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Abstract: In the context of global warming and increasing scarcity of fresh water resources, it becomes
significant to evaluate the contribution and evolution of non-rainfall waters such as dew. This study therefore
aims to evaluate the relative dew and rain contributions in three sites of south-western of Madagascar (Ifaty,
Toliara and Andremba), a semi-arid region which suffers from a strong water deficit. The studied period is
1/1991 - 7/2023, with extrapolation to 8/2033. Dew is calculated from meteo data by using a well-established
energy model. The extrapolation of dew and rain follows an artificial neural network approach. It is found that
dew forms regularly (2-3 days in average between events), in contrast to rain (10-15 days). The evolutions of
dew and rain are similar, with an increase from 1991 to 2000, a decrease up to 2020 and a further increase until
2033. These oscillations follow the Indian Ocean dipole variations and should be influenced by the climate
change. Dew contribution to the water balance remains modest on a yearly basis (3-4%) but is important during
the dry season (Apr.-Oct.), up to 30%. Dew therefore appears to be a reliable and sustainable resource for plants,
small animals and population, especially during droughts.

Keywords: dew water; rain water; dew rain correlations; climate change; Madagascar

1. Introduction

Dew is a ubiquitous phenomenon in nature where it forms during calm and clear nights on
vegetation surfaces. Dew is the result of the dropwise condensation of the atmosphere water vapor
[1-4] when a surface exposed to the nocturnal sky cools enough to reach the dew point temperature.
Cooling is due to the negative balance between the radiation emitted by the surface and radiation
received by the atmosphere. The corresponding power, on the order of 50 W m= to 100 W m2, limits
the dew yield to about 1 L.m2.d"1. Practically, dew forms when the difference between the dew point
temperature and air temperature is less than a few degrees, corresponding to a relative humidity
higher than 70 — 80% [5]. The maximum measured dew yield is at the moment 0.8 L m2d-! [6].

Dew contribution can be vital for some plants and animals, during drought episodes in humid
areas and in semiarid and arid regions [4,7-10]. In certain arid regions, yearly dew is estimated to
contribute from 9% to 23% of the total annual rainfall [8,11]. In arid regions or during droughts dew
gives nightly moisture [12,13], which is absorbed by leaves through plant stomata, stem flows [14] or
special physical features as e.g., in aerial vegetation [2,15,16]. Dew could increase leave
photosynthesis [17] and improve the efficiency of water use by plants [2,18]. The role of dew in soil
biocrust (mainly composed of cyanobacteria, green algae, lichens and mosses) as a water source
remains controversial (see e.g. [19] and Refs. therein). Dew participates in atmospheric chemical
processes, such as diurnal and nocturnal cycles of nitrite oxides [4,20-23]. Small animals, such as
insects [24-26] also rely on dew and non-rainfall water.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202401.0198.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 d0i:10.20944/preprints202401.0198.v2

In the context of global warming and rarefaction of fresh water, dew can thus be considered as
a new source of water in those areas where fresh water, from rain or other sources, is lacking. Dew
water can supplement the erratic rain water as it can be collected by population on special collecting
devices of planar or hollow shapes [4]. These devices can also efficiently collect light rain or mist that
is normally lost, which increases the water yield [27]. Water can be used for agriculture [28] or serve
for human consumption once disinfected to ensure safe drinking. The quality of dew water indeed
quite generally meets the requirements of the World Health Organization (see e.g., [4,20,26]).

At the global level, Madagascar is ranked 14t on the lack of access to basic water [29]. Access to
drinking water is a major challenge. In 2022, only 54.4% of the Malagasy population had access to
water [30]. The main factor of this water deficiency is due to the climate change [31], a decrease in the
number of precipitation events causing a reduction in the amount of rainfall, especially in the 2000
2018 period of intensified drying. Extreme drought events magnitude and duration increased from
1950 to 2018, and the recharge of the aquifers is not covering the city's water needs.

It happens that the lack of water is particularly important in the south-western region of
Madagascar, whose main city is Toliara, capital of the region. This area is a semi-arid region, with
chiefly only two months rain (January and February) in the Madagascar rainy season. This region is
thus not spared by water shortage since only 29% of the local population has access to drinking water
[29,30]. Apart from its aridity, Toliara has the highest temperature in all of Madagascar [31].
However, the air relative humidity is relatively important, twice as high as that recorded in Sahelian
regions [32]. As a matter of fact, dew data obtained by [33] for 18 months (Apr. 2013-Sept. 2014) in
the same coastal south-western region of Madagascar (Efoetsy) corresponded to near 20% of the
yearly rainfall. The main conclusion shows that dewfall in this area can play a non-negligible role in
the annual water balance and provides a supplementary source of fresh water during the non-rainy
season.

It is worthy to note that, due to the global climate change, dew can exhibit various evolutions in
different regions of the world. For instance, dew frequency decreased by 5.2 days per decade from
1961 to 2010 in China due to surface warming and corresponding decrease in relative humidity [12].
More important, the decrease of dew frequency in arid regions of China (50%) is larger than found in
the semi-humid and humid regions (40% and 28%) [12]. The same trend of decreasing dew frequency
is observed in west North Africa between 2005-2020 and predicted for 2020-2100 by using the low
and high emissions climatic models [34]. With the global climate change, the degree of decrease in
dew frequency is thus variable in different regions of the world. Dew characteristics are then required
to predict the future changes in dew evolution.

It is therefore the object of this paper to precisely quantify the contribution of dew and rain to
the annual water balance in the semi-arid region of south-western Madagascar and evaluate its
evolution during the measured period 1/1991-7/2023, and by extrapolation from 8/2023 to 7/2033. For
that purpose, the dew yield is evaluated from an energy balance model that uses only a few
meteorological parameters [35]; available direct measurements [36,37] give elements of comparison
between the calculated and measured data. The interpolation in 2023-2033 is made for dew and rain
from an artificial neural network approach.

