRAS promotes drug 
resistance via upregulation of the 
cell protective stress response gene, 
NRF-2, at the transcriptional level. 

[128] 

(PI3K)/Akt 
AKT involves in apoptosis, 
migration, and proliferation. 

[129] 
 

NF-кB 

Following activation, NF-κB 
translocates to the nucleus, 
elevating the expression of BCL-2, 
BCL-XL, XIAP, survivin, and AKT, 
thereby contributing to accelerated 
tumorigenesis, increased 

[130] 
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aggressiveness, drug resistance, and 
induction of EMT. 

ERKs 
 

ERKs are recognized for their role 
as activators of various 
transcription factors, including ETS 
Like1, along with downstream 
protein kinases. These factors are 
closely linked to processes such as 
cell proliferation, drug resistance, 
and apoptosis. 

[131] 
 

Oncogenic 
Viruses 

 

Viral onco-proteins contribute to 
chemo-resistance through multiple 
mechanisms, including the 
regulation of cellular transporters 
and drug targets, modulation of 
signaling pathways involved in 
drug-induced cell death responses, 
and activation of pathways that 
counteract the effects of drugs. 

[120] 

Rb 
 

Oncogenic p53 causes chemo-
resistance of cancer cells by 
increasing the expression of MDR-1. 

[132-137] 

CKIs 
 

These mechanisms involve inducing 
cell cycle arrest and activating DNA 
repair processes 

[138-140] 
 

PTEN 
 

Increase apoptosis, regulating cell 
cycle progression.  

[141,142] 

BRCA1 
 

Reduction of cell proliferation, 
migration, survival and cell size, 
Regulating transcription, cell cycle 
checkpoint, DNA repair, and 
apoptosis. 

[143-146] 

 
 

Mitochondrial 
alteration SERCA 

 
 
 

Bcl-2 and Bcl-xL contribute to 
heightened drug resistance, while 
reducing their expression enhances 
the cytotoxic impact of cisplatin and 
gemcitabine. Moreover, the level of 
survivin expression was found to be 
linked to the degree of cisplatin 
resistance in gasteric cancer cells. 

  

 
 
[147] 
 
 
 
 

V-ATPase 
 

Somatic mutations occurring in the 
mitochondrial genome (mtDNA) of 
cancer cells lead to impaired 

[148] 
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mitochondrial function, which in 
turn contributes to the development 
of chemo-resistance. 

DNA repair 
 

BER and NER can confer the 
resistance to chemo drugs that 
target DNA. RAD51, a crucial 
participant in homologous 
recombination during double-
strand break (DSB) repair, being 
overexpressed, serves as a marker 
for resistance to Cisplatin (CDDP) 
in non-small cell lung cancer 
(NSCLC). Similarly, elevated 
expression of ERCC1, a component 
of the nucleotide excision repair 
(NER) pathway, is associated with 
resistance to CDDP in both human 
hepatocellular carcinoma (HCC) cell 
lines and specimens.  

[149-151] 

 
Autophagy 

 
 
 
 
 
 
 

In tamoxifen-resistance breast 
cancer cells, SAHA, as a HDAC 
inhibitor, can induce autophagic cell 
death and reduce tumor growth. 
Despite the challenges about the 
anticancer and pro-survival 
function of autophagy, in vitro and 
in vivo research has been more 
confirmed that autophagy could be 
considered as a facilitator of cancer 
chemo-resistance. In NSCLC cells, 
autophagy inhibition using 
Chloroquine, before paclitaxel 
treatment, prevents drug resistance. 

 
[14,152,153] 
 

UPR 
 

CSCs and actively dividing tumor 
cells might exploit distinct branches 
of the UPR to reinforce their pre-
existing mechanisms of chemo-
resistance. Notably, the suppression 
of all three UPR branches—GRp78, 
ATF6, ATF4, and XBP1s—has 
shown a correlation with the 
restoration of sensitivity in 
chemotherapy-resistant cancer cells. 

[24,116-119] 
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EMT 
 

EMT has been identified as a 
promoter of chemo-resistance 
against the DNA alkylating agent 
cyclophosphamide and the DNA 
synthesis inhibitor gemcitabine. 
Specifically, the attenuation of Snail 
or Twist has been linked to 
increased sensitivity to 
chemotherapy. 

[154] 
 

Cancer stemness 
 
 

Cancer stem cells (CSCs) resist 
chemotherapy by increasing the 
levels of P-glycoprotein, ABCG2, 
BCL-2, and survivin. Recent 
findings highlight NRF2's role in 
preserving stemness, intensifying 
tumorigenicity, and initiating 
chemo-resistance within CSCs. 

 
 
[155,156]  
 
 

Regulatory redox  
network 

 

The mechanisms of ROS-mediated 
acquired chemo-resistance include 
autophagy, ER stress, overcoming 
cell cycle arrest, and enhancing 
epithelial to mesenchymal transition 
or cancer stem-like cells. Numerous 
chemotherapy agents, including 
cisplatin, doxorubicin, etoposide, 
paclitaxel, and bortezomib, induce 
cancer cell death by elevating ROS 
levels. Adjusting intracellular 
antioxidant levels holds potential 
therapeutic benefits but can be 
complex. While antioxidants may 
impede chemotherapy efficacy by 
scavenging ROS, they can also 
trigger chemotherapy-related 
toxicity, highlighting a delicate 
balance. 

[12,120,157] 

2. Redox regulatory network involved in the induction of autophagy/UPR and tumor chemo-
resistance 

The activation of UPR relieves ER stress by reducing protein translation to lessen protein load 
in the ER, increasing the translation of chaperones to facilitate the ER protein folding, and removing 
misfolded proteins [158]. Sustained UPR activation induces apoptosis, but tumor cells can bypass the 
apoptosis and use the UPR for tumor proliferation. Recent findings reveal that UPR is also involved 
in the chemo-resistance of the tumor cells [24]. Based on several findings, multiple elements of the 
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UPR are associated with advanced tumor stage and resistance to chemotherapy [24,159,160]. In this 
context, the overexpression of XBP1 is a significant event associated with chemo-resistance and short-
term survival in lymphoma [161]. In the case of ABCs, as major contributors to chemo-resistance, 
ABC activity can be diminished by inhibiting GRP78 which also reduces the antioxidant response 
due to ROS accumulation. Recently, it has been shown that IT-139, a small inhibitor of the GRP78 
molecule, can sensitize chemically resistant PDAC cells to gemcitabine [162]. GRP78-mediated ER 
homeostasis is associated with the activity of specificity protein 1 (SP1). SP1 inhibits homeostasis, 
negatively affecting the UPR and inducing cancer cell death. This modulation occurs through the 
regulation of NRF2 antioxidant responses and ABC transporter activity by inhibiting GRP78-
mediated ER homeostasis. [163]. 

The PERK pathway also exerts its adaptive effect(s), which includes transient inhibition of eIF2α 
and antioxidant response by inducing the transcription factor NRF2 [164-166]. NRF2, which governs 
the response to oxidative stress, functions downstream of PERK. This regulatory role can extend to 
influencing the expression of the ABCC subfamily. While NRF2 predominantly functions as a tumor 
suppressor, heightened activity of its antioxidant response elements can enhance the survival of both 
normal and cancerous cells (Figure 2) [167] . 

Additionally, studies have shown that cells experience an increase in mitochondrial ROS, 
metabolic changes, and the accumulation of free radicals during hypoxia, leading to metabolic stress. 
Under the hypoxic conditions, HIF-1α protein accumulation, the central regulator of the cellular 
response to hypoxia, activates the UPR pathway as a mechanism of adaptation of tumor cells, causing 
tumor growth and resistance to chemo and radiation therapy [168]. Indeed, hypoxia induces the 
PERK/eIF2α/ATF4 axis, with PERK ultimately leading to phosphorylation and subsequent activation 
of the FOXO-1 (anti-apoptotic forkhead box O-1)  as well as pro-autophagic components. The up-
regulation of autophagy, along with the suppressed apoptosis, make cells resistant to 
chemotherapeutic drugs (Figure 2) [169]. In contrast, prolonged activation of UPR pathway, triggers 
cell death mechanisms once environmental ER stress is not relieved. Under these conditions, different 
pathways that lead to cell death will be initiated, limiting the progression of cancer. There is 
substantial evidence that ROS-induced autophagic cell death may play an important role in these 
pathways; as ROS can regulate the expression of ATGs, such as ATG4 and Beclin1 [157]. 
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Figure 2. Schematic view of oxidative stress, UPR sensors, autophagy, and drug resistance. In 
oxidative stress, the UPR sensors cooperate in chemo-resistance induction. PERK/ eIF2α/ATF4 axis 
leads to activation of the anti-apoptotic factor Fork-head box O-1 (FOXO-1) and transcription factor 
NRF2, which regulates the expression of ABC transporters. Increased autophagy flux and the 
inhibition of apoptosis pathway makes cells resistant to chemotherapy agents. 

Nonetheless, ROS exhibit a dual nature in the context of cancer. The increased ROS levels 
contribute to the enhanced growth of cancer cells by triggering signaling pathways, such as the 
PI3K/AKT and up-regulation of their antioxidant components, which consequently leads to the 
development of drug resistance within cancer cells [11]. Furthermore, high levels of ROS may guide 
tumor cells toward different pathways of cell death and restrict their expansion [170]. Accordingly, 
anti-cancer therapies that increase ROS or inhibit antioxidant levels are considered as novel treatment 
strategies in this context. 

The utility of chemo-drugs, such as cisplatin, doxorubicin, and paclitaxel with the ability of 
inducing ROS levels inside the cancer cells, is considered an appropriate option for curing cancers 
by triggering cell death-related pathways. Amongst these pathways, autophagy ROS-induced cell 
death plays a considerable role [171].  Studies have shown that antioxidants can inhibit the autophagy  
flux and indicate a direct involvement of ROS in inducing autophagy. Autophagy has been proven 
as a significant degradation system for eliminating harmful protein components from the 
endoplasmic reticulum (ER) and is capable of breaking down a broader array of substrates  [172]. 
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Recent studies have shown that ROS is necessary for autophagy induction. ROS oxidizes the cysteine 
protease ATG4, which results in ATG8 lipidation and the formation of autophagosomes. These 
reactive species also regulate autophagy by the activation of TFEB-nuclear translocation. High levels 
of ROS activate adenosine monophosphate-activated protein kinase (AMPK) and mitogen-activated 
protein kinase (MAPK), inducing autophagy [173]. Autophagy is thus a strategy exploited by tumor 
cells to get adopted to tumor environment, resulting in chemo-resistance development [174]. 

