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Abstract: In the context of global warming and increasing scarcity of fresh water resources, it becomes 

significant to evaluate the contribution and evolution of non-rainfall waters such as dew. This study therefore 

aims to evaluate the relative dew and rain contributions in three sites of south-western of Madagascar (Ifaty, 

Toliara and Andremba), a semi-arid region which suffers from a strong water deficit. The studied period is 

1/1991 – 7/2023, with extrapolation to 8/2033. Dew is calculated from meteo data by using a well-established 

energy model. The extrapolation of dew and rain follows an artificial neural network approach. It is found that 

dew forms regularly (2-3 days in average between events), in contrast to rain (10-15 days). The evolutions of 

dew and rain are similar, with an increase from 1991 to 2000, a decrease up to 2020 and a further increase until 

2033. These oscillations follow the Indian Ocean dipole variations and should be influenced by the climate 

change. Dew contribution to the water balance remains modest on a yearly basis (3-4%) but is important during 

the dry season (Apr.-Oct.), up to 30%. Dew therefore appears to be a reliable and sustainable resource for plants, 

small animals and population, especially during droughts. 

Keywords: dew water; rain water; dew rain correlations; climate change; Madagascar 

 

1. Introduction 

Dew is a ubiquitous phenomenon in nature where it forms during calm and clear nights on 

vegetation surfaces. Dew is the result of the dropwise condensation of the atmosphere water vapor 

[1–4] when a surface exposed to the nocturnal sky cools enough to reach the dew point temperature. 

Cooling is due to the negative balance between the radiation emitted by the surface and radiation 

received by the atmosphere. The corresponding power, on the order of 50 W m−2 to 100 W m−2, limits 

the dew yield to about 1 L.m-2.d-1. Practically, dew forms when the difference between the dew point 

temperature and air temperature is less than a few degrees, corresponding to a relative humidity 

higher than 70 – 80% [5]. The maximum measured dew yield is at the moment 0.8 L m-2 d-1 [6]. 

Dew contribution can be vital for some plants and animals, during drought episodes in humid 

areas and in semiarid and arid regions [4,7–10]. In certain arid regions, yearly dew is estimated to 

contribute from 9% to 23% of the total annual rainfall [8,11]. In arid regions or during droughts dew 

gives nightly moisture [12,13], which is absorbed by leaves through plant stomata, stem flows [14] or 

special physical features as e.g., in aerial vegetation [2,15,16]. Dew could increase leave 

photosynthesis [17] and improve the efficiency of water use by plants [2,18]. The role of dew in soil 

biocrust (mainly composed of cyanobacteria, green algae, lichens and mosses) as a water source 

remains controversial (see e.g. [19] and Refs. therein). Dew participates in atmospheric chemical 

processes, such as diurnal and nocturnal cycles of nitrite oxides [4,20–23]. Small animals, such as 

insects [24–26] also rely on dew and non-rainfall water. 
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In the context of global warming and rarefaction of fresh water, dew can thus be considered as 

a new source of water in those areas where fresh water, from rain or other sources, is lacking. Dew 

water can supplement the erratic rain water as it can be collected by population on special collecting 

devices of planar or hollow shapes [4]. These devices can also efficiently collect light rain or mist that 

is normally lost, which increases the water yield [27]. Water can be used for agriculture [28] or serve 

for human consumption once disinfected to ensure safe drinking. The quality of dew water indeed 

quite generally meets the requirements of the World Health Organization (see e.g., [4,20,26]).  

At the global level, Madagascar is ranked 14th on the lack of access to basic water [29]. Access to 

drinking water is a major challenge. In 2022, only 54.4% of the Malagasy population had access to 

water [30]. The main factor of this water deficiency is due to the climate change [31], a decrease in the 

number of precipitation events causing a reduction in the amount of rainfall, especially in the 2000–

2018 period of intensified drying. Extreme drought events magnitude and duration increased from 

1950 to 2018, and the recharge of the aquifers is not covering the city's water needs.  

It happens that the lack of water is particularly important in the south-western region of 

Madagascar, whose main city is Toliara, capital of the region. This area is a semi-arid region, with 

chiefly only two months rain (January and February) in the Madagascar rainy season. This region is 

thus not spared by water shortage since only 29% of the local population has access to drinking water 

[29,30]. Apart from its aridity, Toliara has the highest temperature in all of Madagascar [31]. 

However, the air relative humidity is relatively important, twice as high as that recorded in Sahelian 

regions [32]. As a matter of fact, dew data obtained by [33] for 18 months (Apr. 2013-Sept. 2014) in 

the same coastal south-western region of Madagascar (Efoetsy) corresponded to near 20% of the 

yearly rainfall. The main conclusion shows that dewfall in this area can play a non-negligible role in 

the annual water balance and provides a supplementary source of fresh water during the non-rainy 

season. 

It is worthy to note that, due to the global climate change, dew can exhibit various evolutions in 

different regions of the world. For instance, dew frequency decreased by 5.2 days per decade from 

1961 to 2010 in China due to surface warming and corresponding decrease in relative humidity [12]. 

More important, the decrease of dew frequency in arid regions of China (50%) is larger than found in 

the semi-humid and humid regions (40% and 28%) [12]. The same trend of decreasing dew frequency 

is observed in west North Africa between 2005–2020 and predicted for 2020–2100 by using the low 

and high emissions climatic models [34]. With the global climate change, the degree of decrease in 

dew frequency is thus variable in different regions of the world. Dew characteristics are then required 

to predict the future changes in dew evolution. 

It is therefore the object of this paper to precisely quantify the contribution of dew and rain to 

the annual water balance in the semi-arid region of south-western Madagascar and evaluate its 

evolution during the measured period 1/1991-7/2023, and by extrapolation from 8/2023 to 7/2033. For 

that purpose, the dew yield is evaluated from an energy balance model that uses only a few 

meteorological parameters [35]; available direct measurements [36,37] give elements of comparison 

between the calculated and measured data. The interpolation in 2023-2033 is made for dew and rain 

from an artificial neural network approach.  

The paper is organized as follows. After having described the methods concerning the 

calculation of dew yields and the procedures of extrapolation of dew and rain data, one analyzes and 

discusses the evolution of dew, rain and their relative frequency and contribution in the period 1991-

2023, with extrapolation to 2033. 