The paper is organized as follows. After having described the methods concerning the
calculation of dew yields and the procedures of extrapolation of dew and rain data, one analyzes and
discusses the evolution of dew, rain and their relative frequency and contribution in the period 1991-
2023, with extrapolation to 2033.

2. Materials and Methods

2.1. Studied Sites

Toliara is located on the south-western coast of Madagascar (23.35° South and 43.67° East, 9 m
asl), at the North of the Saint Augustin Bay (Figure 1). This city is the capital of the Atsimo Andrefana
region. The Képpen Geiger climate classification in this area is Bsh (midlatitude steppe and desert
climate). The northern boundary of Toliara's urban area is defined by the Fiherenana River, the sole
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water source for irrigating the downstream plains from the Miary city. Toliara is part of the limestone
domain of the southwest of Madagascar. The aspect of the soil is generally dominated by calcareous

and sandy soil [38].
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Figure 1. Map of Madagascar with the different sites involved in this study (from [39]). Inset: Area
where dew measurements were calculated and/or collected. Details are highlighted in red boxes (from

[40]).

Two other sites, with same climate, are considered. One is close to Toliara, such as the small
coastal city of Ifaty (23.14° South and 43.60° East, 80 m asl), 27 kilometers NNW from Toliara. Another
site is further from Toliara: Andremba (23.97° South and 44.20° East), more inland (60 km from the
sea, 260 m asl, 81 km SSE from Toliara). In addition, calculated data will be compared to dew
measurements performed independently [33] in the nearby coastal village of Efoetsy (2 km from the
sea, 10 m asl; 83 km S from Toliara). Table 1 summarizes these information.

Table 1. Useful information concerning the investigated sites.

Latitude Longitude Elevation (m) asl Distance from the sea (km) Képpen Geiger climate

Sites
Toliara 23°4S 43°7E 9 1 Bsh
Ifaty 23°1S 43°6E 80 1 Bsh
Andremba 24°0S  44°2E 260 60 Bsh
Efoetsy 24°1S  43°7S 10 2 Bsh

The general information concerning the southern part of Madagascar are summarized in Table
2. The average annual temperature is 23.9°C. The warmest month is January with a mean temperature
of 27.8°C. The coolest month is July, with an average temperature of 20.6°C. The mean annual amount
of precipitation in Toliara is 342.9 mm. The month with the most precipitation is January with 73.7
mm of precipitation in average. The month with the least precipitation is July with an average of 5.1
mm [41]. One of the particularities of the southwestern region of Madagascar is the abundance of
humidity in the air. It has been proven that the value of relative air humidity RH in the southwestern
part of Madagascar is twice as high than those recorded in the Sahelian zone (mean RH: 77%; min:
12%; max: 100% [42]). The air relative humidity varies from season to season; it is maximum during
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the hot and humid months (Nov. — Mar., the rainy season) and minimal during the cool and dry
period (Apr. - Oct., the dry season).

Table 2. General information.

mean  mean
hot & max min

. . L max .
rainy cold & dry mean femp.  temp mean rain max rain min rain mean min RH
o . . 1\ 1)+ S1)* 9%)$ %)%
season  Season temp. (°C) (Jan.) (ul) (mm.yr1) (mm.mth?) (mm.mth1)* RH (%) (%) (%)
O Y]
Nov.-
Apr.-Oct. 239 27.8 20.6 342.9 73.7 51 77 100 12
March

" Toliara. * Madagascar southern part.

2.2. Meteorological Data

The weather data used in this study comes from the ERA5-Land database, which are re-analyzed
atmospheric data produced by the ECMWEF's Copernicus Climate Change Service. The spatial
coverage of these data is 9 km and is in reduced Gaussian grid. The data spans from 1/1991 to 7/2023,
with a one-hour time step. The following information are provided: Relative air humidity, air
temperature, dew point temperature, cloud cover, and wind speed. As the Toliara’s pluviometer is
the only operational pluviometer in the southwestern part of Madagascar, all rain data are derived
from the ERA5-Land database [43]. In this database, when the site does not have direct observations,
as e.g. for Andremba, data are the result of extrapolations or interpolations in order to combine them
with models outputs. The data of rain used here are all daily-analyzed data. Note that the same rain
data are considered for the Ifaty and Toliara sites due to their close vicinity (27 km).

2.3. Dew Evolution

2.3.1. Energy Model

In order to compute the dewfall potential, a physical energy balance model (or “physical model”
developed by [35] is used. The model needs only a few classical meteorological data collected at a
given time step At (here every hour): T. (°C), RH (%) or equivalently dew point temperature Tz (°C),
cloud cover (N, oktas), wind speed at 10 m elevation (V1o, m.s?). Dew yields in mm per unit of A¢,
noted h, (mm. At?), are calculated on the time step At (expressed in h.) from the following
formulation:

hye = (%) x (HL + RE) (1)

The numerical factor At/12 =1/12 corresponds here to the data time step At = 1Th. Events with h,,
>0 correspond to condensation and h,, <0 to evaporation. The latter are rejected. The quantity HL
represents the convective heat losses between air and condenser, with a cut-off for wind speed V> Vo
= 4.4 m.s? where condensation vanishes: HL =0 if V> Vo. When V < Vi, HL is expressed as:

HL = 0.06(T; — T,) 2)

The quantity RE in Eq. 1 is the available cooling energy by radiative deficit. Depending on the
water content of air (measured by Tq, in °C), the site elevation H (in km) and the cloud cover N (in
oktas), RE is evaluated by the following expression:

RE = 0.37 x (1 + 0.204323H — 0.0238893H?
— (18.0132 — 1.04963H + 0.2189H2) x 103 x T,)((T, + 273.15)/285)* x (1 ~ (3)
— N/8)

Daily time series corresponding to ha, > 0 are built after removing all data where rain events
are present. The calculated cumulative yields can then be obtained by summing the data e.g on daily,
monthly or yearly bases.
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2.3.2. Perceptron Analysis for Extrapolation

Concerning the extrapolation of data one considers an approach by Multi-Layer Perceptron
Artificial Neural Networks (MLP-ANN). It is a type of artificial neural network inspired by the
functioning of the human brain [44,45]. Other methods are available such as Long Short-Term
Memory (LSTM) Networks [46,47] or Spiking Neural Networks with Spike-Timing-Dependent Long
Short-Term Memory (SNN-STLSTM) [48,49].