Regarding this matter, a study conducted on breast cancer cell lines revealed that the application 
of carnosol polyphenols resulted in cell death through a process involving ROS-triggered autophagy 
followed by late-stage apoptosis[175]. New evidence suggests that autophagy inhibitors and 
antioxidants may be able to prevent cancer cell death [17,176,177]. Consistently, data obtained about 
utility of resveratrol or psoralen showed that human colon cancer (COLO 201, HT-29) and human 
lung cancer (A549) cells die by increasing ROS accumulation and autophagy levels, respectively.  
However, the use of 3-MA or antioxidants reverse these effects [178]. 

This hypothesis can also be exemplified by studies conducted on glioma cells, as demonstrated 
that after treatment with polycyclic ammonium ion sanguinarine, H2O2 could increase the autophagic 
cell death. In addition, ROS can induce the expression of SQSTM1/p62 and Beclin1/ATG6 genes via 
the NF-κB, and thus can regulate autophagy  inside the malignant cells [178] . Although autophagy 
can play a suppressive role durig the early stages of cancer progression, it can also increase cell 
survival and metastasis, thus protecting tumor cells against environmental and drug stresses [179]. 

Conclusively, ROS act as a double-edged sword, with both sides being used therapeutically. 
There is still much debate about the use of antioxidant supplementation or its inhibition to modulate 
ROS levels in cancer therapy. Due to the effective role of the UPR pathway and autophagy in 
maintaining cellular homeostasis, resistance and survival of cancer cells, further studies are strictly 
needed to target these two pathways in modifying ROS content during cancer. 

2.1. The cross talk between different arms of UPR-autophagy in drug resistance and cancer cell survival 

Despite the significance of autophagy and ER stress in multiple human illnesses [180-182], the 
interplay between autophagy and the UPR is still unclear. Recently it was shown that UPR’s signaling 
arms strongly correlate with autophagy. We discussed in detail the interplay between UPR signaling 
arms with autophagy, principal molecular mechanisms, and their role in drug resistance in the 
following section.   

2.1.1. Interaction among IRE1/XBP1s, IRE1/TRAF2/ASK1/JNK, and Autophagy  

Activating the IRE1/XBP1s signaling arm of the UPR can be a reliable method to correct 
impairments of ER proteostasis indicated in different diseases [183]. IRE1 contains two major 
domains, namely a serine/threonine kinase domain, an endoribonuclease domain [184]. 
Unconventional splicing of X-box-binding protein-1 (XBP1) and regulated IRE1 dependent decay 
(RIDD) are two downstream mechanisms through which IRE1 primarily exerts its pro-survival 
effects[185,186]. It should be noted that the IRE1 pathway is actually the most evolutionarily 
conserved arm of the UPR, as it is identified in almost all eukaryotes [187]. Spliced XBP1 (XBP1s), 
which is a key transcription factor produced by the IRE1’s endoribonuclease activity [188], can bind 
to the UPR-targeted genes inside the nucleus (e.g., GRP78) to accelerate the protein folding capacity 
and restore cellular homeostasis  [185]. 

As depicted in (Figure 3), the IRE1/XBP1s pathway can induce autophagy in three main phases: 
(i) XBP1s indirectly induces autophagy by operating the expression of Bcl-2 [189-191], XBP1s may 
trigger autophagy by facilitating the LC3βI to LC3β II conversion, and the overexpression of Beclin-
1(BECN) [192,193], and (iii) XBP1s can form a homo- or heterodimer and attach to the BECN1 gene 
promoter to up-regulate the Beclin -1(BECN) expression [194]. Accordingly, IRE1/XBP1s axis is 
believed to be a positive modulator of autophagy with pro-survival effects. Nonetheless, IRE1/XBP1s 
deficiency has been reported to cause an increase in autophagy and cell survival in a group of 
amyotrophic lateral sclerosis patients [195,196].  Xbp1s deficiency may also lead to the 
overexpression of Forkhead box O1 (FoxO1) to stimulate neuronal autophagy [197].  
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Furthermore, C-Jun NH2-terminal kinase (JNK) is known as a stress-associated protein involved 
in a vast array of cellular processes [198]. Once the UPR becomes initiated, the adaptor protein tumor 
necrosis factor receptor-associated factor-2 (Traf2) is recruited by the activated IRE1 and creates the 
Ire1-Traf2 complex. Afterward, the apoptosis-signal regulating kinase 1 (Ask1) arranges the 
formation of the Ire1-Traf2-Ask1 complex [199]. Interestingly, the IRE1/TRAF-2/JNK1 axis can 
operate ER stress-triggered autophagy, as mouse embryonic fibroblast cells deficient in IRE1/TRAF-
2 have revealed a significant decrease in the formation of autophagosomes [191]. Pharmacological 
inhibitors of JNK1 can also suppress autophagosome formation; SP600125 is a good example in this 
regard [200]. 

The JNK1 pathway also has a central role in the transcriptional modulation of Beclin-1(BECN) 
expression. It has been demonstrated that JNK1 is involved in starvation-triggered autophagy by 
phosphorylating BCL-2, localized in ER, resulting in separation of Beclin-1(BECN) from BCL-2 and 
subsequent initiation of autophagic flux [201]. In sum, the IRE1/JNK1/c-JUN axis is a pivotal 
mechanism to induce autophagy. IRE1/XBP1s and IRE1/JNK1 stimulated-autophagy pathways join 
at BECN. Hence, BECN can be a promising therapeutic target to mediate the ER stress-triggered 
autophagy in drastic pathological conditions, such as malignancies, cancer drug resistance, and 
cancer cell survival.  

2.1.2. The role of IRE1/XBP1s arm of UPR and autophagy in drug resistance and cancer cell survival 

IRE1 modulates irregular splicing of XBP1 mRNA, as well as the expression of cyclin A1, 
supporting the IRE1-induced cancer cell growth [202]. High levels of XBP1s, which results from 
increased XBP1 splicing, have been reported in multiple cancers and represent a poor prognosis 
[203,204]. For instance, a high ratio of XBP1s/XBP1 has been demonstrated to be strongly correlated 
with poor prognosis and a shortened relapse period in myeloma patients [205]. Treating multiple 
myeloma cells with MKC-3946, as an inhibiting agent of IRE1α endoribonuclease activity, desirably 
results in the repression of XBP1 splicing and induction of ER-regulated apoptosis in these cells when 
simultaneously treated with bortezomib. It can be concluded that the IRE1-XBP1 axis is central to the 
viability of (multiple myeloma) cells, and directing this pathway may lead to anti-tumor effects [205]. 
Furthermore, we recently presented evidence that simvastatin (Simva), through the activation of the 
IRE-1 arm of UPR, enhances temozolomide (TMZ)-induced cell death in U87, U251 glioblastoma cells. 
Moreover, our result revealed that IRE-1 regulated Simva-TMZ mediated autophagy flux inhibition 
and improved TMZ efficacy[22] .  

The involvement of XBP1s in triggering relapse of triple-negative breast cancer (TNBC) tumors 
in vivo has also been observed. After doxorubicin therapy, MDA-MB-231 xenografts initially 
experience a decrease in tumor size, followed by tumor regrowth once the therapy is stopped [24,206]. 
When XBP1 is suppressed in MDA-MB-231 xenografts, the regrowth of tumors following 
doxorubicin withdrawal is inhibited. Additionally, the use of the MKC8866 inhibitor to reduce IRE1 
RNase activity in MDA-MB-231 cells prevents regrowth after paclitaxel withdrawal, suggesting a 
correlation between XBP1s signaling and tumor regrowth [207].  

In addition to XBP1s, GRP78 overexpression has been identified to be strongly associated with 
chemotherapy impairment through certain molecular mechanisms [208,209]. Interestingly, during ER 
stress, GRP78 is capable of becoming anchored as a cell surface receptor [210]. This novel receptor 
can activate the PI3K/AKT signaling pathway and inhibit the transforming growth factor (TGF-β) 
pathway, to induce cell survival and growth [211]. Previous studies have suggested that upregulation 
of GRP78 may contribute to chemo resistance of a group of cancers, such as breast cancer, 
glioblastoma, and other aggressive gliomas [212,213]. This finding proposed that GPR78 could be 
considered as a promising link between metabolic alterations and tumor survival. Therefore, 
targeting GRP78 emerges as a potential approach to overcome chemotherapeutic failure in the 
coming years. 

2.1.3. Cross-talk between the PERK/eukaryotic translation initial factor 2α (eIF2α)/ ATF4/CHOP axis 
and autophagy 
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PERK/eIF2α/ATF4/CHOP pathway constitutes another branch of the UPR. PERK is a 
serine/threonine kinase is activated through both autophosphorylation and homodimerization upon 
releasing from GRP78 [214]. Once activated, PERK inhibits protein synthesis by phosphorylating 
eIF2α, disrupting the attachment of methionyl-tRNA and ribosomes [215]. Subsequently, 
phosphorylated eIF2α promotes ATF4 translation, aiding the ER in protein folding[216]. Moreover, 
the overexpressed ATF4 induces the translation of CCAAT/enhancer binding protein (C/EBP) 
homologous protein (CHOP), which contributes to ER stress-mediated apoptosis and is considered 
as a marker to evaluate the stimulation of the UPR [217].  

In association with autophagy, ATF4 plays a central role inin upregulating ATG12, an essential 
component of the ATG5-ATG12-ATG16L complex (figure 3), and critical for autophagosome 
elongation [218]. It has also been reported that ATF4 can directly bind to the cAMP response element 
binding site located in the light chain 3B (LC3B) promoter, inducing the expression of LC3B to trigger 
the autophagic flux [219]. Furthermore, in the context of melanoma, B-RAF proto-oncogene (BRAF)-
induced phosphorylation of PERK is pivotal for autophagosome generation[220]. Pharmacological 
suppression of PERK using GSK2606414, or siRNA-induced blockade of this serine/threonine kinase, 
significantly reduces the Lc3B II/Lc3 BI ratio [221]. Regarding CHOP, as a powerful transcription 
factor involved in autophagy, UPR and some other cellular processes, it has been reported that its 
overexpression induces the expression of ATG5 and BH3-only proteins like Bim and Puma.  