2. Materials and Methods 

2.1. Studied Sites 

Toliara is located on the south-western coast of Madagascar (23.35° South and 43.67° East, 9 m 

asl), at the North of the Saint Augustin Bay (Figure 1). This city is the capital of the Atsimo Andrefana 

region. The Köppen Geiger climate classification in this area is Bsh (midlatitude steppe and desert 

climate). The northern boundary of Toliara's urban area is defined by the Fiherenana River, the sole 
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water source for irrigating the downstream plains from the Miary city. Toliara is part of the limestone 

domain of the southwest of Madagascar. The aspect of the soil is generally dominated by calcareous 

and sandy soil [38]. 

 

Figure 1. Map of Madagascar with the different sites involved in this study (from [39]). Inset: Area 

where dew measurements were calculated and/or collected. Details are highlighted in red boxes (from 

[40]). 

Two other sites, with same climate, are considered. One is close to Toliara, such as the small 

coastal city of Ifaty (23.14° South and 43.60° East, 80 m asl), 27 kilometers NNW from Toliara. Another 

site is further from Toliara: Andremba (23.97° South and 44.20° East), more inland (60 km from the 

sea, 260 m asl, 81 km SSE from Toliara). In addition, calculated data will be compared to dew 

measurements performed independently [33] in the nearby coastal village of Efoetsy (2 km from the 

sea, 10 m asl; 83 km S from Toliara). Table 1 summarizes these information. 

Table 1. Useful information concerning the investigated sites. 

Sites Latitude Longitude Elevation (m) asl Distance from the sea (km) Köppen Geiger climate  

Toliara 23° 4 S 43° 7 E 9 1 Bsh 

Ifaty 23° 1 S 43°6 E 80 1 Bsh 

Andremba 24°0 S 44°2 E 260 60 Bsh 

Efoetsy 24°1 S 43°7 S 10 2 Bsh 

The general information concerning the southern part of Madagascar are summarized in Table 

2. The average annual temperature is 23.9°C. The warmest month is January with a mean temperature 

of 27.8°C. The coolest month is July, with an average temperature of 20.6°C. The mean annual amount 

of precipitation in Toliara is 342.9 mm. The month with the most precipitation is January with 73.7 

mm of precipitation in average. The month with the least precipitation is July with an average of 5.1 

mm [41]. One of the particularities of the southwestern region of Madagascar is the abundance of 

humidity in the air. It has been proven that the value of relative air humidity RH in the southwestern 

part of Madagascar is twice as high than those recorded in the Sahelian zone (mean RH: 77%; min: 

12%; max: 100% [42]). The air relative humidity varies from season to season; it is maximum during 

 

Andremba 
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the hot and humid months (Nov. – Mar., the rainy season) and minimal during the cool and dry 

period (Apr. - Oct., the dry season). 

Table 2. General information. 

hot & 

rainy 

season 

cold & dry 

season 

mean 

temp. (°C) 

mean 

max 

temp. 

(Jan.) 

(°C) 

mean 

min 

temp. 

(Jul.) 

(°C) 

mean rain 

(mm.yr-1)* 

max rain 

(mm.mth-1)* 

min rain 

(mm.mth-1)* 

mean 

RH (%)$ 

max 

RH 

(%)$ 

min RH 

(%)$ 

Nov.-

March 
Apr.- Oct. 23.9 27.8 20.6 342.9 73.7 5.1 77 100 12 

* Toliara. $ Madagascar southern part. 

2.2. Meteorological Data 

The weather data used in this study comes from the ERA5-Land database, which are re-analyzed 

atmospheric data produced by the ECMWF's Copernicus Climate Change Service. The spatial 

coverage of these data is 9 km and is in reduced Gaussian grid. The data spans from 1/1991 to 7/2023, 

with a one-hour time step. The following information are provided: Relative air humidity, air 

temperature, dew point temperature, cloud cover, and wind speed. As the Toliara’s pluviometer is 

the only operational pluviometer in the southwestern part of Madagascar, all rain data are derived 

from the ERA5-Land database [43]. In this database, when the site does not have direct observations, 

as e.g. for Andremba, data are the result of extrapolations or interpolations in order to combine them 

with models outputs. The data of rain used here are all daily-analyzed data. Note that the same rain 

data are considered for the Ifaty and Toliara sites due to their close vicinity (27 km). 

2.3. Dew Evolution  

2.3.1. Energy Model 

In order to compute the dewfall potential, a physical energy balance model (or “physical model” 

developed by [35] is used. The model needs only a few classical meteorological data collected at a 

given time step ∆t (here every hour): Ta (°C), RH (%) or equivalently dew point temperature Td (°C), 

cloud cover (N, oktas), wind speed at 10 m elevation (V10, m.s-1). Dew yields in mm per unit of ∆t, 

noted ℎΔ𝑡  (mm. ∆t-1), are calculated on the time step ∆t (expressed in h.) from the following 

formulation: 

ℎΔ𝑡 = (
Δ𝑡

12
) × (𝐻𝐿 + 𝑅𝐸) (1) 

The numerical factor ∆t/12 = 1/12 corresponds here to the data time step ∆t = 1h. Events with ℎΔ𝑡 

> 0 correspond to condensation and ℎΔ𝑡 < 0 to evaporation. The latter are rejected. The quantity HL 

represents the convective heat losses between air and condenser, with a cut-off for wind speed V > V0 

= 4.4 m.s-1 where condensation vanishes: HL = 0 if V > V0. When V ≤ V0, HL is expressed as: 

𝐻𝐿 = 0.06(𝑇𝑑 − 𝑇𝑎) (2) 

The quantity RE in Eq. 1 is the available cooling energy by radiative deficit. Depending on the 

water content of air (measured by Td, in °C), the site elevation H (in km) and the cloud cover N (in 

oktas), RE is evaluated by the following expression: 

𝑅𝐸 = 0.37 × (1 + 0.204323𝐻 − 0.0238893𝐻2

− (18.0132 − 1.04963𝐻 + 0.2189𝐻²) × 103 × 𝑇𝑑)((𝑇𝑑 + 273.15)/285)4 × (1

− 𝑁/8) 

(3) 

Daily time series corresponding to ℎΔ𝑡 > 0 are built after removing all data where rain events 

are present. The calculated cumulative yields can then be obtained by summing the data e.g on daily, 

monthly or yearly bases.  
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2.3.2. Perceptron Analysis for Extrapolation 

Concerning the extrapolation of data one considers an approach by Multi-Layer Perceptron 

Artificial Neural Networks (MLP-ANN). It is a type of artificial neural network inspired by the 

functioning of the human brain [44,45]. Other methods are available such as Long Short-Term 

Memory (LSTM) Networks [46,47] or Spiking Neural Networks with Spike-Timing-Dependent Long 

Short-Term Memory (SNN-STLSTM) [48,49].  