Each methods exhibit strengths and weaknesses. The MLP-ANN method is simple to implement
and understand, can approximate any continuous function given enough neurons and data and is
effective for a large variety of tasks such as classification and regression. However, they are not well-
suited for tasks involving temporal sequences or data with time dependencies since they do not have
a memory mechanism. They can also easily overfit to the training data if not properly regularized.
The LSTM method is capable of learning long-term dependencies, making them worthy for time-
series prediction, speech recognition, and natural language processing; it also mitigates the vanishing
gradient problem, allowing for better learning over longer sequences. However, it exhibits more
complex and computationally intensive work compared to simpler models like MLPs. Training times
are longer due to their complexity and the need for sequence processing. The SNN-STLSTM approach
can well mimic biological neural processing, which can be more efficient for certain tasks. It can also
precisely capture timing information, which is critical for tasks requiring high temporal resolution. It
shows a better energy efficiency, especially when implemented on neuromorphic hardware. It is,
however, more challenging to implement and train compared to traditional neural network. Training
SNNs often requires specialized algorithms and can be less straightforward. In addition, it exhibits
some hardware dependency concerning the benefits in energy efficiency.

One here uses the simplest MLP-ANN approach by sake of simplicity and also because such an
approach is currently used to predict meteorological variables such as solar radiation prediction [50],
rainfall / evapotranspiration [51], air quality monitoring [52] or temperature [53]. More important,
the method was already used to specifically estimate dew [54]. The multi-layer perceptron is thus a
set of interconnected neurons [55-58]. Information flows from input to output without backtracking
[58]. It is composed of three distinct layers (Figure 2). The first layer or the input layer is formed by
the input data on a hourly basis: Ta (°C), T4 (°C), RH (%), V (m.s') and N (oktas). These data, known
to correspond to the parameters that determine the dew amount [4,35,54], are introduced in the MLP-
ANN on a monthly basis. The use of T,, RH and T is somewhat redundant as they are related by
analytical equations but it increases the accuracy. The second layer is the hidden layer to prepare the
data using activation functions in their neuron to present it in the last layer, the output layer, which
represents the dew yield & (mm.mth) output.

For the MLP-ANN network, a back-propagation algorithm is used. The back-propagation
algorithm consists in forward-flowing the input data until a network-calculated input is obtained,
and then comparing the calculated output to the known actual output. The weights are modified such
that at the next iteration the error made between the calculated output is minimized. Taking into
consideration the presence of the hidden layers, the error is back propagated backwards to the layer
input while changing the weights. The process is repeated on all the data until the output error can
be considered as negligible [59]. The package R interface for 'H2O' [60] has been used in this study,
with the hyperbolic tangent function as an activation function. This function is indeed monotonic and
having an identity for 0. It also allows normalization to be applied to the input values. This improves
the conditioning of the optimization problem. If some inputs are systematically too large compared
to others, they will have a disproportionate contribution to the error gradient, which will prevent the
network from using the other variables. In addition, these variables will tend to saturate the hidden
units at the start of training, which slows it down. This activation function also allows rapid learning
to be performed because it initializes the weights randomly, which makes the model more efficient.

The multi-layer perceptron can give a projection from 2023 to 2033. The corresponding approach
is summarized in Figure 3.
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input hidden output

Figure 2. MLP-ANN configurations for monthly dew yields prediction. When using a MLP-ANN, it
is customary to add a value “1” called ‘neuron bias’ to the input of a neuron. The bias is a kind of local
weight that is used in several activation functions [61].

Time series
data(Date. N.RH,V
TaTd)
o Detection of dew
v fall
Calculation of
dew yields
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- . ' Training of the
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Figure 3. Algorithm for dew yields prediction. The second block of time series data differs from the
first block by the presence of the calculated dew yields.
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To predict the future value of the rain, we used the package ‘nnfor’ in R software (latest version
0.9.9, published on 2023-11-15). The package is designed for time series and univariate data like rain
[62,63]. It is an automatic time series modeling, that is it automatically adds an activation function
and other neurons to the input layer. With such a package, time series forecasting can be performed
with multilayer perceptrons and extreme learning machines. Different model architectures were
tried, from no hidden layers to 10 hidden layers. The minimum number of hidden layers to fit data
was found to be one.

3. Results

3.1. Comparison with Direct Measurements

In order to determine the level of accuracy of the calculation of dew yields, the calculated data
are compared in Figure 4 with the measurements of Hanisch et al. [33]. One sees that the few data of
measured volumes in Andremba exhibit a larger yield than the calculated values, on order 2.5 times.
There are no meteo data available in Efoetsy and the closer site is Toliara. The measured values in
Efoetsy are about three times the calculated values in Toliara. Such measured large yields in
Andremba and Efoetsy can be understood by the contribution of fog and mist that adds to dew. Such
events were indeed observed [64]. The relative humidity during the night is undeniably quite large
in Efoetsy and Andremba (RH = 100%), which favors the formation of radiative fog and the
occurrence of mist. As a matter of fact, the typical evolution of dew mass during the night as shown
in [33] exhibits an acceleration after midnight, which is the signature of fog and mist deposing on the
dew collector. This behavior is typical in coastal areas and was analyzed in [65]. Since the calculation
from meteo data ignores the fog and mist events that should occur, it gives less condensation volume.
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Figure 4. Summed values of dew yield /1 (mm) between Apr. 2013 and Sept. 2014. Calculated values
(this work) are from meteo data in Ifaty (pink diamonds), Toliara (inverted green triangles) and
Amdremba (cyan triangles). Measurement data from [33] are in Efoetsy (black circles) and in
Amdremba (blue squares).