Furthermore, CHOP downregulates the expression of Bcl-2,facilitating the release of Beclin-1 
from this anti-apoptotic protein [217,222,223]. When CHOP collaborates with PERK in the form of 
PERK-CHOP pathway, it promotes the expression of tribbles-related protein3 (TRB3), an AKT 
blocker [224]. Upon AKT inactivation, it represses the phosphorylation of tuberous sclerosis complex 
2 (TSC2), resulting in inactivation of the mammalian target of rapamycin complex1 (mTORC1). The 
inactivated mTORC1 then dephosphorylates ATG13 and the ULK1/2 complex to provoke the 
formation of autophagosomes [225]. Moreover, the eIF2α/ATF4/CHOP pathway positively affects the 
expression of p62 to induce autophagic flux [226]. 

2.1.4. The role of PERK arm of UPR and autophagy in drug resistance and cancer cell survival 

As mentioned earlier, the activated PERK phosphorylates eIF2α and NRF2 after dissociating 
from GRP78 [227]. Phosphorylated NRF2, in turn, activates ROS-scavenging enzymes, making cells 
resistant to hypoxia [228]. Hence, the inhibition of PERK enhances chemosensitivity by increasing 
ROS accumulation [160,229]. GSK2656157 is a well-known PERK inhibitor that blocks the 
phosphorylation of eIF2α and the expression of ATF4 and CHOP, following the suppression of PERK 
autophosphorylation. GSK2656157 also refuses angiogenesis as a pivotal process in tumor cell growth 
and development [230]. More interestingly, PERK-induced up-modulation of cellular inhibitors of 
apoptosis (i.e., cIPA1 and cIPA2) can protect cells against tunicamycin-induced death [231].  

The PERK-eIF2α pathway has also been demonstrated to be up-regulated in chronic myeloid 
leukemia (CML) cells with high expression levels of BCR-ABL [232]. An intriguing study revealed  
that transfecting CML cells with dominant-negative mutants of PERK or dominant-negative eIF2α-
S51A mutant, significantly increases the apoptotic pathway activity in these cells when treated with 
imatinib [233]. Recent findings suggested that PERK arm of UPR is involved in the crucial effects of 
Simva-TMZ combination therapy, enhancing cell death and improving TMZ effectiveness in GBM 
cells. Surprisingly, Simva-TMZ, through PERK, causes the p62 accumulation and regulates 
autophagy flux inhibition in U87 and U251[22] . 

PERK activation has also been implicated in cervical cancer stem cells (CSCs), which exhibit 
resistance to ER stress-triggered apoptosis [234]. Consequently, pharmacological suppression of 
PERK and not IRE1 makes CSCs sensitive to ER-stress induced apoptosis. However, when these 
corresponding CSCs undergo cisplatin therapy, they become dependent on IRE1 rather than PERK. 
It can be concluded that CSCs defeat tumor progression-related stresses by triggering the PERK. 
Switching from PERK to IRE1 due to tolerating extra chemotherapeutic stress is actually a potential 
mechanism to protect cells from CHOP-induced cell death [24,234]. Consistent with these facts, 
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targeting the PERK-eIF2α axis emerges as another effective approach to overcome challenges 
associated with cancer therapy. 

2.1.5. Interplay between ATF6 and autophagy 

When ATF6, a third component of the Unfolded Protein Response (UPR), detects an elevation 
in the levels of misfolded proteins, it exposes Golgi localization signals to ensure smooth transport to 
the Golgi apparatus (GA). Subsequently, Site 1 and Site 2 proteases initiate the cleavage of ATF6, 
resulting in its activated form[235]. This activated ATF6 then translocates to the nucleus, where it 
binds to elements associated with endoplasmic reticulum (ER) stress. Upon binding, ATF6 enhances 
the expression of essential factors involved in proper protein folding, namely GRP78, XBP1, CHOP, 
and PDI (protein disulfide isomerase) [236].  

Atf6 has been reported to play an essential role in autophagy induction by assisting the death-
associated kinase 1 (Dapk1) [237]. The underlying mechanism of this type of autophagy induction is 
an interactive connection between ATF6 and C/EBP-β to generate a transcriptional complex to 
promote the expression of DAPK1 through binding to CRE/ATF elements located on the 
DAPK1 promoter [238]. Along with this finding, silencing of ATF6 with specific small hairpin RNAs 
(shRNAs) can significantly decrease the expression of DAPK1 and subsequent formation of 
autophagosomes. Indeed, DAPK1 is a major contributor to the formation of autophagosomes through 
phosphorylating of BECN. Upregulation of CHOP, XBP1, and GRP78 also contributes to ATF6-
triggered autophagy [239]. This axis has transformed ER stress-stimulated autophagy into a more 
complex process. 

2.1.6. The role of ATF6 arm of UPR/ autophagy in drug resistance and cancer cell survival 

Although ATF6’s role in cancer drug resistance is not fully understood, it has been revealed as 
a crucial contributor to chemoresistance. A great model has been described for ATF6-induced 
imatinib resistance in leukemia [240]. In this study, PDIA5 was identified as responsible for the 
activation of ATF6 and export of ER proteins in a way that PDIA5 impairment could mitigate the 
expression levels of ATF6-specific target genes. In addition, the down-regulation of ATF6 promoted 
chemosensitivity in imatinib-resistant leukemia cell line (K562R cells) [240]. ATF6 activation has also 
been demonstrated in tunicamycin or thapsigargin-treated melanoma, suggesting the essential role 
of ATF6 in protecting melanoma cells against ER stress-induced death [241].  

Beyond its role in drug resistance and cell survival, ATF6 has been reported to be involved in 
cancer recurrence [242]. The activation of ATF6α induced by p38 signaling has been shown in D-
HEp3 cell line. More interestingly, the number of viable D-HEp3 cells with silenced ATF6α expression 
significantly decreases after doxorubicin treatment. It is noteworthy that ATF6α exerts its anti-
chemotherapeutic effects through the activation of the mammalian target of rapamycin (mTOR) [243]. 
Therefore, targeting the ATF6 arm of the UPR presents another effective approach to overcome 
challenges associated with cancer therapy (Figure 3).  
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Figure 3. Schematic views of crosstalk between the UPR, autophagy, tumor survival, and drug 
resistance. The presence of unfolded proteins inside the ER lumen, accompanied by the ER stress, 
promotes the dissociation of GRP78 from IRE1 and PERK, leading to dimerization and auto-
phosphorylation of these two proteins and subsequent activation of XBP1 and eIF2α, respectively. 
The activated XBP1 and eIF2α (i.e., XBP1s and phosphorylated eIF2α) then trigger their downstream 
targets to modulate autophagic flux, as well as tumor survival/drug resistance. On the other hand, 
ATF6, the UPR’s third arm, activates ATF6-N to target autophagy and tumor survival/drug resistance. 
GRP78, by itself, regulates particular pathways in order to stimulate and/or suppress tumor survival 
and chemoresistance. Follow the arrows for more detailed information. AKT, Protein kinase B; ASK1, 
Apoptosis signal-regulating kinase 1; ATF6, Activating transcription factor 6; ATG, Autophagy-
related protein; BCL2, B-cell lymphoma apoptosis regulator 2; BIK, BCL-2 interacting killer; Ca, 
Calcium; CDK, Cyclin-dependent kinase; CHOP, C/EBP homologous protein; DDIT3, DNA damage 
inducible transcript 3; eIF2α, Eukaryotic initiation factor-2α; ER, Endoplasmic reticulum; FIP200, 
Focal adhesion kinase family-interacting protein of 200 kDa; FOXO1, Forkhead box O1 ; GA, Golgi 
apparatus; Gln, Glutamine; GRP78, Glucose-regulated protein of 78 kDa; HIF1α, Hypoxia inducible 
factor 1α; HSPA5, Heat shock protein family A member 5; IRE1, Inositol-requiring enzyme 1; LC3, 
Light chain 3; mTOR, Mammalian target of rapamycin; NRF2, Nuclear factor-erythroid factor 2-
related factor 2; p, Phosphate; PDIA5, Protein disulfide isomerase family A member 5; PERK, Protein 
kinase RNA-like endoplasmic reticulum kinase; PI3K, Phosphoinositide 3-kinase; pJNK1, 
Phosphorylated c-Jun N-terminal kinase 1; RheB, Ras homolog enriched in brain; ROS, Reactive 
oxygen species; TGF-β, Transforming growth factor-βeta; TRAF, Tumor necrosis factor receptor-
associated factor; TRIB3, Tribbles pseudokinase 3; TSC1/2, Tuberous sclerosis complex 1/2; ULK1/2, 
Unc-51 like autophagy activating kinase 1/2; XBP1, X-box-binding protein 1; XBP1s, spliced XBP1. 

2.1.6. Other pathways involved in ER stress-induced autophagy 

Based on previous studies, proper ER function positively supports autophagic flux, which must 
be initiated and elongated accurately. Hence, inhibiting a ER key regulator and/or molecular 
chaperone, e.g., GRP78, can disrupt ER function, leading to the repression of ER stress-triggered 
autophagy [244,245]. In this regard, Cook et al. reported that activating AMPK and TSC2 by GRP78 
could stimulate autophagy in breast cancer by suppressing the mTOR [246]. P38 MAPK signaling 
cascade is another central pathway to the mentioned phenomenon; the accumulation of misfolded 
acid α-glucosidase (GAA) can stimulate ER stress, which enhances LC3 II levels in Pompe disease. 
Interestingly, a significant decrease in p38 phosphorylation, achieved by employing a 
pharmacological chaperone for misfolded GAA and/or a particular inhibitor of p38 MAPK, can 
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markedly mitigate p38-correlated ER stress [247]. SB203580 is one of these inhibitors that can 
suppress ER stress-triggered autophagy. It is important to highlight that the IRE1/ASK1 pathway 
leads to the phosphorylation of p38. Additionally, within the IRE1/ASK1 axis, JNK is a commonly 
targeted component, often involving TRAF2. However, it's noteworthy that no alterations in the 
levels of phosphorylated JNK and ERK have been documented in cells exposed to ER stress. As a 
result, the exact pathway among the three MAPK pathways that serves as an autophagy inducer 
during ER stress conditions appears to remain uncertain. [214].  