Each methods exhibit strengths and weaknesses. The MLP-ANN method is simple to implement 

and understand, can approximate any continuous function given enough neurons and data and is 

effective for a large variety of tasks such as classification and regression. However, they are not well-

suited for tasks involving temporal sequences or data with time dependencies since they do not have 

a memory mechanism. They can also easily overfit to the training data if not properly regularized. 

The LSTM method is capable of learning long-term dependencies, making them worthy for time-

series prediction, speech recognition, and natural language processing; it also mitigates the vanishing 

gradient problem, allowing for better learning over longer sequences. However, it exhibits more 

complex and computationally intensive work compared to simpler models like MLPs. Training times 

are longer due to their complexity and the need for sequence processing. The SNN-STLSTM approach 

can well mimic biological neural processing, which can be more efficient for certain tasks. It can also 

precisely capture timing information, which is critical for tasks requiring high temporal resolution. It 

shows a better energy efficiency, especially when implemented on neuromorphic hardware. It is, 

however, more challenging to implement and train compared to traditional neural network. Training 

SNNs often requires specialized algorithms and can be less straightforward. In addition, it exhibits 

some hardware dependency concerning the benefits in energy efficiency. 

One here uses the simplest MLP-ANN approach by sake of simplicity and also because such an 

approach is currently used to predict meteorological variables such as solar radiation prediction [50], 

rainfall / evapotranspiration [51], air quality monitoring [52] or temperature [53]. More important, 

the method was already used to specifically estimate dew [54]. The multi-layer perceptron is thus a 

set of interconnected neurons [55–58]. Information flows from input to output without backtracking 

[58]. It is composed of three distinct layers (Figure 2). The first layer or the input layer is formed by 

the input data on a hourly basis: Ta (°C), Td (°C), RH (%), V (m.s-1) and N (oktas). These data, known 

to correspond to the parameters that determine the dew amount [4,35,54], are introduced in the MLP-

ANN on a monthly basis. The use of Ta, RH and Td is somewhat redundant as they are related by 

analytical equations but it increases the accuracy. The second layer is the hidden layer to prepare the 

data using activation functions in their neuron to present it in the last layer, the output layer, which 

represents the dew yield h (mm.mth-1) output. 

For the MLP-ANN network, a back-propagation algorithm is used. The back-propagation 

algorithm consists in forward-flowing the input data until a network-calculated input is obtained, 

and then comparing the calculated output to the known actual output. The weights are modified such 

that at the next iteration the error made between the calculated output is minimized. Taking into 

consideration the presence of the hidden layers, the error is back propagated backwards to the layer 

input while changing the weights. The process is repeated on all the data until the output error can 

be considered as negligible [59]. The package R interface for 'H2O' [60] has been used in this study, 

with the hyperbolic tangent function as an activation function. This function is indeed monotonic and 

having an identity for 0. It also allows normalization to be applied to the input values. This improves 

the conditioning of the optimization problem. If some inputs are systematically too large compared 

to others, they will have a disproportionate contribution to the error gradient, which will prevent the 

network from using the other variables. In addition, these variables will tend to saturate the hidden 

units at the start of training, which slows it down. This activation function also allows rapid learning 

to be performed because it initializes the weights randomly, which makes the model more efficient. 

The multi-layer perceptron can give a projection from 2023 to 2033. The corresponding approach 

is summarized in Figure 3.  
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Figure 2. MLP-ANN configurations for monthly dew yields prediction. When using a MLP-ANN, it 

is customary to add a value “1” called ‘neuron bias’ to the input of a neuron. The bias is a kind of local 

weight that is used in several activation functions [61]. 

 

Figure 3. Algorithm for dew yields prediction. The second block of time series data differs from the 

first block by the presence of the calculated dew yields. 

 

input         hidden         output 
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To predict the future value of the rain, we used the package ‘nnfor’ in R software (latest version 

0.9.9, published on 2023-11-15). The package is designed for time series and univariate data like rain 

[62,63]. It is an automatic time series modeling, that is it automatically adds an activation function 

and other neurons to the input layer. With such a package, time series forecasting can be performed 

with multilayer perceptrons and extreme learning machines. Different model architectures were 

tried, from no hidden layers to 10 hidden layers. The minimum number of hidden layers to fit data 

was found to be one.  

3. Results 

3.1. Comparison with Direct Measurements 

In order to determine the level of accuracy of the calculation of dew yields, the calculated data 

are compared in Figure 4 with the measurements of Hanisch et al. [33]. One sees that the few data of 

measured volumes in Andremba exhibit a larger yield than the calculated values, on order 2.5 times. 

There are no meteo data available in Efoetsy and the closer site is Toliara. The measured values in 

Efoetsy are about three times the calculated values in Toliara. Such measured large yields in 

Andremba and Efoetsy can be understood by the contribution of fog and mist that adds to dew. Such 

events were indeed observed [64]. The relative humidity during the night is undeniably quite large 

in Efoetsy and Andremba (RH = 100%), which favors the formation of radiative fog and the 

occurrence of mist. As a matter of fact, the typical evolution of dew mass during the night as shown 

in [33] exhibits an acceleration after midnight, which is the signature of fog and mist deposing on the 

dew collector. This behavior is typical in coastal areas and was analyzed in [65]. Since the calculation 

from meteo data ignores the fog and mist events that should occur, it gives less condensation volume. 

 

Figure 4. Summed values of dew yield h (mm) between Apr. 2013 and Sept. 2014. Calculated values 

(this work) are from meteo data in Ifaty (pink diamonds), Toliara (inverted green triangles) and 

Amdremba (cyan triangles). Measurement data from [33] are in Efoetsy (black circles) and in 

Amdremba (blue squares). 