Note that an additional cause of discrepancy between ground measurements and climatic spatial
grid values can be attributed to the limitations of input data resolution. As noted in section 2.2, the
grid is 9 km in reduced Gaussian grid.
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3.2. Dew Evolution

3.2.1. Years 1/1991-7/2023

Figure 5a reports the dew yield evolution (in mm.mth™) for the three sites as calculated from the
model Eq. 1. One first sees that all evolutions are similar, and almost identical for Toliara and
Andrembea, although Ifaty and Toliara are closer to each other than Toliara and Andremba (see Figure
1). Toliara and Ifaty displaying similar values of cloud covers (Figure 5c), the reason can be found in
the relative humidities during dew events, smaller in Toliara than in Ifaty (Figure 5b). The near equal
dew values in Toliara and Andremba can be explained by the contributions of lower cloud covers in
Toliara that counterbalance smaller RH values (Figure 5bc).
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Figure 5. Evolution in Ifaty, Toliara and Andremba between 01/1991 and 07/2023 of (a) monthly dew
yields h in mm.mth (for clarity reasons only the Andremba data are shown), (b) relative humidity
RH (%) and (c) cloud cover N (okta). The bold curves are data smoothening.

The evolution exhibits a mean increase of about 22% from 1991 to 2000, a decrease of near 35%
from 2000 to 2020 and a subsequent increase from 2020 to 2023 of 20%. The mean dew rate during all
the period gives for Ifaty the largest value (1.68 mm.mth') with a standard deviation (SD) of 0.49
mm.mth-, for Toliara the mean is 1.16 mm.mth! with SD = 0.40 mm.mth! and for Andremba, the
mean is quite close, 1.19 mm.mth" with SD = 0.56 mm.mth-. One will see in section 3.3.1 (Figure 10)
that the rain behavior is similar. Since rain is a key factor to determines the level of RH in the
atmosphere, it is thus natural that dew follows an evolution similar to what is observed with rain.
Table 3 summarizes the main results together with the statistically meaningful trends as discussed
just below.

Table 3. Summary of meaningful values during the observed period 1/1991-7/2023 according to
Figures 5 and 9 data and Table 4.

Sen’s slope (x10-° mm.mth?)

Sites Year of max. yield Year of min. yield
Ifaty 2000 2021 -3.8
Toliara 2000 2021 -2.4
Andremba 2000 2021 -

Table 4. Statistical analysis of the dew data according to the Mann-Kendall (MK) and the Sen's slope

tests.
Sen’s
Min Max Mean SD rlr\1/g: slope Sen’s
Dew Data mths. (mm.mth(mm.mth-(mm.mth-(mm.mth- p-value nineful (x10°  con-
1 1) ) 1) 5 mm.mth- stant
trend® 2)
Meas. 391 0.322 3.795 1.678 0.488 <0.0001  Yes -3.8  3.160
Ifaty  Extrap. 120 0.915 1.964 1.502 0.241 0.227 No 25 2704
All 511 0.322 3.795 1.637 0.449 <0.0001 Yes 26 2712
Meas. 391 0.128 2.885 1.157 0.401 <0.0001  Yes 24 2072

Toliara Extrap. 120 0.643 1.700 1.302 1.172 0.005 Yes 3.7 -0.433
All 511 0.128 2.885 1.191 0.366 0.165 No 0.5 1.008

Andre, Meas: 391 0067 3072 1187 055 0060 No  -15 1720
“bzem' Extrap. 120 0534 1622 1.09 0270 0234 No  -31 2577
Al 511 0067 3072 1165 0506 0055 No 09 1513

* Fraction of tied observations. ¥ p < 0.05.

In order to determine the statistical quality of the general trends on the whole measured period
one makes use of the Mann-Kendall (MK) and Sen's slope tests. The latter calculates the median of
the slopes between all pairs of points in the dataset. It provides a robust estimate of the trend that is
less affected by outliers compared to methods like linear regression. The results for the three sites of
investigation are listed in Table 4. One notes that the standard deviation (SD) of the measured data
is on the same magnitude for all sites (~ 0.5 mm.mth-). Concerning the Mann-Kendall tests of trend
statistical significance, the Andremba data do not fulfill the criteria of statistical trend. Table 3
summarizes these results, which show that all trends are small and negative, meaning that dew yield
slowly but surely decreases with time.

The dates of change of dew trends (2000, 2020) are corroborated in Figure 6 where are reported
the dew yields with respect to the year of calculation in ascending order, for the dry (Apr.-Oct.) and
rainy seasons (Nov.-March). For Ifaty the minimum rate is 5.8 mm.season! (rainy season 2019) and
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the maximum is 16 mm.season! (dry season 1996). For Toliara the results are quite comparable, with
a minimum rate is 3.5 mm.season’! (rainy season 2019) and the maximum is 12 mm.season’ (dry
season 1996). Concerning Andremba, the results are also similar, with a minimum rate of 2.5
mm.season’! (rainy season 2021) and a maximum of 12 mm.season! (dry season 2011).

a Ifaty
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o

S
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o
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o

o N

Season dew (mm)

@

o
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o

=

~

o
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023
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Figure 6. Dew yield in the dry (Apr. - Oct.) and rainy (Nov. - Mar.) seasons between 1991 and 2023
sorted with respect to years. (a) Ifaty, (b) Toliara and (c) Andremba.

The number of days without dew events is an important parameter as many plants and small
animals suffer when no water is available during a long period. Histogram of the data for all the
periods are reported in Figure 7 for both dry and rainy seasons. One sees that dew forms regularly
during all seasons, with a frequency larger during the dry seasons for all sites. The ratio of dry/rainy
dew frequencies is about 1.5 in Ifaty and Toliara and near 1.3 in Andrembea.
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Figure 7. Frequency of events showing Nc consecutive days without dew in the dry (Apr. - Oct.) and
rainy (Nov. - Mar.) seasons for the whole period 1991-2023 (semi-log plot). Red circles and lines: dry
season; blue squares and lines: rainy season. (a) Ifaty, (b) Toliara and (c) Andremba.