ER stress promotes the translocation of misfolded proteins to the cytoplasm, where they undergo 
ubiquitination and subsequent removal by the by the ubiquitin-proteasome system, a process known 
as ER-associated degradation (ERAD) [248,249]. When the ERAD is insufficient for degradation, ER 
stress-induced autophagy serves as  an alternative process to eliminate misfolded proteins in order 
to maintain proteostasis [250]. Autophagy may also neutralize ER expansion by sequestering the ER 
into double membrane-bounded and autophagosomal-like structures [251]. ER stress caused by 
hypoxia/ischemia can be reduced in vivo by the powerful autophagy activator rapamycin [169] , but 
it can be completely restored by the pharmacological autophagy inhibitor 3-methyladenine (3-
MA).[252].  

In general, chemoresistance can occur due to multiple factors such as amplified drug efflux, 
changes in drug targets, drug inactivation, all of which contribute to accelerating drug removal from 
cancerous cells.  The potential role of UPR and the UPR-autophagy network in cancer drug 
resistance is now evident. Cancer cells typically employ the adaptive power of the UPR arms to 
ensure survival when exposed to chemotherapeutics. Therefore, suppressing XBP1, GRP78, ATF6, 
and ATF4 is believed to contribute to the re-sensitization of chemoresistant cells, suggesting that all 
UPR’s arms and their downstream factors can be considered as potential targets to overcome drug 
resistance. Multiple processes, such as oxidative stress and ROS generation, occur upstream or 
downstream of the UPR, and they may be directly or indirectly involved in chemoresistance. Since it 
is crucial to understand the interplay between these up-/downstream events and UPR, the following 
section will provide comprehensive information in this regard. 

3. NRF2 controls UPR and proteostasis  

As mentioned before, ER stress resulting from the aggregation of misfolded proteins induces 
UPR by stimulating three signaling branches equipped with the IRE1-XBP1, PERK -eIF2a, ATF4, and 
ATF6 [253]. The deposition and aggregation of misfolded proteins trigger the unrestricted generation 
of ROS from mitochondria, ER, and other sources, which could activate NRF2 [254]. The NRF2-
KEAP1-ARE pathway is a flexible cellular response that safeguards against oxidative and xenobiotic 
stress. ROS or electrophile-induced changes in Keap1 cysteine sites prevent NRF2 degradation, 
leading to its accumulation in the cytosol. NRF2 then enters the nucleus, partnering with MAF 
proteins to activate genes with ARE sequences in their regulatory regions. This process enhances the 
cell's ability to counter stress (Figure 4A, canonical pathway) [255].  

During cellular stress, NRF2 triggers the activation of cytoprotective genes, which encode a 
network of enzymes collaborating to detoxify drugs through phases I, II, and III, and to eliminate 
pro-oxidants, maintaining cellular hemostasis. Notably, SQSTM1/p62, a protein acting as an 
autophagy adapter, is instrumental in orchestrating the formation of protein aggregates marked for 
autophagic turnover. This suggests that p62 plays a role in selectively removing protein burdens via 
autophagy. In SQSTM1/p62, the 349-DPSTGE-354 motif located in its KEAP1-interacting region (KIR) 
domain is pivotal. This motif establishes a direct interaction between p62 and KEAP1 [256]. 
Consequently, p62 sequesters KEAP1 within autophagosomes, hindering the ubiquitination of NRF2. 
As a result, the NRF2 signaling pathway becomes activated, contributing to cellular defense against 
stress-induced damage[255] (Figure 4B, noncanonical pathway). 

Moreover, stress-induced PERK activity initiates the phosphorylation of NRF2, resulting in the 
dissociation of the NRF2/KEAP1 system and subsequent activation of NRF2 [257]. NRF2 acts as a 
pivotal central hub for sensing critical signals arising from the accumulation of misfolded proteins, 
orchestrating a coordinated transcriptional response. This function mirrors that of SKN-1, the C. 
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elegans homolog of NRF2, which triggers certain aspects of UPR genes, such as XBP1 and ATF6, 
thereby promoting a UPR strategy to preserve endoplasmic reticulum integrity and protein 
homeostasis [258]. Notably, the activation of UPR target genes by SKN-1 may be mediated through 
NRF1[259]. Additionally, NRF2 contributes to the induction of ATF4 expression, a protein closely 
associated with amino acid metabolism and the ability to withstand oxidative stress [260]. NRF2 and 
ATF4 form a heterocomplex to activate the expression of target genes to, enabling the cell to 
withstand proteotoxic insults [39].  

Furthermore, NRF2 binds to the promoters of genes coding proteasome maturation protein 
(POMP), an intermediate in proteasome assembly and activates its expression [261]. The heightened 
activation of NRF2 in cancers is strongly associated with increased proteasome activity and resistance 
to the proteasome blocker bortezomib [262]. In conclusion, NRF2 not only enhances proteasome 
activity but also upregulates the expression of antioxidant genes, facilitating cellular adaptation to 
stress. [39]. 

 

Figure 4. The KEAP1–NRF2 pathway. (A)Canonical KEAP1-NRF2 Pathway:(1) The KEAP1 
homodimer functions as an adaptor protein for the Cul3-based Rbx1 ubiquitin ligase complex. It 
recognizes NRF2 by binding to its ETGE motif and DLGex motif, crucial for proper ubiquitination by 
Rbx1. Continuous ubiquitination tags NRF2 for degradation by the proteasome. (2) Oxidative stress 
or electrophilic exposure causes specific cysteine residues on KEAP1 to be modified by reactive 
oxygen species and electrophiles (OX). This results in NRF2 dissociating from KEAP1. (3) Released 
NRF2 translocates to the nucleus, collaborating with transcription factors sMAFs, to activate target 
genes. (B) P62-Mediated KEAP1-NRF2 Pathway: (1) Similar to the canonical pathway, the KEAP1-
Cul3-Rbx1 complex interacts with and ubiquitinates NRF2, leading to its proteasomal degradation. 
P62, too, is targeted for autophagic degradation through its ubiquitination by the ubiquitin ligase. (2) 
Selective autophagy triggers P62-mediated pathway in response to factors like defective proteostasis, 
mitochondrial dysfunction, and invasive microbes. Phosphorylation of P62's Ser349 by mTORC1, CK1 
(CSNK1A1), TAK1, and PKCδ hampers KEAP1-DLGex motif interaction, preventing new NRF2 from 
binding to KEAP1. (3) Stabilized NRF2 translocates to the nucleus, inducing the transcription of its 
target genes, including P62. (4) P62's ubiquitination on lysine 420 by KEAP1-Cul3-Rbx1 complex 
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augments its autophagic degradation, whether bound to KEAP1 or not. ARE, antioxidant response 
element. 

3.1. NRF2 modulates autophagy  

Autophagy relies on a coordinated collaboration among a group of proteins that collectively 
assemble autophagosomes and autolysosomes [263,264]. Additionally, selective cargo-recognizing 
proteins identify specific targets and guide them toward degradation[265,266]. Nrf2 contributes to 
the upregulation of mRNA levels for autophagy-related genes like Sqstm1/p62, calcium-binding and 
coiled-coil domain-containing protein 2 (Calcoco2/Ndp52), unc-51-like kinase 1 (Ulk1), autophagy 
protein 5 (Atg5), and gamma-aminobutyric acid receptor-associated protein-like 1 (Gabarapl-1). These 
genes collectively contribute to facilitating the autophagy process  [267]. Surprisingly, in conditions 
induced by NRF2, a therapeutic focus on promoting autophagy might prove ineffective. 
Paradoxically, insufficient autophagy results in the accumulation of oxidized proteins or organelles, 
triggering NRF2 activation. Notably, a deficiency in autophagy results in the buildup of p62, a 
multifunctional cargo receptor that can sequester KEAP1 and stabilize NRF2, ultimately leading to 
NRF2 induction [268]. Hence, a reciprocal loop is formed between p62 and NRF2, establishing a 
positive feedback mechanism that governs a multitude of cellular processes. [39,265].   

The function of autophagy in cancer is slightly paradoxical; it can contribute to eliminating 
tumor cells in some instances, while in others, cancer cells may suppress autophagy as a defense 
against nutrient deficiency, oxidative stress, and other stressors [269-272]. Autophagy defects can 
potentially promote cancer through Nrf2 induction. In a study, the inhibition of the critical autophagy 
gene Atg7 in the liver of mice induced accretion of p62, Nrf2 stimulation, and the development of 
hepatocellular carcinoma (HCC) [273]. In addition, ectopic expression of p62 was sufficient to activate 
NRF2 and promote development of HCC [265], highlighting the fundamental role for p62 elevation 
in HCC generation downstream of autophagy deficit. In pancreatic ductal adenocarcinoma, 
perturbation of inflammation- induced autophagy also triggered p62-mediated stimulation of NRF2, 
contributing to neoplasm progression through NRF2-intervened MDM2 induction [274]. 

In cancers, not only NRF2 stimulation through p62 is pro-tumorigenic, but it also performs a 
vital role in the cellular response to autophagy defects in normal cells. NRF2 preserves small intestine 
damage and animal death after entire body deletion of ATG7 and TP53 [20], implying that NRF2 
induction by p62 is crucial for cellular adaptation and homeostatic management. NRF2 may regulate 
the expression of specific proteasome subunits, which could clarify why it is protective in the 
background of autophagy deficiency [265]. Furthermore, in response to proteasome defects, NRF2 is 
also activated and subsequently collaborates with autophagy to respond to the stress[275]. In 
summary, these studies emphasize the critical role for NRF2 in responding to autophagic defect 
and/or proteasomal strain [265]. Unresolved ER stress can trigger programmed cell death, but certain 
tumor cells evade ER stress signaling to promote their growth, and NRF2 activation plays a role in 
this evasion[276]. For instance, the PERK enzyme inhibits cap-dependent translation to alleviate 
proteotoxic stress while promoting ATF4 expression[277]. ATF4 is associated with resistance against 
oxidative stress, enhanced amino acid metabolism, and autophagy induction, possibly through 
interaction with NRF2. NRF2 and ATF4 mutually induce each other's expression, forming a positive 
feedback loop[253] . NRF2 and ATF4 prevent ER stress-induced cell death, enabling cancer cells to 
endure proteotoxic stress. Furthermore, unresolved ER stress triggers the UPR and activates the ER-
associated degradation (ERAD) pathway. NRF2-induced proteasome genes aid in ERAD, thus 
reducing proteotoxic stress [253,257]. 