Note that an additional cause of discrepancy between ground measurements and climatic spatial 

grid values can be attributed to the limitations of input data resolution. As noted in section 2.2, the 

grid is 9 km in reduced Gaussian grid.  
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3.2. Dew Evolution 

3.2.1. Years 1/1991-7/2023 

Figure 5a reports the dew yield evolution (in mm.mth-1) for the three sites as calculated from the 

model Eq. 1. One first sees that all evolutions are similar, and almost identical for Toliara and 

Andremba, although Ifaty and Toliara are closer to each other than Toliara and Andremba (see Figure 

1). Toliara and Ifaty displaying similar values of cloud covers (Figure 5c), the reason can be found in 

the relative humidities during dew events, smaller in Toliara than in Ifaty (Figure 5b). The near equal 

dew values in Toliara and Andremba can be explained by the contributions of lower cloud covers in 

Toliara that counterbalance smaller RH values (Figure 5bc). 
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Figure 5. Evolution in Ifaty, Toliara and Andremba between 01/1991 and 07/2023 of (a) monthly dew 

yields h in mm.mth-1 (for clarity reasons only the Andremba data are shown), (b) relative humidity 

RH (%) and (c) cloud cover N (okta). The bold curves are data smoothening. 

The evolution exhibits a mean increase of about 22% from 1991 to 2000, a decrease of near 35% 

from 2000 to 2020 and a subsequent increase from 2020 to 2023 of 20%. The mean dew rate during all 

the period gives for Ifaty the largest value (1.68 mm.mth-1) with a standard deviation (SD) of 0.49 

mm.mth-1, for Toliara the mean is 1.16 mm.mth-1 with SD = 0.40 mm.mth-1 and for Andremba, the 

mean is quite close, 1.19 mm.mth-1 with SD = 0.56 mm.mth-1. One will see in section 3.3.1 (Figure 10) 

that the rain behavior is similar. Since rain is a key factor to determines the level of RH in the 

atmosphere, it is thus natural that dew follows an evolution similar to what is observed with rain. 

Table 3 summarizes the main results together with the statistically meaningful trends as discussed 

just below. 

Table 3. Summary of meaningful values during the observed period 1/1991-7/2023 according to 

Figures 5 and 9 data and Table 4. 

Sites Year of max. yield Year of min. yield 
Sen’s slope (10-5 mm.mth-2) 

  

Ifaty 2000 2021 -3.8 

Toliara 2000 2021 -2.4 

Andremba 2000 2021  -  

Table 4. Statistical analysis of the dew data according to the Mann-Kendall (MK) and the Sen's slope 

tests.  

Dew Data mths. 

Min 

(mm.mth-

1) 

Max 

(mm.mth-

1) 

Mean 

(mm.mth-

1) 

SD 

(mm.mth-

1) 

p-value 

MK 

mea- 

ningful 

trend$ 

Sen’s 

slope 

(10-5 

mm.mth-

2) 

Sen’s 

con- 

stant 

Ifaty 

Meas. 391 0.322 3.795 1.678 0.488 <0.0001 Yes -3.8 3.160 

Extrap. 120 0.915 1.964 1.502 0.241 0.227 No -2.5 2.704 

All 511 0.322 3.795 1.637 0.449 <0.0001 Yes -2.6 2.712 

Toliara 

Meas. 391 0.128 2.885 1.157 0.401 <0.0001 Yes -2.4 2.072 

Extrap. 120 0.643 1.700 1.302 1.172 0.005 Yes 3.7 -0.433 

All 511 0.128 2.885 1.191 0.366 0.165 No 0.5 1.008 

Andrem-

ba 

Meas. 391 0.067 3.072 1.187 0.557 0.060 No -1.5 1.720 

Extrap. 120 0.534 1.622 1.096 0.270 0.234 No -3.1 2.577 

All 511 0.067 3.072 1.165 0.506 0.055 No -0.9 1.513 
* Fraction of tied observations. $ p < 0.05. 

In order to determine the statistical quality of the general trends on the whole measured period 

one makes use of the Mann-Kendall (MK) and Sen's slope tests. The latter calculates the median of 

the slopes between all pairs of points in the dataset. It provides a robust estimate of the trend that is 

less affected by outliers compared to methods like linear regression. The results for the three sites of 

investigation are listed in Table 4. One notes that the standard deviation (SD) of the measured data 

is on the same magnitude for all sites ( 0.5 mm.mth-1). Concerning the Mann-Kendall tests of trend 

statistical significance, the Andremba data do not fulfill the criteria of statistical trend. Table 3 

summarizes these results, which show that all trends are small and negative, meaning that dew yield 

slowly but surely decreases with time. 

The dates of change of dew trends (2000, 2020) are corroborated in Figure 6 where are reported 

the dew yields with respect to the year of calculation in ascending order, for the dry (Apr.-Oct.) and 

rainy seasons (Nov.-March). For Ifaty the minimum rate is 5.8 mm.season-1 (rainy season 2019) and 
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the maximum is 16 mm.season-1 (dry season 1996). For Toliara the results are quite comparable, with 

a minimum rate is 3.5 mm.season-1 (rainy season 2019) and the maximum is 12 mm.season-1 (dry 

season 1996). Concerning Andremba, the results are also similar, with a minimum rate of 2.5 

mm.season-1 (rainy season 2021) and a maximum of 12 mm.season-1 (dry season 2011).  

 

a Ifaty 

  

 

b Toliara 

  

 

c Andremba 

  

Figure 6. Dew yield in the dry (Apr. - Oct.) and rainy (Nov. - Mar.) seasons between 1991 and 2023 

sorted with respect to years. (a) Ifaty, (b) Toliara and (c) Andremba. 

The number of days without dew events is an important parameter as many plants and small 

animals suffer when no water is available during a long period. Histogram of the data for all the 

periods are reported in Figure 7 for both dry and rainy seasons. One sees that dew forms regularly 

during all seasons, with a frequency larger during the dry seasons for all sites. The ratio of dry/rainy 

dew frequencies is about 1.5 in Ifaty and Toliara and near 1.3 in Andremba.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2024                   doi:10.20944/preprints202401.0198.v2

https://doi.org/10.20944/preprints202401.0198.v2


 11 

 

 

Figure 7. Frequency of events showing Nc consecutive days without dew in the dry (Apr. - Oct.) and 

rainy (Nov. - Mar.) seasons for the whole period 1991-2023 (semi-log plot). Red circles and lines: dry 

season; blue squares and lines: rainy season. (a) Ifaty, (b) Toliara and (c) Andremba. 

The Figure 7 data can be fitted to an exponential decay where f is the frequency of events 

showing the number Nc of consecutive days without dew: 

𝑓 = 𝑓0exp [−
𝑁𝑐

𝑁𝑐0
] (4) 

In this Eq. 4, 𝑓0 is a typical number of events and 𝑁𝑐0 is a typical number of consecutive days 

without dew. For all sites, 𝑓0 is larger in the dry seasons (~ 600) than in the rainy season (~ 400). The 

number 𝑁𝑐0 keeps similar values for dry and rainy seasons, on the order of 2 days without dew 

(minimum 1.84 days during the rainy season in Ifaty, maximum 2.76 days during the dry season in 

Andremba). 