The Figure 7 data can be fitted to an exponential decay where f is the frequency of events
showing the number N of consecutive days without dew:

f = foexp [ ] @

In this Eq. 4, f; is a typical number of events and N is a typical number of consecutive days
without dew. For all sites, f; is larger in the dry seasons (~ 600) than in the rainy season (~ 400). The
number N, keeps similar values for dry and rainy seasons, on the order of 2 days without dew
(minimum 1.84 days during the rainy season in Ifaty, maximum 2.76 days during the dry season in
Andremba).

The evolution of the typical number of consecutive days without dew, N, is reported in Figure
8 for the dry and rainy seasons in Ifaty, Toliara and Andremba. One observes in all sites that the mean
number of consecutive days without dew events is small (~ 2.6 days per year). It is less during the
dry season when compared to the rainy season (~3), although the relative humidity is obviously less.
This counter-intuitive result is due to the fact that the number of dew events in the rainy season is
reduced by more frequent rain occurrences (see Figure 13).
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(dry season: continuous red; rainy season: interrupted blue).

12

The corresponding statistics is reported in Table 5, including the Mann-Kendall and the Sen's
slope tests to observe a trend. No trends can be defined for the rainy seasons in all sites. A positive
trend is well characterized in all sites for the dry season with similar Sen’s slopes, 44x10¢ mm.yr?
(Ifaty), 53x10-¢ mm.yr2 (Toliara), and 57x10-¢ mm.yr? (Andremba). A linear fit of the data (Figure 8)
gives similar slopes for all sites, 1.5x102 mm.yr? (Ifaty), 1.7x102 mm.yr? (Toliara), 1.8x102 mm.yr?

(Andremba).

Table 5. Statistical analysis of the yearly number of consecutive days without dew events during the
period 1/1991-7/2023 according to the Mann-Kendall (MK) and the Sen's slope tests.

No Dew MK mea Sen’s
Data Min Max Mean SD p- ningful Sen’s slope (x10- con-
-t : -1
Nb. consecu-tive (d) () (d) (d) value trends d.yr?) stant
days
Rainy 179 3875 267 0324 0721  No 39 2.643
season
Ifaty Dr
Y 1714 3182 2411 0402 0035  Yes 44 0.645
season
Toliara Rainy ) 405 3645 3.021 0318 0457  No 13 2.482

season
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Dry
1.842 3824 2.664 0456 0.031  Yes 53 0.554

season
Rainy )5 4269 3382 0445 0285  No 25 2364

season

Andrem-ba D
Y 2048 3.824 2.841 0479 0035  Yes 57 0.546
season

* Fraction of tied observations. ¥ p < 0.05.

3.2.2. Extrapolation for Years 8/2023-7/2033

The monthly data from 1/1991 to 7/2023 are extrapolated to the period 8/2023 -7/2033 according
to the procedure using MLP-ANN, as described in section 2.3.2. The procedure follows a period of
training with 77% of the data (1/1991 — 12/2016) and a period of validation corresponding to 23% of

the data (1/2017 — 7/2023). In Figure 9aa’bb’cc’ the training and validation data are seen to compare
well with the dew data as calculated from Eq. 1.
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Figure 9. (a,b,c): Dew yield training, validation and extrapolation of dew yield. The bold curves are

data smoothening. (a) Ifaty, (b) Toliara, (c) Andremba. Grey lines: Calculated from meteo data 01/1991
— 07/2023. Blue lines: ANN training period 01/1991 — 12/2016; red lines: ANN validation period
01/2017 — 07/2023; green lines: ANN extrapolation period 08/2023 — 07/2033. The black lines are linear
fits (x = date-reference 1/1/1904 in s). (a’,b’,c’): Deviation between ANN and actual values for (a’) Ifaty,

(b’) Toliara, (c’) Andremba.

The monthly dew yields are reported in Figure 9, with smoothening curves for visual aid. In
order to determine a trend over the observed period (1/1991-7/2023), the extrapolated period (8/2023-
7/2033) and the whole period (1/1991-7/2033), the MK and Sen’s slope statistical methods are applied
in Table 4. Trends are not statistically valid for any periods at Andremba. At Ifaty, the trend is not
defined for the extrapolated period while a negative trend is observed for both the observed and the
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whole periods. At Toliara, a positive trend is seen in the extrapolated period, canceling in the whole
period the effect of the negative trend in the observation period. Linear fits of the data (Figure 9d) on
the whole period 1991 — 2033 are in agreement with this analysis, giving the slopes (-3.4 + 0.5)x10+
mm.mth'.s? (Ifaty), (-1.1 £4)x10* mm.mth'.s? (Toliara), (-1.9 £0.5)x10* mm.mth"'.s! (Andremba).