4. Evidence show overexpression of NRF2 promotes post-initiation stages of cancer 

Although the overexpression of NRF2 is not sufficient to launch tumorigenesis, its upregulation 
has been established in certain types of cancers. NRF2 overexpression contributes to carcinogenesis 
by amending oxidative stress and promoting cell growth in different ways, such as over activation of 
pentose phosphate pathway (PPP), serine synthesis, autophagy, and weakening the immune system 
[76]. In a murine Kras oncogenic pancreatic cancer model, research about the suppressive action of 
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oxidative stress on carcinogenesis has demonstrated that Nrf2 is needed for Kras-guided pre-invasive 
pancreatic intraepithelial neoplastic lesions. Likewise, through a CRISPR-Cas9 approach, deletion of 
Keap1 has been shown to hasten Kras-guided lung adenocarcinoma [76,278]. Since cancer cells 
generate higher levels of ROS to sustain growth and must tolerate oxidative stress within metastasis, 
it is highly possible that overexpression of NRF2 gives advantages to the tumor, so the subsequent 
upregulation of antioxidant genes inhibits ROS-induced cell apoptosis [279]. In addition to the 
increased activity of antioxidant enzymes that eliminate ROS, NRF2 also handles the transcription of 
PPP genes in both the oxidative and non-oxidative arms. The overexpression of this pathway could 
contribute to the existence and proliferation of cancer cells by enhancing the production of NADPH 
and ribonucleotides [280].  

In addition to the elevation of antioxidant enzymes regulated by NRF2, there are alternative 
strategies available to boost glutathione (GSH) levels during advanced cancer stages. One effective 
approach involves increasing the production of NADPH through the folate pathway. Other 
techniques encompass activating mTOR signaling, raising mitochondrial metabolism, and facilitating 
glutamine flux through estrogen-related receptor α (ERRα) pathways [281]. Furthermore, the indirect 
influence of NRF2 over ATF4 governs serine synthesis by controlling the transcription of genes 
encoding phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase-1 (PSAT1), 
and serine hydroxymethyltransferase-2 (SHMT2). While serine serves as a vital intermediate for 
glutathione and nucleotide synthesis, excessive activation of NRF2 can stimulate cancer cell growth 
[260]. In conjunction with antioxidant systems and the pentose phosphate pathway (PPP), NRF2 also 
impacts the transcription of proteasome subunits and components within the autophagy complex. 
The hyperexpression of NRF2 activates this system, potentially providing support for cancer cell 
viability and growth [76]. Notably, autophagy plays a crucial role in suppressing liver carcinogenesis 
by preventing the buildup of defective mitochondria and mitigating oxidative stress. This is 
exemplified through studies involving mice with mosaic deletion of Atg5 and hepatocyte-specific 
deletion of Atg7, where hepatic adenomas developed [282]. However, before tumor stabilization 
occurs, autophagy typically stimulates cancer cell proliferation by recycling unnecessary cellular 
components to fuel oxidative phosphorylation, thus enabling these cells to overcome nutrient stress 
[76].  

Hence, the role of autophagy in cancer is context-dependent and might be linked to the timing 
of NRF2 stimulation via an unconventional mechanism [253]. Autophagic flux intensifies in response 
to oxidative, proteotoxic, and metabolic stresses, aiming to restore homeostasis and impede genome 
instability, inflammation, and overall tissue damage [283]. Notably, regulated and effective 
autophagy in normal cells or tissues acts to suppress the initiation of cancer [253]. However, many 
cancer cells rely on autophagy to withstand heightened levels of proteotoxic, metabolic, oxidative, 
and hypoxic stress. Notably, cancers carrying KRAS mutations heavily depend on extensive 
autophagy for proliferation and invasion [253,284]. Disrupting autophagy in NSCLC through the 
activation of KrasG12D and BrafV600E, either alone or combined with Trp53 deletion, halts cancer 
progression and leads to less severe damages[285]. That is why autophagy inhibitors are utilized in 
cancer treatment [253,286].  

Yet, in cases where these agents fail to effectively initiate cellular death, they may inadvertently 
trigger NRF2 via non-canonical pathways, resulting in chemo-resistance and prolonged cell survival. 
Moreover, given NRF2's role in governing the transcription of autophagy-related genes like 
Sqstm1/p62, Calcoco2, Ulk1, Atg5, and Gabarapl1, non-canonical activation of NRF2 could undermine 
the effectiveness of treatments targeting autophagy [253,267]. Nonetheless, a combined therapeutic 
strategy addressing both autophagy and Nrf2 could potentially overcome this resistance. On the 
other hand, impaired autophagy, achieved through genetic disruption of components like ATG5, 
ATG7, or BECN1, has been shown to trigger liver cancer [282]. The impairment of autophagy (via 
deletion of ATG5, ATG7, or BECN1) leads to an accumulation of SQSTM1/p62, resulting in 
subsequent non-canonical sustained activation of NRF2 [253]. Interestingly, studies have illustrated 
that the elimination of Sqstm1/p62 reinstates the carcinogenicity linked to malfunctioning autophagy 
in mice, which corresponds to a reduction in Nrf2 levels [282]. Correspondingly, Nrf2 deletion 
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inverses the impacts of malfunctioned autophagy made by deletion of Atg5 in mouse liver and 
lessens carcinogenesis [77,253]. 

4.1. NRF2 as double-edged sword in cancers 

Cancer chemopreventive agents serve to safeguard normal tissues from the initiation of 
carcinogenesis by activating NRF2-targeted genes. These genes encode enzymes that mitigate the 
genotoxic and cytotoxic effects of carcinogens. However, extended activation of NRF2 in cancer cells 
can predictably result in resistance to both drug and radiotherapy treatments. Thus, NRF2 
demonstrates a dual nature, acting as a "double-edged sword" by facilitating both cancer 
chemoprevention and the promotion or progression of tumors [76]. The potential adverse 
consequences arising from the overstimulation of NRF2 in pre-neoplastic lesions and cancer cells 
have been termed the "dark side" of this transcription factor by Donna Zhang's research group  [287]. 
This aspect is underscored by clinical observations linking elevated NRF2 expression to unfavorable 
prognosis and decreased overall survival rates among patients with lung, head and neck, esophageal, 
gastric, liver, and colorectal cancers.  [76].  

Tumor cells are theoretically more sensitive to oxidative stress than normal cells due to their 
high levels of ROS induced by activation of oncogenes. Therefore, therapeutic approaches aiming to 
increase ROS production or decrease their antioxidant capacity have been considered as a means of 
generating selective toxicity in cancers [288].  

4.2. Targeting of Nrf2 Signaling to fight Chemo-resistance: NRF2 inhibitors 

Regarding the distinct NRF2 levels between cancer and normal cells, inhibiting NRF2 activity 
with small molecular inhibitors might be a safe and promising strategy to overcome multidrug 
resistance in cancers. For example, sequential therapy of breast cancer cells with vitamin C and 
quercetin has been found to reduce the expression of NRF2 at both the mRNA and protein levels 
[289]. Additionally, combination therapy with vitamin C and quercetin has been reported to enhance 
the cytotoxic feature of chemotherapeutic drugs in breast cancer cells as compared with the drug 
treatment alone [290].Developing novel and potent NRF2 inhibitors is undoubtedly a challenging 
task, although only a small number of NRF2 inhibitors have been proposed for further preclinical 
experiments. [291].  

There is a large number of synthetic molecules and flavonoids that inhibit Nrf2, but in this 
review, we only focused on NRF2 inhibitors studied based on data from various preclinical and 
experimental models. Studies have frequently pointed to the inhibition of the NRFrf2 pathway as a 
promising therapeutic choice for the treatment of cancer, which requires more investigation and 
authentication in the clinical settings. The inhibitors we have discussed, as outlined in (Table 2), 
exhibit a range of inhibitory mechanisms. These mechanisms include the inhibition of overall protein 
synthesis (brusatol, halofuginone, camptothecin/CPT), disruption of NRF2 nuclear translocation 
(trigonelline, ATRA), inhibition of DNA binding (ML385), suppression of associated kinase pathways 
(clobetasol propionate, flavonoids), initiation of NRF2 degradation (clobetasol propionate), or an 
effect that remains undisclosed (triptolide, IM3829, AEM1). 

The use of this approach is exemplified by well-known instances such as the quassinoid brusatol 
[292], as well as other compounds like retinoic acid [261] and natural flavonoids such as luteolin, 
apigenin, chrysin, and wogonin  [293-296]. Brusatol, derived from the natural product of Brucea 
javanica, functions as an NRF2 inhibitor, validated through a stable ARE-luciferase reporter gene cell 
line known as MDA-MB-231-ARE-Luc  [228]. Recent studies have shown that it effectively reduces 
NRF2 protein levels across various cell lines, including MDA-MB-231, Hela, Ishikawa, and SPEC-2, 
while NRF2 mRNA levels remain unaffected. Furthermore, brusatol does not impact KEAP1 protein 
and mRNA levels. Notably, it sensitizes A549 cells and xenografts to a range of chemotherapeutic 
drugs including carboplatin, 5-fluorouracil, etoposide, and paclitaxel [292].  Histological investigation 
showed that brusatol treatment decreased the expression of antioxidant genes such as NRF2, solute 
carrier 7A11 (SLC7A11), GCLC, and GCLM in a xenografted glioma model [297]. 
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Table 2. Research Summary on Nrf2-ARE Inhibitors in Preclinical and Experimental Models. 