The evolution of the typical number of consecutive days without dew, Nc0, is reported in Figure 

8 for the dry and rainy seasons in Ifaty, Toliara and Andremba. One observes in all sites that the mean 

number of consecutive days without dew events is small ( 2.6 days per year). It is less during the 

dry season when compared to the rainy season (3), although the relative humidity is obviously less. 

This counter-intuitive result is due to the fact that the number of dew events in the rainy season is 

reduced by more frequent rain occurrences (see Figure 13).  
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Figure 8. Evolution of the typical number of consecutive days without dew, Nc0, for each dry season 

(Apr.-Oct., red squares) and each rainy season (Nov.-March, blue circles). The curves are linear fits 

(dry season: continuous red; rainy season: interrupted blue). 

The corresponding statistics is reported in Table 5, including the Mann-Kendall and the Sen's 

slope tests to observe a trend. No trends can be defined for the rainy seasons in all sites. A positive 

trend is well characterized in all sites for the dry season with similar Sen’s slopes, 4410-6 mm.yr-2 

(Ifaty), 5310-6 mm.yr-2 (Toliara), and 5710-6 mm.yr-2 (Andremba). A linear fit of the data (Figure 8) 

gives similar slopes for all sites, 1.510-2 mm.yr-2 (Ifaty), 1.710-2 mm.yr-2 (Toliara), 1.810-2 mm.yr-2 

(Andremba).  

Table 5. Statistical analysis of the yearly number of consecutive days without dew events during the 

period 1/1991-7/2023 according to the Mann-Kendall (MK) and the Sen's slope tests.  

No Dew 

 

Nb. consecu-tive 

days 

Data 
Min 

(d) 

Max 

(d) 

Mean 

(d) 

SD  

(d) 

p-

value* 

MK mea- 

ningful 

trend$ 

Sen’s slope (10-6 

d.yr-1) 

Sen’s 

con- 

stant 

Ifaty 

Rainy 

season 
2.179 3.875 2.67 0.324 0.721 No 3.9 2.643 

Dry 

season 
1.714 3.182 2.411 0.402 0.035 Yes 44 0.645 

Toliara 
Rainy 

season 
2.405 3.645 3.021 0.318 0.457 No 13 2.482 
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Dry 

season 
1.842 3.824 2.664 0.456 0.031 Yes 53 0.554 

Andrem-ba 

Rainy 

season 
2.3 4.269 3.382 0.445 0.285 No 25 2.364 

Dry 

season 
2.048 3.824 2.841 0.479 0.035 Yes 57 0.546 

* Fraction of tied observations. $ p < 0.05. 

3.2.2. Extrapolation for Years 8/2023-7/2033 

The monthly data from 1/1991 to 7/2023 are extrapolated to the period 8/2023 -7/2033 according 

to the procedure using MLP-ANN, as described in section 2.3.2. The procedure follows a period of 

training with 77% of the data (1/1991 – 12/2016) and a period of validation corresponding to 23% of 

the data (1/2017 – 7/2023). In Figure 9aa’bb’cc’ the training and validation data are seen to compare 

well with the dew data as calculated from Eq. 1. 
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Figure 9. (a,b,c): Dew yield training, validation and extrapolation of dew yield. The bold curves are 

data smoothening. (a) Ifaty, (b) Toliara, (c) Andremba. Grey lines: Calculated from meteo data 01/1991 

– 07/2023. Blue lines: ANN training period 01/1991 – 12/2016; red lines: ANN validation period 

01/2017 – 07/2023; green lines: ANN extrapolation period 08/2023 – 07/2033. The black lines are linear 

fits (x = date-reference 1/1/1904 in s). (a’,b’,c’): Deviation between ANN and actual values for (a’) Ifaty, 

(b’) Toliara, (c’) Andremba. 

The monthly dew yields are reported in Figure 9, with smoothening curves for visual aid. In 

order to determine a trend over the observed period (1/1991-7/2023), the extrapolated period (8/2023-

7/2033) and the whole period (1/1991-7/2033), the MK and Sen’s slope statistical methods are applied 

in Table 4. Trends are not statistically valid for any periods at Andremba. At Ifaty, the trend is not 

defined for the extrapolated period while a negative trend is observed for both the observed and the 
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whole periods. At Toliara, a positive trend is seen in the extrapolated period, canceling in the whole 

period the effect of the negative trend in the observation period. Linear fits of the data (Figure 9d) on 

the whole period 1991 – 2033 are in agreement with this analysis, giving the slopes (-3.4  0.5)10-4 

mm.mth-1.s-1  (Ifaty), (-1.1  4)10-4 mm.mth-1.s-1  (Toliara), (-1.9  0.5)10-4 mm.mth-1.s-1 (Andremba).  

3.3. Rain Evolution 

3.3.1. Years 1/1991-7/2023 

The rainfall evolution in the period 1/1991-7/2023 is shown in Figure 10 for Toliara and Ifaty 

(same data, see section 2.2) and Andremba. Without surprises, the rain amplitudes and evolutions 

are similar in all sites. One notes obvious differences between the dry and rainy seasons (analyzed 

below in Figure 11) and the presence of large peaks related to cyclone events. Between 1991 and 2000 

is observed an important rise from ~ 25 to ~ 60 mm.mth-1, then a long decrease until 2018-2020 with a 

rise until 2023. As noted in section 3.2.1 (Figure 5), dew and rain are seen to follow similar evolutions. 

Rain (together with nearby sea evaporation) indeed provides the atmosphere with large relative 

humidity needed to condense water vapor [66].  
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Figure 10. Evolution of the monthly rainfalls. (a,b): Training, validation and extrapolation of rain data. 

The black bold curves are data smoothening and the black lines are linear fits to all data in the period 

1/1991-8/2033 (x = date-1/1/1904 in s). (a) Ifaty and Toliara, (b) Andremba. Grey lines: Actual rain data 

01/1991 – 07/2023. Blue lines: ANN training period 01/1991 – 12/2016; red lines: ANN validation 

period 01/2017 – 07/2023; green lines: ANN extrapolation period 08/2023 – 07/2033. (a’, b’): Difference 

between ANN and actual values data values for (a’) Ifaty and Toliara, (b’) Andremba. 