3.3. Rain Evolution

3.3.1. Years 1/1991-7/2023

The rainfall evolution in the period 1/1991-7/2023 is shown in Figure 10 for Toliara and Ifaty
(same data, see section 2.2) and Andremba. Without surprises, the rain amplitudes and evolutions
are similar in all sites. One notes obvious differences between the dry and rainy seasons (analyzed
below in Figure 11) and the presence of large peaks related to cyclone events. Between 1991 and 2000
is observed an important rise from ~ 25 to ~ 60 mm.mth", then a long decrease until 2018-2020 with a
rise until 2023. As noted in section 3.2.1 (Figure 5), dew and rain are seen to follow similar evolutions.
Rain (together with nearby sea evaporation) indeed provides the atmosphere with large relative
humidity needed to condense water vapor [66].
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Figure 10. Evolution of the monthly rainfalls. (a,b): Training, validation and extrapolation of rain data.
The black bold curves are data smoothening and the black lines are linear fits to all data in the period
1/1991-8/2033 (x = date-1/1/1904 in s). (a) Ifaty and Toliara, (b) Andremba. Grey lines: Actual rain data
01/1991 - 07/2023. Blue lines: ANN training period 01/1991 — 12/2016; red lines: ANN validation
period 01/2017 — 07/2023; green lines: ANN extrapolation period 08/2023 — 07/2033. (a’, b"): Difference
between ANN and actual values data values for (a’) Ifaty and Toliara, (b") Andremba.
Table 6. Statistical analysis of the rain data according to the Mann-Kendall (MK) and the Sen's slope
tests.
Sen’s
Min Max Mean SD MK mea- slope Sen’s
Rain Data mths. (nm.mth(mm.mth (mm.mth(mm.mth- p-value® ningful (x10° con-
1) 1) 1) 1) trend®* mm.mth- stant
)
Ifat Meas. 391 0 455.6 42343 73426  0.244 No -11.9  15.791
Tolia};a Extrap. 120 0 307.0 53265 71.611 0.738 No 0 19.793
All 511 0 455.6 44907 73.081 0.496 No 51 10.790
And Meas. 391 0 4355 48998 74.108  0.377 No -11.8  19.225
ndr-
emba Extrap. 120 0 2270 56.489 61977 0.819 No 45.8  4.643
All 511 0 4355  50.757 71.457  0.102 No 27.0  6.937

* Fraction of tied observations. * p <0.05.

Figure 11 presents the rainfall yields in the dry season (Apr.-Oct.) and rainy season (Nov.-Mar.).
There is obviously a large difference in the volumes of the precipitations, with a ratio ~8 , the mean
precipitation rate being in the dry season 61 mm.season! and 485 mm.season™ for the rainy season.
The minimum rainfall is 18 mm in 2021 (dry season, all sites) and the maximum is 850 mm in 1998
(Andremba) and 2022 (Ifaty-Toliara).
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Figure 11. Analyses of rainfall for the 1991-2022 period. (a) During the dry season (Apr.-Oct.)
presented in ascending order. (b) Same, for the rainy season (Nov.-March). The anomalous large rate

corresponds to the Ernest cyclone on Jan. 22, 2005.

As for dew (see section 3.2.1), the frequency of consecutive rainy days without rain can be well
represented by an exponential (Eq. 4; Figure 12). For all sites, the amplitude f; is much larger in the
rainy seasons (~ 300-350) than in the dry season (~ 45-100). Unsurprisingly, the average number of
days without rain N is also much greater in the dry season (6-10 days) than in the rainy seasons (~

2.45 days).
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Figure 12. Frequency of events showing N. consecutive days without rain in the dry (Apr. - Oct.) and
rainy (Nov. -Mar.) seasons for the whole period 1991-2023 (semi-log plot). Red circles and lines: dry
season; blue squares and lines: rainy season. (a) Ifaty and Toliara, (b) Andremba.

The evolution of N, is reported in Figure 13 for the dry season (Apr. - Oct.) and the rainy season
(Nov. - March). One obviously observes a much smaller value (about a factor of 1:3.3) in the rainy
season (~ 4 days in Ifaty-Toliara, ~ 3 days in Andremba, see Table 7) than in the dry season (~ 14 d in
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Ifaty-Toliara, ~ 9.5 d in Andremba, see Table 7). The statistical tests (Table 7) do not allow trends to
be detected in the observation period 1/1991-7/2023.
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Figure 13. Evolution of the typical number of consecutive days without rain, N, for each dry season
(Apr.-Oct., red squares) and each rainy season (Nov.-March, blue circles). The curves are linear fits
(dry season: continuous red; rainy season: interrupted blue).

Table 7. Statistical analysis of the yearly number of consecutive days without rain events during the
period 1/1991-7/2023 according to the Mann-Kendall (MK) and the Sen's slope tests.

No Rain Sen’s
MK mea- slope Sen’s
Nb. Data  Min (d) Max (d) Mean (d) SD (d) p-value® ningful (x1 OE 4 con
consecu- trends " stant
: yrh)
tive days
Ifaty & Slzz:zl 2174 9833 4086 1448  0.653 No 28 2738
Toli
M8 Dryseason 7.55 245 13681 3903 0.62 No 112 17.657
Rainy 96 5167 3113 0814 0107 No 79 0147
Andremba season
Dryseason 6115 1477 9443  1.880  0.889 No 10 9174

* Fraction of tied observations. ¥ p < 0.05.

3.3.2. Extrapolation 8/2023-7/2033

The monthly data of the period 1/1991 - 7/2023 are extrapolated to the period 8/2023 -7/2033
according to the procedure using MLP-ANN, as described in section 2.3.2 and more precisely the
package ‘nnfor” in R software. This package was used because it is specially designed for time series
and univariate data like rain.

As for dew, the procedure follows a period of training with 77% of the data (1/1991 - 12/2016)
and a period of validation corresponding to 23% of the data (1/2017 — 7/2023). In Figure 10aa’bb’ the
training and validation data at Ifaty-Toliara and Andremba compare well with the measured rain
data.
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The monthly dew yields are reported in Figure 10, with smoothening curves for visual aid. In
order to determine a trend over the observed period (1/1991-7/2023), the extrapolated period (8/2023-
7/2033) and the whole period (1/1991-7/2033), the MK and Sen’s slope statistical methods are applied
in Table 7. Trends are found to be not statistically valid for any periods at all sites. Linear fits of the
data (Figure 9d) on the whole period 1991 — 2033 are in agreement with this analysis, giving the slopes
with a large SD (2.3 £ 8.5)x10° mm.mth-1.s! (Ifaty-Toliara ), and (1 + 8)x10-° mm.mth"'.s' (Andremba).
The standard deviations of the values are quite large, which cast some doubts about the actuality of
the slopes. As a matter of fact, the statistical quality of this trend is not assessed by the MK and Sen’s
slopes methods (Table 6) in any sites. While the observed positive and negative evolutions during
the period are clearly observed (see Figure 10), they cancel each other when looking to a mean trend.