Classific
ation 
and 
origins 

Compou
nd 

Structure 
Dose and 
time 

Mechani
sm 

Model and 
effect 

Re
fs. 

 

Brucea 
javanica 

Plant 

Brusatol 
(Bru) 

 

2 mg/kg, 
five times 
for 16 days 
via 
intraperito
neally 

↓ 
NRF2/GS
H axis 

↓tumor 
mass 

↓NRF2, 
SLC7A11, 
GCLC, and 
GCLM 
expression 

Six-to-eight-
week-old 
NSG mice 

 

[29
8] 

 

Flavonoi
d 

Luteolin 
(Lut) 

 

40 mg/kg 

BW/day; 
14 days 

Unclear 

↓NRF2 
protein 
levels in 
mouse liver 
and 
intestine 
(C57BL/6, 
Male, 6 
weak old) 

[29
3] 

Flavonoi
d 

Apigenin 
(Api) 

 

In vivo: 50 
mg/kg 

BW/day; 
every 3 
days 

for 7 times 

PI3K/Akt 
pathway: 
↓p-Akt 

↓tumor size 
in male 
BALB/c 
nude mice 
(aged 5 
weeks) that 
were 
implanted 
with BEL-
7402 cells; 
↓level of 
NRF2 
protein  

[29
4] 
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Flavonoi
d 

Chrysin 
(Chry) 

 

40 and 80 
mg/kg/day 
by oral 
gavage; 
once a day, 
5 times per 
week 

↓ERK/NR
F2 
signaling 
pathway 

↓Tumor size 
of mice 

(male 
BALB/c 
athymic 
nude mice, 
4–6 weeks) 

↓translocati
on of NRF2 
into the 
nucleus and 
↓ expression 
of (HO-1) 
and NQO-1 

[29
5] 

Flavonoi
d 

Wogonin 
(Wog) 

 

40 mg/kg 
intravenou
sly, once 
every 
other day 
for 30 days 

↓NF-
κB/NRF2 
pathway 

NOD/SCID 
immunodefi
cient mice 
(aged 5–6 
weeks) 

↓ nuclear 
NF-κB p65, 
p-Stat3 and 
NRF2 
expression 
and 
↓phosphory
lation of 
IKKα and 
IκBα ↓NF-
κB p65 and 
NRF2 
expression 
in spleen 

[29
6] 

A 
tradition
al 
Chinese 
medicine 

triptolide 

 

0.25 
mg/kg, by 
intraperito
neal every 
other day 
for 10 days 

transcript
ional 

regulatio
n of 
NRF2 

↓Tumor 
growth and 
weight 

C57BL/6 
mice (6–8 

[29
9] 
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weeks, 
male) 

↓NRF2 and 
downstrea
m genes 
Gclc and 
Gclm 

increases 
the 
chemosensit
ivity of 
xenograft 
tumors to 
epirubicin 

An 
alkaloid 

Trigonell
ine (Trig) 

 

0.02 mg/kg 
intraperito
neally for 
21 days 

↓ a 
nuclear 
level of 
activated 

NRF2 
protein 

 

↓tumor 
growth and 
weight 

8-week-old 
female 
SCID–beige 
mice 

↑responsive
ness of 
various cell 
lines to both 
anticancer 
drugs and 
apoptosis 
induced by 
TRAIL. 

[30
0] 

Vitamin 
derivativ
e 

all-trans-
retinoic 
acid 

 

10 µM, 48h 

40 mg/kg, 
three times 
weekly via 
intraperito
neally 

↓NRF2/P
OMP axis 

↓cell 
viability, 

purified 
CD138+ 
plasma cells 
from 
patients 

[26
1] 
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with 
myeloma 

↓tumor 
growth  

6-week-old 
non-obese 
diabetic/sev
ere 
combined 
immunodefi
ciency 
(NOD/SCID
) mice 

 

Aniline-
based 
compoun
d 

IM3829 
(4-(2-
Cyclohex
-
ylethoxy) 
aniline) 

 

5mg/kg/da
y), 
intraperito
neally for 4 
days 

↓NRF2-
binding 
activity 
and 
expressio
n of 

NRF2 
target 
genes, 
increase 
ROS 
accumula
tion in 
irradiate
d cell 

↓tumor 
growth, 

without 
changes in 
body 
weight, 
Five-week, 
female, 
athymic 
BALB/c 
nude mice 

[30
1] 

A probe 
molecule 
that 
binds to 
Nrf2 

ML385 

 

30 mg/kg 
daily 
Monday to 
Friday), 
intraperito
neally for 3 
weeks 

blocks 
NRF2 
transcript
ional 
activity 

↓tumor 
growth, 
athymic 
nude mice, 
↓NRF2, 
NQO1, and 
ABCG2 
expression 

[30
2] 
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A 
chemical 
substanc
e 

ARE 
expressio
n 
modulat
or 1 
(AEM1) 

 

50 mg/kg, 

BW; twice 
a day for 
10 days 

Unclear 

↓Tumor 
growth of 
mice which 
were 
implanted 
with A549 
cells (Nude 
mice, Male, 
6 wk old) 

[30
3] 

A 
febrifugi
ne 
derivativ
es 

halofugi
none 

 

0.25 
mg/kg, 
every day 
intraperito
neally 

Inducing 
a cellular 
amino 
acid 
starvatio
n 
response 

that 
repressed 
protein 
level of 
NRF2 

↓tumor 
growth, 6–
8-week-old 
male nude 
mice, 
enhances 
the 
anticancer 
effects of 
cisplatin. 

without 
severe 
toxicity 

[30
4] 

Corticost
eroid 
drug 

Clobetas
ol 
propiona
te 

CP (0.5 or 
1 mg/kg, n 
= 5 per 
group) 
were 

intraperito
neally 
injected 
every 2 
days (3 
days per 
week) for 
40 days. 

↓NRF2 in 
a GR and 
GSK3-
depende
nt 
manner 

Balb/c-nu 
mice (6–8 
weeks). 
↓NRF2 and 
the 
expression 
of its key 
targets in 
KEAP1 
mutant 
NSCLCs 
and 
induction of 
oxidative 
stress. 
↓tumor 
growth 

[30
5] 
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and 
shrinkage of 
tumor size 

Purified 
from 
Streptom
yces 

sp. 3728-
17 strain 

K-563 

 

100 mg/kg, 
subcutane
ously 

to the mice 
twice a 
day for 1 
day 

↓Keap1/
NRF2 
pathway 

Male 

severe 
combined 
immunodefi
cient (SCID) 
mice, 5 
weeks’ old 

↓expression
s of 
Keap1/NRF
2 pathway 

Targeted 
genes 
(HMOX1, 
GCLC, 
GCLM,AKR
1C1, ME1, 
NQO1, and 
TXNRD1) 

[30
6] 

Anti-
tumor 
drug 

Camptot
hecin 

 

CPT (3 
mg/ kg 
body 
weight) 
were 
intraperito
neally (IP) 
injected 
twice a 
week for a 
total of 
three 
times. 

↓NRF2–
ARE 
pathway 
activity 

↓tumor 
growth 
BALB/Cnu/
nu mice (4–
6 weeks, 
male). 
Sensitizatio
n of a 
variety of 
cancer cells 
and a 
xenograft 
hepatocellul
ar 
carcinoma 
model to 
chemothera

[30
7] 
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peutic 
drugs 

Type 2 
diabetes 
drug 

Metformi
n 

 

200 
µg/mL, 
diluted in 
drinking 
water and 
administer
ed for day 
22 

↓NRF2, 
HO-1, KI-
67 and 
PCNA 
expressio
n 

 

↓tumor 
growth, 
Female 
BALB/C 
nude mice 
(6-8 weeks 
of age) 
enhancing 
the anti-
cancer effect 
of EGCG 

on NSCLC 
xenografts 

[30
8] 

Cardiac 
glycoside 
drug 

Digoxin 

 

0.1 mg/kg, 
daily, i.g 
for 24 days 

↓Activity 
of 

NRF2 
through 
suppressi
ng 
PI3k/Akt 
signaling 
pathway 

↓tumor 
growth 

In female 
BALB/c 
nude mice 
(aged 6 
weeks, 
weighing 18 
± 2 g), the 
resistance to 
gemcitabine 
was 
effectively 
reversed by 
inhibiting 
NRF2 in 
SW1990/Ge
m and Pac-
1/Gem cells. 

[30
] 

These compounds possess drawbacks like lack of specificity and potential off-target effects. For 
instance, brusatol exhibits a global protein translation suppression effect [228]. Luteolin (3′,4′,5′,7-
tetrahydroxyflavone) reduces both NRF2 mRNA and protein levels in A549 cells by promoting NRF2 
mRNA degradation, sensitizing them to antitumor drugs. In mice, luteolin treatment decreases NRF2 
protein levels and reduces tumor size in the liver and intestine  [293]. Apigenin (4′, 5, 7-
trihydroxyflavone) and chrysin (5, 7-dihydroxyflavone) also decrease NRF2 mRNA and protein 
levels, rendering hepatocellular carcinoma BEL-7402 cells more responsive to the anti-tumor drug 
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doxorubicin. Recent research highlights that apigenin and chrysin's NRF2-suppressive effects stem 
from inhibiting the PI3K/AKT pathway. Notably, apigenin treatment induces tumor size reduction 
in mice implanted with hepatocellular carcinoma cells. [294].  

Notably, apigenin and chrysin exhibit direct inhibition of the PI3K/AKT pathway, a critical 
regulator of cancer cell proliferation [228,294]. Their distinct actions on cancer cells compared to 
normal cells, along with their low toxicity, make them promising candidates for cancer treatment. 
Another compound, wogonin (5, 7-dihydroxy-8-methoxyflavone), derived from the traditional 
Chinese herb Scutellariae radix, has emerged as an NRF2 inhibitor methoxyflavone) [228]. Wogonin 
effectively counteracts drug resistance in various cell lines, including human breast adenocarcinoma 
MCF-7/DOX, human myelogenous leukemia K562/A02, and HepG2 cells by suppressing NRF2 
mRNA and protein expression. Notably, it enhances the anticancer effects of Adriamycin in leukemia 
by inhibiting pY705-Stat3 and NRF2 signaling pathways[296]. 