Table 6. Statistical analysis of the rain data according to the Mann-Kendall (MK) and the Sen's slope 

tests. 

Rain Data mths. 

Min 

(mm.mth-

1) 

Max 

(mm.mth-

1) 

Mean 

(mm.mth-

1) 

SD 

(mm.mth-

1) 

p-value* 

MK mea- 

ningful 

trend$ 

Sen’s 

slope 

(10-5 

mm.mth-

2) 

Sen’s 

con- 

stant 

Ifaty 

Toliara 

Meas. 391 0 455.6 42.343 73.426 0.244 No -11.9 15.791 

Extrap. 120 0 307.0 53.265 71.611 0.738 No 0 19.793 

All 511 0 455.6 44.907 73.081 0.496 No 5.1 10.790 

Andr-

emba 

Meas. 391 0 435.5 48.998 74.108 0.377 No -11.8 19.225 

Extrap. 120 0 227.0 56.489 61.977 0.819 No 45.8 4.643 

All 511 0 435.5 50.757 71.457 0.102 No 27.0 6.937 
* Fraction of tied observations. $ p < 0.05. 

Figure 11 presents the rainfall yields in the dry season (Apr.-Oct.) and rainy season (Nov.-Mar.). 

There is obviously a large difference in the volumes of the precipitations, with a ratio 8 , the mean 

precipitation rate being in the dry season 61 mm.season-1 and 485 mm.season-1 for the rainy season. 

The minimum rainfall is 18 mm in 2021 (dry season, all sites) and the maximum is 850 mm in 1998 

(Andremba) and 2022 (Ifaty-Toliara). 
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a Ifaty-Toliara 

  

 

b Andremba 

  

Figure 11. Analyses of rainfall for the 1991-2022 period. (a) During the dry season (Apr.-Oct.) 

presented in ascending order. (b) Same, for the rainy season (Nov.-March). The anomalous large rate 

corresponds to the Ernest cyclone on Jan. 22, 2005. 

As for dew (see section 3.2.1), the frequency of consecutive rainy days without rain can be well 

represented by an exponential (Eq. 4; Figure 12). For all sites, the amplitude 𝑓0 is much larger in the 

rainy seasons (~ 300-350) than in the dry season (~ 45-100). Unsurprisingly, the average number of 

days without rain Nc0 is also much greater in the dry season (6-10 days) than in the rainy seasons (~ 

2.45 days). 

 

Figure 12. Frequency of events showing Nc consecutive days without rain in the dry (Apr. - Oct.) and 

rainy (Nov. -Mar.) seasons for the whole period 1991-2023 (semi-log plot). Red circles and lines: dry 

season; blue squares and lines: rainy season. (a) Ifaty and Toliara, (b) Andremba. 

The evolution of Nc0, is reported in Figure 13 for the dry season (Apr. - Oct.) and the rainy season 

(Nov. - March). One obviously observes a much smaller value (about a factor of 1:3.3) in the rainy 

season ( 4 days in Ifaty-Toliara,  3 days in Andremba, see Table 7) than in the dry season ( 14 d in 
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Ifaty-Toliara,  9.5 d in Andremba, see Table 7). The statistical tests (Table 7) do not allow trends to 

be detected in the observation period 1/1991-7/2023. 

   

 

Figure 13. Evolution of the typical number of consecutive days without rain, Nc0, for each dry season 

(Apr.-Oct., red squares) and each rainy season (Nov.-March, blue circles). The curves are linear fits 

(dry season: continuous red; rainy season: interrupted blue). 

Table 7. Statistical analysis of the yearly number of consecutive days without rain events during the 

period 1/1991-7/2023 according to the Mann-Kendall (MK) and the Sen's slope tests. 

No Rain 

 

Nb. 

consecu-

tive days 

Data Min (d) Max (d) Mean (d) SD (d) p-value* 

MK mea- 

ningful 

trend$ 

Sen’s 

slope 

(10-6 d. 

yr-1) 

Sen’s 

con- 

stant 

Ifaty & 

Toliara 

Rainy 

season 
2.174 9.833 4.086 1.448 0.653 No 28 2.738 

Dry season 7.55 24.5 13.681 3.903 0.62 No 112 17.657 

Andremba 

Rainy 

season 
1.96 5.167 3.113 0.814 0.107 No 79 -0.147 

Dry season 6.115 14.77 9.443 1.880 0.889 No 10 9.174 
* Fraction of tied observations. $ p < 0.05. 

3.3.2. Extrapolation 8/2023-7/2033 

The monthly data of the period 1/1991 - 7/2023 are extrapolated to the period 8/2023 -7/2033 

according to the procedure using MLP-ANN, as described in section 2.3.2 and more precisely the 

package ‘nnfor’ in R software. This package was used because it is specially designed for time series 

and univariate data like rain.  

As for dew, the procedure follows a period of training with 77% of the data (1/1991 – 12/2016) 

and a period of validation corresponding to 23% of the data (1/2017 – 7/2023). In Figure 10aa’bb’ the 

training and validation data at Ifaty-Toliara and Andremba compare well with the measured rain 

data. 
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The monthly dew yields are reported in Figure 10, with smoothening curves for visual aid. In 

order to determine a trend over the observed period (1/1991-7/2023), the extrapolated period (8/2023-

7/2033) and the whole period (1/1991-7/2033), the MK and Sen’s slope statistical methods are applied 

in Table 7. Trends are found to be not statistically valid for any periods at all sites. Linear fits of the 

data (Figure 9d) on the whole period 1991 – 2033 are in agreement with this analysis, giving the slopes 

with a large SD (2.3  8.5)10-9 mm.mth-1.s-1 (Ifaty-Toliara ), and (1  8)10-9 mm.mth-1.s-1 (Andremba). 

The standard deviations of the values are quite large, which cast some doubts about the actuality of 

the slopes. As a matter of fact, the statistical quality of this trend is not assessed by the MK and Sen’s 

slopes methods (Table 6) in any sites. While the observed positive and negative evolutions during 

the period are clearly observed (see Figure 10), they cancel each other when looking to a mean trend. 