3.3. Dew-Rain Ratios

In order to determine the contribution of dew in the global water balance, a dew/rain ratio can
be defined as:
= Ha
r=il ©)
where H, is the volume of rainfall calculated on the same time period as the dew yield H,. This
factor exhibits quite large variations because in some months H, =0, thus making the contribution
of dew the only input in the water balance. In order to average these variations, one will rather
consider the yearly mean

YyearHa
= year (6)
ZyearHr
or the dry or rainy season means
p H
T= season 1d (7)

ZSEESOTL HT'

The results are shown in Figure 14 for the three studied sites. Concerning the yearly season, the
evolution is the opposite of dew and rain evolutions, with a decrease of ~ 30% from 1991 to 2000, an
increase of ~ 30% from 2000 to 2020, a decrease from 2020 to 2023 of 30% and a subsequent weak
increase of ~ 10%. The mean values with SD in the period 1991-2033 are (Ifaty) 4.0% + 1.3%, (Toliara)
2.9% % 0.8% and (Andremba) 2.5% =+ 0.5%. The ratio in the rainy season follows similar behavior
but with nearly half mean values: (Ifaty) 1.9% £ 0.8%, (Toliara) 1.3% + 0.4% and (Andremba) 1.2%
1+ 0.3%. The evolution behavior in the dry season is less pronounced but compatible with what is
observed in the rainy season. The mean values become significantly larger, with larger SD, giving

(Ifaty) 27% % 20%, (Toliara) 20% + 20% and (Andremba) 15% =+ 9%.
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Figure 14. Evolution of the dew/rain ratio t for the three sites Ifaty, Toliara and Andremba. (a) Yearly
data, (b) dry season (Apr.-Oct.) and (c) rainy season (Nov. — Mar.) seasons. Red data: 1991-2022; blue
data: extrapolation 2023-2033. The red curve is from data smoothening for the full period 2023-2033.

In sections 3.2.1 (dew) and 3.3.1 (rain) the similarity of behavior of dew and rain evolution was
noted. However, the amplitude of variation of rain being larger than that of dew, the overall behavior
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of the dew/rain ratio is thus seen to behave inversely to dew and rain evolution, which explains the
observation of Figure 13, particularly clear for the yearly and rainy seasons.

The yearly values are relatively low, but with the contributions of fog and mist in the coastal
areas (Efoetsy, Andremba, see section 3.1 and Figure 4) the non-rainfall contributions can reach three
times the dew amount. Contributions up to ~ 10% could therefore be attained, which is a considerable
contribution. As a matter of fact, the value T = 19% was measured in average for a 18-month period
at Efoetsy [33]. Concerning the only dry season, values as large as 27% are observed, which could rise
to 80% with the contribution of fog and mist.

Regarding the trends over the different periods, one reports in Tables 8-10 the evaluation of the
trend statistical quality according to the MK and Sen’s slope tests. It results that no trends are valid
for any periods in Andremba. No trends are also valid in any sites and any yearly, dry and rainy
seasons for the observation period 1/1991-7/2023. Concerning yearly data, a positive trend is observed
for the extrapolation period 8/2023-7/2033 at Toliara and a negative trend for the whole period 1/1991-
7/2033 at Ifaty. Concerning the rainy season, the only visible trend is observed at Toliara for the
extrapolation period 8/2023-7/2033. It is interesting to note that the dry seasons exhibit only negative
trends for the whole period 1/1991-7/2033 at both Ifaty and Toliara.

Table 8. Statistical analysis of the ratio dew/rain averaged over the year during the observation period
1/1991-7/2023, extrapolation period 8/2023-7/2033 and all periods 1/1991-8/2033, with Mann-Kendall
(MK) and Sen's slope tests.

Ratio (%) MK mea- , ,
Yearly ~ Period p-value? ningful Sen’s slope  Sen’s
Min Max Mean SD (x10-°yr!) con-stant
trend®
1991- 2114 734 4317 124  0.698 No 29 2.841
2023 . . . . . .
2023-
Ifaty 2033 1.986 3.687 275 049 0.161 No -156 -10.358
1991-
1986 7.340 3967 128 0.017 Yes -86 7.107
2033
1991-
1929 5601 2984 086 0.816 No 14 2.152
2023
. 2023-
Toliara 2033 2.028 398  2.623 063 0.013 Yes 266 -9.977
1991-
1929 5601 2914 081 0.818 No -5.6 2.883
2033
1991-
1.571 4.064 2523 059 0975 No 1.6 2.427
2023
Andrem-  2023-
ba 2033 1.571 2532 2277 0.28 1 No 6.7 2.037
1991-
2033 1.571 4.064 2482 052 0.683 No -6.7 2.705

* Fraction of tied observations. ¥ p < 0.05.
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Table 9. Statistical analysis of the ratio dew/rain averaged over the dry seasons during the observation
period 1/1991-7/2023, extrapolation period 8/2023-7/2033 and all periods 1/1991-8/2033, with Mann-
Kendall (MK) and Sen's slope tests.

Ratio (%) MK mea- , ,

Dry season  Period p-value® ningful Sen’s slope  Sen’s

Y Min Max Mean SD (x10¢yr!) con-stant

trend®

1991-

2023 9.645 77.415 32403 19.744 0.258 No -905 65.033
2023-

Ifaty 2033 5.615 30.63 11.205 7.158 0.436 No 980 -37.535
1991-

2033 5.615 77.415 27209 19.924 0.001 Yes -1858 99.681
1991-

2023 7453 54.779 23390 14473 0.345 No -415 36.185
. 2023-

Toliara 2033 5191 19.856 9.829 4.824 0.213 No 1308 -53.281
1991-

2033 5.191 54.779 20.003 14.187 0.004 Yes -1069 62.949
1991-

2023 4.689 42.802 15.662 10.054 0.209 No -560 35.022

Andrem- 2023~y 009 19477 14785 3907 035 No -630 4547
ba 2033
1991-

2033 4.689 42.802 15403 8985 0.601 No -104 18.648

* Fraction of tied observations. ¥ p < 0.05.