Triptolide, an agent from traditional Chinese medicine, has been proven to effectively inhibit the 
expression and transcriptional activity of NRF2 in various cancer cell types, including non-small cell 
lung cancer (NSCLC) and liver cancer cells. This suppression of NRF2 activity leads to enhanced 
chemosensitivity of cancer cells to antitumor drugs both in laboratory settings and in a xenograft 
tumor model of lung carcinoma cells. [299]. 

Trigonelline, an alkaloid found in various plants and coffee, has the potential to enhance cell 
susceptibility to apoptosis by inhibiting the nuclear translocation of NRF2. This action is 
accompanied by a reduction in proteasomal gene expression and proteasome activity[228]. The 
favorable safety profile of this natural coffee constituent in both regular consumption and therapeutic 
applications suggests its viability for combination therapy in pancreatic and other types of 
cancers.[300]. All-trans-retinoic acid (ATRA), also identified as tretinoin, is a vitamin in the retinoid 
family of medicines [228]. As an NRF2 inhibitor, ATRA diminishes cellular levels of NRF2 and boosts 
the anti-prolife\rative and pro-apoptotic actions of bortezomib in resistant cells while reducing 
proteasome activity. The combination therapy with all-trans-retinoic acid plus bortezomib exhibited 
great activity versus primary patient samples and in a mice-bearing bortezomib-resistant myeloma 
model [261]. A number of research teams have purified several chemical libraries for small molecules 
that hinder NRF2 activity with various cell-dependent reporter analyses [228]. Employing ARE-
directed luciferase assays, researchers found compounds such as 4-(2-cyclohexylethoxy) aniline 
(IM3829) [301], ML385 [302], halofuginone [304], and clobetasol propionate [305] were powerful 
suppressors of NRF2 activity. 

IM3829 stands as the first synthetic NRF2 inhibitor, as revealed by Song et al. Their pursuit 
involved screening a synthetic compound library of 8000 substances through a HEK293 cell-based 
ARE-luciferase reporter assay, leading them to identify IM3829 [4-(2-cyclohexylethoxy) aniline] as a 
small-molecule NRF2 blocker  [228]. This compound was found to decrease the mRNA levels of 
NRF2 and its target genes, HO-1 and NQO1, in both H1229 and A549 cells. In tandem with irradiation 
(IR) therapy, IM3829 inhibited the nuclear translocation of NRF2, increased ROS levels in lung cancer 
cells, and significantly delayed tumor growth in H1299 and A549 xenograft models, surpassing the 
effects of IR-only treatment or Dimethyl sulfoxide (DMSO). Overall, IM3829 holds potential as a 
radiosensitizer for non-small cell lung cancer (NSCLC) [301]. Moving on, ML385 selectively 
suppresses the growth of KEAP1-mutated NSCLC A549 and H460 cells while leaving normal lung 
epithelial BEAS2B cells, possessing wild-type NRF2 and KEAP1, unaffected. Additionally, ML385 
enhances the sensitivity of NSCLC cells to the chemotherapeutic drug carboplatin both in vitro and 
in vivo. [302]. 

In a recent study, a compound called ARE expression modulator 1 (AEM1) has been identified 
as a potent suppressor of antioxidant response element (ARE) activity. It effectively reduces ARE-
luciferase activity in 3T3 cells and downregulates HO-1 expression in A549 cells with an IC50 of 650 
nM. AEM1 also enhances the susceptibility of A549 cells to the cytotoxic effects of chemotherapy 
drugs like etoposide, 5-fluorouracil, and doxorubicin. In vivo experiments have shown that AEM1 
can inhibit tumor growth in an A549 xenograft-model. [303]. 
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Halofuginone, derived from febrifugine and known for its low toxicity, has been employed as 
an animal antibiotic [309]. It also demonstrates a dose-dependent repression of NRF2 function and 
enhances the effectiveness of cisplatin in fighting cancer in vivo. Similar to brusatol, halofuginone 
blocks NRF2's protein translation [304]. Another instance is clobetasol propionate (CP), which 
notably reduces NRF2 activity to 40% at a concentration of 1 nM. Treating of KEAP1 mutant cells 
(H2228 and A549) with CP results in decreased NRF2 target gene expression and increased 
accumulation of reactive oxygen species (ROS). Furthermore, the combination of CP and rapamycin 
has been observed to effectively hinder the growth of KEAP1-mutated tumors both in vitro and in 
vivo [305].  

Another study investigated a newly discovered inhibitor of the KEAP1/NRF2 pathway, K563, 
obtained from Streptomyces sp [228]. K563 was found to hinder the expression of downstream genes 
and proteins related to this pathway, leading to reduced glutathione production and increased 
reactive oxygen species in A549 cells. It also exhibited similar effects in cancer cells with mutated 
KEAP1 or NRF2 genes. In vivo experiments on xenograft mice with A549 cells showed that K563 
effectively suppressed the KEAP1/NRF2 signaling pathway within lung cancer tumors. [306]. 

CPT, known for its role as a topoisomerase inhibitor in the treatment of gastrointestinal and head 
and neck cancers, has also emerged as a potential NRF2 inhibitor for anticancer purposes. Chen and 
colleagues introduced CPT as a novel compound that can block NRF2 activity. Through this action, 
CPT sensitized a range of cancer cells (HepG2, SMMC-7721, A549) and even a xenograft model of 
hepatocellular carcinoma to various chemotherapeutic agents like As2O3, epirubicin, fluorouracil, 
and cisplatin. The inhibition of NRF2 by CPT specifically contributed to enhanced chemosensitivity 
in HepG2, A549, and SMMC-7721 cells[307].  

Metformin, a traditional medication for diabetes management, has been found to impede the 
advancement of cancer. It inhibits the expression of HO-1 and amplifies the anticancer effects of 
EGCG by augmenting levels of reactive oxygen species. In a particular investigation, the size of 
transplanted tumors subjected to the combined treatment of metformin and EGCG exhibited 
reduction in comparison to the control groups. Metformin heightens the susceptibility of non-small 
cell lung cancer (NSCLC) cells to EGCG treatment by obstructing the NRF2/HO-1 signaling pathway. 
[308]. 

In an experimental study, the potent cardiac glucoside digoxin was found to effectively 
counteract drug resistance to gemcitabine in SW1990/Gem and Pac-1/Gem cells by inhibiting NRF2. 
Digoxin achieved this by blocking NRF2 through the suppression of the PI3K/AKT signaling 
pathway[30].  Given NRF2's pivotal role in cancer hallmarks, targeting this transcription factor 
appears to be a promising therapeutic strategy. While NRF2 activators could potentially prevent 
chemical carcinogenesis, inhibiting NRF2 holds promise for cancer treatment. Despite challenges in 
developing safe, potent, and specific NRF2 inhibitors due to NRF2's dual nature, extensive efforts 
have been dedicated to this area with limited success thus far. It is anticipated that upcoming years 
will clarify NRF2's potential as both a prognostic biomarker and a therapeutic target within cancer 
therapy. 

4.3. Clinical Overview 

Studies have indicated that inducing the NRF2 signaling pathway is a potent approach for tumor 
suppression and a viable strategy in anticancer therapy[87,88]. The transcription factor NRF2 plays a 
pivotal role in maintaining cellular redox and hemostasis, as well as in proliferation, differentiation, 
and the regulation of inflammation through its influence on a wide array of target genes [310-312]. 
Therefore, it emerges as a promising target for clinical interventions where such pathways contribute 
to the underlying pathophysiology. Over the past few decades, ongoing efforts have been dedicated 
to targeting NRF2 signaling as a therapeutic strategy. Numerous preclinical studies have investigated 
the targeting NRF2 pathways in diseases where inflammatory and oxidative processes constitute 
critical components, like autoimmune diseases. Particularly, four main NRF2 inducers are of 
particular interest: dimethyl fumarate, bardoxolone methyl, oltipraz and sulforaphane. These agents 
disruptNRF2 signaling through KEAP1, a key cytoplasmic receptor for NRF2 [312,313]. However, 
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use of such agents in cancer treatment remains a topic of controversy, as knocking down NRF2 may 
increase susceptibility to carcinogenesis [314]. Although, NRF2 overexpression has been observed in 
numerous tumors, particularly in advanced stages, helping tumors in adapting to their 
microenvironment and inducing resistance to therapeutic strategies [315,316].   

Therefore, their application in clinical setting for cancer is still in its early stages. Various 
compounds, such as glucocorticoid agonists [305,317] and retinoic acid receptor-alpha, which inhibit 
NRF2 activity [318,319] may exert NRF2-blocking activities, although they lack specificity.. However, 
certain compounds, such as ML385 have been identified through in silico studies, exhibiting a degree 
of specific interactions with NRF2 activities. ML385 inhibits the transcriptional function of NRF2 by 
interacting with its DNA binding domain, thereby increasing chemosensitivity of KEAP1-deficient 
cells [320]. AEM1 is another compound that downregulate NRF2-conrolled genes and increase 
chemosensitivity[303]. Additionally, a compound named 4f, a pyrazolyl hydroxamic acid, has 
demonstrated inhibitory effects on NRF2 activities. It increases apoptosis and reduces proliferation 
in acute myeloid leukemia cells [321]. A novel aziridonin, YD0514, derived from medical herb 
Rabdosia rubescens, targets the NRF2/ Ras homolog family member A (RHOA)/Rho-associated 
protein kinase (ROCK) pathway to suppress metastatic growth of breast cancer in vitro and in 
vivo[322]. The main component of coffee, Trigonelline, has been introduced as a potential treatment 
candidate for lung adenocarcinoma. It targets multiple pathways, including NRF2, cyclin D1, Nuclear 
Factor Kappa B (NF-кB), and BAX/Bcl2, inducing cell cycle arrest and apoptosis [323]. An alkaloid of 
black pepper, piperine, is another compound that suppresses NF-kB by inducing NRF-2 and has 
therefore found to be effective for prophylactic treatment of colorectal cancer in vivo[324]. 