3.3. Dew-Rain Ratios 

In order to determine the contribution of dew in the global water balance, a dew/rain ratio can 

be defined as: 

𝜏 =
𝐻𝑑

𝐻𝑟
   (5) 

where 𝐻𝑟 is the volume of rainfall calculated on the same time period as the dew yield 𝐻𝑑. This 

factor exhibits quite large variations because in some months 𝐻𝑟 = 0, thus making the contribution 

of dew the only input in the water balance. In order to average these variations, one will rather 

consider the yearly mean 

𝜏 =
∑ 𝐻𝑑𝑦𝑒𝑎𝑟

∑ 𝐻𝑟𝑦𝑒𝑎𝑟
  (6) 

or the dry or rainy season means 

𝜏 =
∑ 𝐻𝑑𝑠𝑒𝑎𝑠𝑜𝑛

∑ 𝐻𝑟𝑠𝑒𝑎𝑠𝑜𝑛
  (7) 

The results are shown in Figure 14 for the three studied sites. Concerning the yearly season, the 

evolution is the opposite of dew and rain evolutions, with a decrease of ~ 30% from 1991 to 2000, an 

increase of ~ 30% from 2000 to 2020, a decrease from 2020 to 2023 of 30% and a subsequent weak 

increase of ~ 10%. The mean values with SD in the period 1991-2033 are (Ifaty) 4.0% ± 1.3%, (Toliara) 

2.9% ± 0.8% and (Andremba) 2.5% ± 0.5%. The ratio in the rainy season follows similar behavior 

but with nearly half mean values: (Ifaty) 1.9% ± 0.8%, (Toliara) 1.3% ± 0.4% and (Andremba) 1.2% 

± 0.3%. The evolution behavior in the dry season is less pronounced but compatible with what is 

observed in the rainy season. The mean values become significantly larger, with larger SD, giving 

(Ifaty) 27% ± 20%, (Toliara) 20% ± 20% and (Andremba) 15% ± 9%.  

 

Ifaty Toliara 

  

0

2

4

6

8

10

1992 2000 2008 2016 2024 2032

Year

a yearly Ifaty

 
(%

)

0

2

4

6

8

10

1992 2000 2008 2016 2024 2032

Year

a yearly Toliara

 
(%

)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 June 2024                   doi:10.20944/preprints202401.0198.v2

https://doi.org/10.20944/preprints202401.0198.v2


 20 

 

  

  
 

Andremba 

  

 

 

Figure 14. Evolution of the dew/rain ratio τ for the three sites Ifaty, Toliara and Andremba. (a) Yearly 

data, (b) dry season (Apr.-Oct.) and (c) rainy season (Nov. – Mar.) seasons. Red data: 1991-2022; blue 

data: extrapolation 2023-2033. The red curve is from data smoothening for the full period 2023-2033. 

In sections 3.2.1 (dew) and 3.3.1 (rain) the similarity of behavior of dew and rain evolution was 

noted. However, the amplitude of variation of rain being larger than that of dew, the overall behavior 
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of the dew/rain ratio is thus seen to behave inversely to dew and rain evolution, which explains the 

observation of Figure 13, particularly clear for the yearly and rainy seasons.  

The yearly values are relatively low, but with the contributions of fog and mist in the coastal 

areas (Efoetsy, Andremba, see section 3.1 and Figure 4) the non-rainfall contributions can reach three 

times the dew amount. Contributions up to  10% could therefore be attained, which is a considerable 

contribution. As a matter of fact, the value τ = 19% was measured in average for a 18-month period 

at Efoetsy [33]. Concerning the only dry season, values as large as 27% are observed, which could rise 

to 80% with the contribution of fog and mist. 

Regarding the trends over the different periods, one reports in Tables 8–10 the evaluation of the 

trend statistical quality according to the MK and Sen’s slope tests. It results that no trends are valid 

for any periods in Andremba. No trends are also valid in any sites and any yearly, dry and rainy 

seasons for the observation period 1/1991-7/2023. Concerning yearly data, a positive trend is observed 

for the extrapolation period 8/2023-7/2033 at Toliara and a negative trend for the whole period 1/1991-

7/2033 at Ifaty. Concerning the rainy season, the only visible trend is observed at Toliara for the 

extrapolation period 8/2023-7/2033. It is interesting to note that the dry seasons exhibit only negative 

trends for the whole period 1/1991-7/2033 at both Ifaty and Toliara. 

Table 8. Statistical analysis of the ratio dew/rain averaged over the year during the observation period 

1/1991-7/2023, extrapolation period 8/2023-7/2033 and all periods 1/1991-8/2033, with Mann-Kendall 

(MK) and Sen's slope tests. 

Yearly Period 

Ratio (%) 

p-value$ 

MK mea- 

ningful 

trend$ 

Sen’s slope 

(10-6 yr-1) 

Sen’s 

con-stant Min Max Mean SD 

Ifaty 

1991-

2023 
2.114 7.34 4.317 1.24 0.698 No 29 2.841 

2023-

2033 
1.986 3.687 2.75 0.49 0.161 No -156 -10.358 

1991-

2033 
1.986 7.340 3.967 1.28 0.017 Yes -86 7.107 

Toliara 

1991-

2023 
1.929 5.601 2.984 0.86 0.816 No 14 2.152 

2023-

2033 
2.028 3.986 2.623 0.63 0.013 Yes 266 -9.977 

1991-

2033 
1.929 5.601 2.914 0.81 0.818 No -5.6 2.883 

Andrem- 

ba 

1991-

2023 
1.571 4.064 2.523 0.59 0.975 No 1.6 2.427 

2023-

2033 
1.571 2.532 2.277 0.28 1 No 6.7 2.037 

1991-

2033 
1.571 4.064 2.482 0.52 0.683 No -6.7 2.705 

* Fraction of tied observations. $ p < 0.05. 
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Table 9. Statistical analysis of the ratio dew/rain averaged over the dry seasons during the observation 

period 1/1991-7/2023, extrapolation period 8/2023-7/2033 and all periods 1/1991-8/2033, with Mann-

Kendall (MK) and Sen's slope tests. 

Dry season Period 

Ratio (%) 

p-value$ 

MK mea- 

ningful 

trend$ 

Sen’s slope 

(10-6 yr-1) 

Sen’s 

con-stant Min Max Mean SD 

Ifaty 

1991-

2023 
9.645 77.415 32.403 19.744 0.258 No -905 65.033 

2023-

2033 
5.615 30.63 11.205 7.158 0.436 No 980 -37.535 

1991-

2033 
5.615 77.415 27.209 19.924 0.001 Yes -1858 99.681 

Toliara 

1991-

2023 
7.453 54.779 23.390 14.473 0.345 No -415 36.185 

2023-

2033 
5.191 19.856 9.829 4.824 0.213 No 1308 -53.281 

1991-

2033 
5.191 54.779 20.003 14.187 0.004 Yes -1069 62.949 

Andrem- 

ba 

1991-

2023 
4.689 42.802 15.662 10.054 0.209 No -560 35.022 

2023-

2033 
5.379 19.477 14.785 3.907 0.35 No -630 45.47 

1991-

2033 
4.689 42.802 15.403 8.985 0.601 No -104 18.648 

* Fraction of tied observations. $ p < 0.05. 

