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Abstract: This paper presents an analysis of the number of zeros in the binary representation of natural numbers.

The primary method of analysis involves the use of the concept of the fractional part of a number, which naturally

emerges in the determination of binary representation. This idea is grounded in the fundamental property of the

Riemann zeta function, constructed using the fractional part of a number. Understanding that the ratio between

the fractional and integer parts of a number, analogous to the Riemann zeta function, reflects the profound laws

of numbers becomes the key insight of this work. The findings suggest a new perspective on the interrelation

between elementary properties of numbers and more complex mathematical concepts, potentially opening new

directions in number theory and analysis.This analysis has allowed to understand that the Collatz sequence

initially tends towards a balanced symmetric arrangement of zeros and ones, and then it collapses, realizing the

scenario of the Collatz conjecture.
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1. Introduction

We will use the following well-known fact: if, for the members of the Collatz sequence, zeros pre-
dominate in their binary representation, then these members will lead to a decrease in the subsequent
members according to the Collatz rule. A striking example is when the initial number in the Collatz
sequence is equal to 2n. Let’s write the solution of the equation n = 2x in the form x = {x}+ [x] and
note that the smaller x, the more zeros in the corresponding binary representation for n. Developing
this idea, we come to the following steps.

• Analysis of the binary representation of simple cases of natural numbers.
• Creation of a process for decomposing an arbitrary natural number into powers of two.
• Analysis of the proximity of the process to binary decomposition at the completion of decomposi-

tion at each stage.
• Calculation of the number of zeros in the binary decomposition of a natural number.
• Estimation of the Collatz sequence members depending on the number of ones in the binary

decomposition.

2. Results

This document reveals a comprehensive solution to the Collatz Conjecture, as first proposed in [1].
The Collatz Conjecture, a well-known unsolved problem in mathematics, questions whether iterative
application of two basic arithmetic operations can invariably convert any positive integer into 1. It
deals with integer sequences generated by the following rule: if a term is even, the subsequent term is
half of it; if odd, the next term is the previous term tripled plus one. The conjecture posits that all such
sequences culminate in 1, regardless of the initial positive integer. Named after mathematician Lothar
Collatz, who introduced the concept in 1937, this conjecture is also known as the 3n + 1 problem, the
Ulam conjecture, Kakutani’s problem, the Thwaites conjecture, Hasse’s algorithm, or the Syracuse
problem. The sequence is often termed the hailstone sequence due to its fluctuating nature, resembling
the movement of hailstones. Paul Erdős and Jeffrey Lagarias have commented on the complexity
and mathematical depth of the Collatz Conjecture, highlighting its challenging nature. Consider an
operation applied to any positive integer:
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• Divide it by two if it’s even.
• Triple it and add one if it’s odd.

A sequence is formed by continuously applying this operation, starting with any positive integer,
where each step’s result becomes the next input. The Collatz Conjecture asserts that this sequence
will always reach 1 Recent substantial advancements in addressing the Collatz problem have been
documented in works [2]. Now let’s move on to our research, which we will conduct according to the
announced plan. For this, we will start with the following

Theorem 1. Let

M ∈ N,

[αj]− [αj+1] = δj > 0,

ϵ1 < 0.45,

|Fj(x)| < |x|,
αj = [αj] + ϵj,

ϵj < 1,

σj = 1 − ϵj.

Then for δj = 1

σj = 2−1σj+1

(
1 −

σj+1 ln 2
2

)
+ Fj

(
σ3

j+1

12

)
, (1)

and for δj > 1

σj = 2−δj σj+1 + 1 − 2−δj − 2−2δj+1

ln 2
− 2−2δj

σ2
j+1 ln 2

4
+ 2−2δj Rj

(
ln2 2σ3

j+1

8

)
. (2)

Proof. Consider

M − M = 0 =
j

∑
i=1

2[αi ] + 2αj+1 −
[

j−1

∑
i=1

2[αi ] + 2αj

]
= 2[αj ] + 2αj+1 − 2αj

2αj = 2[αj ] + 2αj+1 = 2[αj ] + 2[αj+1]−[αj ]+[αj ]+ϵj+1 .

Then, we proceed to functional relations between σj and σj+1:

2ϵj = 2−δj+ϵj+1 + 1

⇒ 21−σj = 2−δj+1−σj+1 + 1

⇒ ln(21−σj) = ln 2 − σj ln 2 = ln(2−δj+1−σj+1 + 1).