Table 10. Statistical analysis of the ratio dew/rain averaged over the rainy seasons during the
observation period 1/1991-7/2023, extrapolation period 8/2023-7/2033 and all periods 1/1991-8/2033,
with Mann-Kendall (MK) and Sen's slope tests.

Ratio (%) MK mea-

Sen’s slope  Sen’s

) . ) s .
Rainy season Period Min  Max  Mean sp P value® ningful (x104yr1) con-stant
trend$
1991-
0954 4615 2.063 0.817 0.588 No 24 1.113
2023
2023-
Ifaty 2033 1.165 1.991 1.465 0.257 0.283 No 90 -2.815
1991-
2033 0954 4615 1942 0.767 0.386 No -19 2.565
1991-
0.691 2477 1.323 0.453 0.631 No 13 0.813
2023
. 2023-
Toliara 2033 1.071 1.87 1424 0323 0.002 Yes 219 -8.855
1991-
0.691 2477 1.353 0.428 0.153 No 24 0.34
2033
1991-
0.768 1.957 1.234 0.264 0.329 No 15 0.622
2023
Andrem-  2023- 001 1339 1028 013 0371 No 230 2.407
ba 2033
1991-
2033 0.768 1.957 1.189 0.256 0.298 No 9.5 1.527

* Fraction of tied observations.  p <0.05.
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4. General Discussion

The first result of this study is the recognition that on a rather small area ( ~ 100 x 60 km?) dew
can vary much more than rain. For instance, dew varies by 50% between Toliara and Ifaty that are
distant of 27 km, and is nearly the same in Toliara and Andremba 81 km distant. In contrast, rain
keeps nearly the same values in those three sites. This observation is due to the process of formation
of dew, which is a function of quite local values of relative humidity, air flows (wind) and cloud
cover. Rain, in contrast, forms in the upper regions of atmosphere and is convected on large distances
before falling an a large area.

Another result is the finding that the evolutions of dew and rain are similar (Figure 15a). The
reason can be found in the variation of local relative humidity, which governs the dew yield and
increases with increasing rainfall (Figure 15b). The evolution is non-monotonous, with increase from
1991 to 2000, a decrease up to 2020 and a further increase till 2033. A decrease between 2000 and 2018
was already noted in the study [37] that ended in 2018 and is a part of a long-lasting trend, at least
from the 1950’s. The evolution of cloud cover, which is also an important parameter in dew formation,
unsurprisingly follows the same evolution with, however, a very small increase that does not affect
the rise of dew yield at large RH.
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Figure 15. Correlated evolutions of (a) monthly dew and rain events and (b) RH and cloud cover

during the measurement period 1/1991 — 7/2023.

The evolution of rain is known to follow the ocean surface temperature, which undergoes
periodic oscillations known as Indian Ocean Dipole (IOD, see e.g. [67]). The IOD is negative when
the water surface temperature of the Indian Ocean is below normal in the west and above normal in
the east. When a negative IOD is observed then in the central-western tropical Indian Ocean the
precipitation is below normal while in the eastern tropical Indian Ocean and in the western tropical
Pacific Ocean the precipitations are higher than normal. Extreme IOD events (droughts, floods and
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hurricanes) are likely to increase in the future as a result of the climate change. These events have a
tendency to relate with El Nifio events, with periods of 5-10 years.

In terms of water content, dew forms much more regularly than rain. The number of consecutive
days without dew is the same in the dry and rainy seasons (2-3 days). It is much larger for rain in the
dry season (10-15 days) and even in the rainy season (3-5 days). Although the dew yield remains
modest (1-2 mm.mth?') when compared to rain (~ 30 mm.mth'), corresponding to yearly mean
contribution of 3-4%, its contribution during the dry season can be much larger, up to ~ 30% . Its
evolution is opposite of rain and dew, due to the larger influence of rain variation in the ratio
dew/rain. One notes that the contribution of collected fog and mist can increase by a factor 3 this
contribution.

5. Conclusions

Dew yields were calculated in three sites, Ifaty, Toliara and Andremba (Madagascar) between
1991 and 2023 from meteo data thanks to an energy equation. The region has a mid-latitude steppe
and desert climate characterized by high humidity, which favors dew formation. When combined
with rainfalls, the evolution of dew and rain and their relative importance can be determined in the
period. The data are extrapolated from 2023 to 2033 by using artificial neural networks.

The evolution of dew and rain is found similar and in agreement with the variations of the IOD
ocean surface temperature. One observes an increase from 1991 to 2000, a decrease up to 2020 and a
further increase till 2033. The overall trend in the period 1991-2033 is negative for dew and uncertain
for rain.

The contribution of dew with respect to rain is found rather weak when averaged on a year,
about 3-4%. However, dew forms very regularly all over the year, which makes its contribution large
during the dry season (Apr.-Oct.), up to ~ 30%, due to the conjunction of higher dew yield and lower
rainfalls. The values calculated for dew in this work (mean value about 1-2 mm.mth?) are
conservative. The measured non-rainfalls indeed exhibit much larger yields, by a factor on order
three. On the Madagascar coast, fog and mist indeed add to dew and considerably increase the
contribution of non-rainfall water.

The number of consecutive days without rain or dew is an important factor for the vegetation
and in general for animals and human population. The mean number of consecutive days without
rain is on order 3-5 days during the rainy season and much larger during the dry season (10-15 days).
In contrast, dew is regular all over the year, as shown by a mean number of consecutive days without
dew of 2-3 days, making it a reliable source of water for plants, animals and even population if
properly stored with rain.

The evolution of the dew and rain water resources is related to the ocean surface temperature
governed by the Indian Ocean Dipole. Its variations, alike El Nifio, are subjected to the climate
change. In particular, extreme events (droughts, floods and hurricanes) are expected to increase in
the future.
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