Available evidence indicated that phytochemical antioxidants such as sulforaphane and 
curcumin target the NRF2/NF-kB and Androgen Receptor pathways, making them proper candidates 
for chemoprevention in prostate cancer[325]. As a polyphenolic composition of soy-based plants, 
daidzein modulates  immune responses and antioxidant function in mice with Benzo(a)pyrene 
-Induced Lung Cancer by targeting Proliferating Cell Nuclear Antigen (PCNA)/ NF-κB, Cytochrome 
P450 Family 1 Subfamily A Member 1 (CYP1A1), and NRF[326]. Another in vitro and vivo study 
indicated that downregulation of NRF2/Heme oxygenase (HO-1) by miR-144-3p increased the 
anticancer effect of curcumin in non-small cell lung cancer (NSCLC)[327]. It has also been shown that 
L-carnosine reduces the peripheral neuropathy induced by oxaliplatin in colorectal cancer patients 
by targeting Nrf-2/ NF-κB pathways[328]. Taken together, NRF2 may be considered as a promising 
signaling target for cancer treatment. Further studies will contribute to identifying the exact clinical 
effect of NRF2 in cancer therapy. Understanding the intricate connections between NRF1, NRF2, 
redox homeostasis, PERK, autophagy, and chemo sensitivity opens doors to novel therapeutic 
interventions. Targeting specific components of these pathways could enhance the efficacy of 
chemotherapy in a patient-tailored manner. Developing biomarkers to assess NRF1/NRF2 activity, 
redox status, and autophagy levels could guide treatment decisions, optimizing outcomes in diverse 
cancer contexts. 

5. Conclusion  

NRF2 plays a crucial role in the hallmarks of cancer, acting as a double-edged sword in both the 
promotion and prevention of different tumors. Activation of UPR and autophagy by NRF2 may result 
in cancer cell survival and chemoresistance or cancer cell death during the progression of 
malignancies, depending on the stage and cellular origin. Therefore, proper targeting of Nrf2 may be 
a promising strategy in overcoming chemoresistance,a major obstacle in cancer therapy. Nrf2-
targeting agents can be employed to tackle chemo-resistance in a variety of cancers. The crosstalk 
between ER-stress, UPR, autophagy, and NRF2 signaling pathways has recently received 
considerable attention. the use of antioxidant supplements and activation of the NRF/KEAP1 
pathways in individuals undergoing chemotherapy are topics of controversy. Adjusting the internal 
levels of antioxidants, which hold therapeutic promise , poses a dual challenge. While these agents 
have the potential to diminish the effectiveness of chemotherapy by eliminating reactive oxygen 
species (ROS), they can also contribute to the toxicity induced by chemotherapy. These conflicting 
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outcomes suggest that the impact of supplementing antioxidants during chemotherapy varies based 
on the specific cellular environment of the tumor. Consequently, achieving an optimal balance 
between the cancer-preventive and cancer-promoting functions of NRF2 may offer clinical benefits 
to cancer patients. 

Author Contributions: Conceptualization, S.G (Saeid Ghavami).; P.M (Pooneh Mokarram) and ZM (Zohreh 
Mostafavi-pour); methodology, S.M.SH (Seyed Mohammad Shafiee).; Software, M.S (Morvarid Siri).; Validation, 
S.D (Sanaz Dastghaib).; N.A (Niloufar Ashtari) and M.Z (Mozhdeh Zamani).; Investigation, F.R (Fatemeh 
Ramezani).;F.T (Farhad Tabasi).; and J.S.Ch (Javad Safari Chaleshtori).; Resources, O.V (Omid Vakili).; Data 
curation, M.M.N (Mahshid Moballegh Nasery), S.I (Somayeh Igder), F.K (Fariba Kokabi), and E.W (Emilia 
Wiechec).; Writing—original draft preparation, F.R , S.D, and J.S.Ch.; Writing—review and editing, P.M., S.D, 
M.Z, M.M.N and F.K.; Visualization, M.S.; Supervision, S.G., P.M. and Z.M.; All authors have read and agreed 
to the published version of the manuscript. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 

3-MA  3-Methyladenine 

5-FU   5-Fluorouracil 

ABC   Advanced Breast Cancer 

ABCCs   Multidrug resistance (MDR)-associated proteins 

ABCG2   Breast cancer resistance protein 

AEM   Are Expression Modulator 

AKRs   Aldo-Keto Reductases 

AKT   Protein kinase B 

ALDH1   Aldehyde Dehydrogenase 1 

AMPK   Adenosine monophosphate-activated protein kinase 

AP-1   Activator protein 1 

ARE   Antioxidant Response Element 

ARS   Antioxidants and redox signaling 

ASK1  Apoptosis-signal regulating kinase 1 

ATF   Activating Transcription Factor 

ATG   Autophagy-related protein 

ATRA   All-Trans-Retinoic Acid 

BACH1   BTB and CNC homology 1 

BCRP/ABCG2 Breast cancer resistance protein 

BECN   Encoding beclin 

BRAF   B-Raf proto-oncogene 

BRG-1   Brahma-Related Gene 1 

bZIP   Basic Region/Leucine Zipper 

CALCOCO2   Calcium-Binding and Coiled-Coil Domain-Containing 
Protein 2 
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CBP    cAMP -binding protein 

CBRs  Carbonyl Reductases 

CDDP  Cisplatin 

CHD6  Chromodomain Helicase Dna-Binding Protein 6 

CHOP  Homologous protein 

cIPA  Cellular inhibitors of apoptosis 

CML  Chronic Myeloid Leukemia 

CNC  Cap ‘N’ Collar 

CNC-bZIP  Collar Basic Region Leucine Zipper 

COX-2  Cyclooxygenase-2 

CP  Clobetasol Propionate 

CPT  Camptothecin 

CQ  Chloroquine 

CREB  cAMP-response element binding protein 

CSCs  Cancer Steam Cells 

CTX  Cytotoxic Chemotherapy 

CYPs  Cytochrome P450s 

DAPK1  Death-Associated Kinase 1 

DMSO  Dimethyl sulfoxide 

EBP  Enhancer Binding Protein 

EGCG  Epigallocatechin-3-gallate 

eIF2a  Initiation Factor 2-Alpha 

EMT  Epithelial-Mesenchymal Transition 

ER  Endoplasmic Reticulum 

ERAD  ER-associated degradation 

ERRα  Estrogen-Related Receptor Α 

FOXO-1  Anti-apoptotic forkhead box O-1 

G6PD  Glucose 6-phosphate dehydrogenase 

GA  Golgi apparatus 

GAA  Acid α-glucosidase 

GABARAPL1Gamma-aminobutyric acid receptor-associated protein-like 1 

GCL  Glutamate-Cysteine Ligase 

GCLC  Glutamate-Cysteine Ligase Catalytic 

GCLM  Glutamate-Cysteine Ligase Modulator 

GR  Glutathione reductase 

GRP78  Glucose-Regulated Protein 78 

GSCs  Glioma Stem Cells 

GSH  Glutathione 

GSK3  Glycogen synthase kinase-3 

GSS  Glutathione synthetize 

GSSG  Oxidized glutathione 
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GST  Glutathione S-Transferase 

HCC  Hepatocellular Carcinoma 

HO  Heme Oxygenase 

IL Interleukin 

iNOS  Induced Nitric Oxide Synthase 

IR Irradiation 

IRE1  Inositol-requiring enzyme1 

JNK  Jun NH2-terminal kinase 

KEAP1Kelch-Like-Ech-Associated Protein 1 

KIR  Keap1-Interacting Region 

LC3B  light chain 3B 

MAPK  Mitogen-activated protein kinase 

MDR  Multidrug resistance-associated proteins 

MMP-9  Metalloproteinase-9 

MRP1  Multidrug-resistance-associated protein-1 

MSCs  Mesenchymal Stem Cells 

mTOR  Mammalian target of rapamycin 

mTORC  Mammalian target of rapamycin complex 

NADPH  Adenine Dinucleotide Phosphate 

Neh  Nrf2-ECH homology 

NFE2  Nuclear factor erythroid-derived 2 

NF-E2  Nuclear Factor-Erythroid 2 

NFE2L2  NFE2 like BZIP Transcription Factor 2 

NQO1  Nad(P)H:Quinine Oxidoreductase 1 

Nrf2  Nuclear Related Factor 2 

OX  Electrophiles 

PDI  Protein Disulfide Isomerase 

PERK  Protein kinase RNA-like ER kinase 

PGD  Phosphogluconate Dehydrogenase 

PHGDH  Phosphoglycerate Dehydrogenase 

PI3K  Phosphoinositide 3-Kinase 

POMP  Proteasome Maturation Protein 

PPARγ  Peroxisome Proliferator-Activated Receptor Gamma 

PPP  Pentose Phosphate Pathway 

PSAT1  Phosphoserine Aminotransferase-1 

RAC3  Receptor-Associated Co-Activator 3 

Rb   Retinoblastoma 

RIDD  Regulated Ire1 Dependent Decay 

RNS  Reactive Nitrogen Species 

ROS  Reactive Oxygen Species 

ROS/RS  Reactive Oxygen and Nitrogen Products 
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RXRα  Retinoid X receptor alpha 

SERCA  Calcium transport ATPase 

SHMT2  Serine Hydroxymethyltransferase-2 

shRNAs  Small hairpin RNA 

Simva  Simvastatin 

Sirt6  Sirtuin 6 

SLC7A11 Solute carrier 7A11 

sMAF  Small musculoaponeurotic fibrosarcoma 

SMRT  Silencing mediator for retinoid and thyroid hormone receptor 

SOD  Superoxide Dismutase 

SP1  Specificity Protein 1 

TFs  Transcription Factors 

TGF-β  Transforming growth factor 

TKT  Transketolase 

TME  Tumor microenvironment 

TMZ  Temozolomide 

TNBC  Triple-Negative Breast Cancer 

TNF-α  Tumor Necrosis Factor 

TRAF2  Tumor Necrosis Factor Receptor-Associated Factor-2 

TRB3  Tribbles-Related Protein3 

Trx  Thioredoxin 

TSC2  Tuberous Sclerosis Complex 2 

UGT  Udp-Glucuronosyltransferase 

ULK  Unc-51-Like Kinase 

UPR  Unfolded Protein Response 

VEGF  Vascular Endothelial Growth Factor 

XBP1  X-Box-Binding Protein-1 

β-TrCP  β-transducin repeat-containing E3 ubiquitin protein ligase 
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