Table 10. Statistical analysis of the ratio dew/rain averaged over the rainy seasons during the 

observation period 1/1991-7/2023, extrapolation period 8/2023-7/2033 and all periods 1/1991-8/2033, 

with Mann-Kendall (MK) and Sen's slope tests. 

Rainy season Period 

Ratio (%) 

p-value$ 

MK mea- 

ningful 

trend$ 

Sen’s slope 

(10-6 yr-1) 

Sen’s 

con-stant Min Max Mean SD 

Ifaty 

1991-

2023 
0.954 4.615 2.063 0.817 0.588 No 24 1.113 

2023-

2033 
1.165 1.991 1.465 0.257 0.283 No 90 -2.815 

1991-

2033 
0.954 4.615 1.942 0.767 0.386 No -19 2.565 

Toliara 

1991-

2023 
0.691 2.477 1.323 0.453 0.631 No 13 0.813 

2023-

2033 
1.071 1.87 1.424 0.323 0.002 Yes 219 -8.855 

1991-

2033 
0.691 2.477 1.353 0.428 0.153 No 24 0.34 

Andrem- 

ba 

1991-

2023 
0.768 1.957 1.234 0.264 0.329 No 15 0.622 

2023-

2033 
0.921 1.339 1.028 0.13 0.371 No -30 2.407 

1991-

2033 
0.768 1.957 1.189 0.256 0.298 No -9.5 1.527 

* Fraction of tied observations. $ p < 0.05. 
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4. General Discussion 

The first result of this study is the recognition that on a rather small area (  100  60 km2) dew 

can vary much more than rain. For instance, dew varies by 50% between Toliara and Ifaty that are 

distant of 27 km, and is nearly the same in Toliara and Andremba 81 km distant. In contrast, rain 

keeps nearly the same values in those three sites. This observation is due to the process of formation 

of dew, which is a function of quite local values of relative humidity, air flows (wind) and cloud 

cover. Rain, in contrast, forms in the upper regions of atmosphere and is convected on large distances 

before falling an a large area.  

Another result is the finding that the evolutions of dew and rain are similar (Figure 15a). The 

reason can be found in the variation of local relative humidity, which governs the dew yield and 

increases with increasing rainfall (Figure 15b). The evolution is non-monotonous, with increase from 

1991 to 2000, a decrease up to 2020 and a further increase till 2033. A decrease between 2000 and 2018 

was already noted in the study [37] that ended in 2018 and is a part of a long-lasting trend, at least 

from the 1950’s. The evolution of cloud cover, which is also an important parameter in dew formation, 

unsurprisingly follows the same evolution with, however, a very small increase that does not affect 

the rise of dew yield at large RH.  

 

  

Figure 15. Correlated evolutions of (a) monthly dew and rain events and (b) RH and cloud cover 

during the measurement period 1/1991 – 7/2023. 

The evolution of rain is known to follow the ocean surface temperature, which undergoes 

periodic oscillations known as Indian Ocean Dipole (IOD, see e.g. [67]). The IOD is negative when 

the water surface temperature of the Indian Ocean is below normal in the west and above normal in 

the east. When a negative IOD is observed then in the central-western tropical Indian Ocean the 

precipitation is below normal while in the eastern tropical Indian Ocean and in the western tropical 

Pacific Ocean the precipitations are higher than normal. Extreme IOD events (droughts, floods and 
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hurricanes) are likely to increase in the future as a result of the climate change. These events have a 

tendency to relate with El Niño events, with periods of 5-10 years. 

In terms of water content, dew forms much more regularly than rain. The number of consecutive 

days without dew is the same in the dry and rainy seasons (2-3 days). It is much larger for rain in the 

dry season (10-15 days) and even in the rainy season (3-5 days). Although the dew yield remains 

modest (1-2 mm.mth-1) when compared to rain ( 30 mm.mth-1), corresponding to yearly mean 

contribution of 3-4%, its contribution during the dry season can be much larger, up to  30% . Its 

evolution is opposite of rain and dew, due to the larger influence of rain variation in the ratio 

dew/rain. One notes that the contribution of collected fog and mist can increase by a factor 3 this 

contribution.  

5. Conclusions 

Dew yields were calculated in three sites, Ifaty, Toliara and Andremba (Madagascar) between 

1991 and 2023 from meteo data thanks to an energy equation. The region has a mid-latitude steppe 

and desert climate characterized by high humidity, which favors dew formation. When combined 

with rainfalls, the evolution of dew and rain and their relative importance can be determined in the 

period. The data are extrapolated from 2023 to 2033 by using artificial neural networks.  

The evolution of dew and rain is found similar and in agreement with the variations of the IOD 

ocean surface temperature. One observes an increase from 1991 to 2000, a decrease up to 2020 and a 

further increase till 2033. The overall trend in the period 1991-2033 is negative for dew and uncertain 

for rain.  

The contribution of dew with respect to rain is found rather weak when averaged on a year, 

about 3-4%. However, dew forms very regularly all over the year, which makes its contribution large 

during the dry season (Apr.-Oct.), up to  30%, due to the conjunction of higher dew yield and lower 

rainfalls. The values calculated for dew in this work (mean value about 1-2 mm.mth-1) are 

conservative. The measured non-rainfalls indeed exhibit much larger yields, by a factor on order 

three. On the Madagascar coast, fog and mist indeed add to dew and considerably increase the 

contribution of non-rainfall water. 

The number of consecutive days without rain or dew is an important factor for the vegetation 

and in general for animals and human population. The mean number of consecutive days without 

rain is on order 3-5 days during the rainy season and much larger during the dry season (10-15 days). 

In contrast, dew is regular all over the year, as shown by a mean number of consecutive days without 

dew of 2-3 days, making it a reliable source of water for plants, animals and even population if 

properly stored with rain. 

The evolution of the dew and rain water resources is related to the ocean surface temperature 

governed by the Indian Ocean Dipole. Its variations, alike El Niño, are subjected to the climate 

change. In particular, extreme events (droughts, floods and hurricanes) are expected to increase in 

the future.  
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