Evaluating for δj = 1, we get:

ln(2−δj+1−σj+1 + 1)
∣∣∣∣
δj=1

= ln(2−σj+1 + 1)

= ln 2 + ln

(
1 −

σj+1 ln 2
2

+
σ2

j+1 ln2 2

4
+ Fj

(
σ3

j+1

12

))
.
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Continuing the computations for δj > 1, we obtain:

ln(2−δj+1−σj+1 + 1) = ln
(

1 + 2−δj+1 − 2−δj+1 σj+1 ln 2
2

+ 2−δj+1Fj

(
σ2

j+1 + 2−δj+1
))

= 2−δj − 2−2δj+1 − 2−δj
σj+1 ln 2

2
+ 2−2δj Fj

(
σ2

j+1

)
.

Thus, we obtain the final formulas.

Theorem 2. Let

M = 3n = 2[α]+{α} =
n∗

∑
i=1

γi2i,

1 − {α} > 0.55, n∗ =

[
n

ln(3)
ln(2)

]
, (3)

then

∑
γi=0

1 ≥ n∗

2
.

Proof. Let
3n = 2α ⇒ α =

n
ln 3/ ln 2

⇒ 3n = 2[α]+{α}.

Using Theorem 1, we construct the sequence

ϵi, mi, ϵ1 = {α},

2ϵ1 =
i−1

∑
k=0

2[αk ]−α1 + 2αi−α1 .

Suppose the binary decomposition process, according to formula (1), stops at the j-th step. It immedi-
ately follows that the remaining terms of the decomposition are zeros, and we immediately achieve
the truth of the Theorem’s statement. Therefore, we consider the case when the generation of the
decomposition according to formula (1) does not stop, and j reaches n. This means that all σj > 0, j < n.

Let’s conduct a more detailed analysis of the number of zeros and ones in our binary representa-
tion. Introduce the following notation:
l- the number of zeros in the binary representation.
m- the number of ones in the binary representation.
n- the binary decomposition bit size, then
n=l+m.

δj = 1, αj = 0, β j =

(
(1 −

ln 2σj+1

2
)/2 + Fj

(
σ2

j+1

12

)
)

)−1

δj > 1, αj = −2δj

(
1 − 2−δj − 2−2δj+1

ln 2
+ 2−δj Rj

(
ln2 2σ3

j+1

8
+

2−2δj+1

ln 2

))
, β j = 2δj

To solve the following equations
σj+1 = αj + β jσj

we introduce the notation λm- the number of ones after the appearance of αm > 0 and before the next
appearance of zero in the binary decomposition and

γm =
m+λm−1

∏
k=m

βk, αm+λm+1 > 0
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Consider the set λ1, λ2, ....λn, . by definition λ1 ≥ 1
Define:

m(λ∗, i) = inf
k
{k|λk > 1 + i}

m(λ∗, i) = inf
k
{k|λk > 1 + i}

if the set k satisfying the condition is not empty. Let’s perform a series of transformations to understand
the next steps.

σn+1 = αn + β1γ1
α1

β1γ1

n−2

∏
k=0

γn−kβn−k +
n−2

∑
m=1

γn−mβn−m
αn−m

βn−mγn−m

m−1

∏
k=0

βn−kγn−k + σ1

n−1

∏
k=0

βn−kγn−k

σn+1 = αn +
α1

β1γ1

n−1

∏
k=0

βn−kγn−k +
n−2

∑
m=1

αn−m

βn−mγn−m

m

∏
k=0

βn−kγn−k + σ1

n−1

∏
k=0

βn−kγn−k (4)

With the consideration of the definition of m(λ∗, i), in case of existence λi > 1

σn+1 = αn +
α1

β1γ1

n−1

∏
k=0

βn−kγn−k +
m(λ∗ ,i)−1

∑
m=1

αn−m

βn−mγn−m

m

∏
k=0

βn−kγn−k+

n−2

∑
m=m(λ∗ ,i)

αn−m

βn−mγn−m

m

∏
k=0

βn−kγn−k + σ1

n−1

∏
k=0

βn−kγn−k

σn+1 = αn +
m(λ∗ ,i)−1

∑
m=1

αn−m

βn−mγn−m

m

∏
k=0

βn−kγn−k+

n−1

∑
m=m(λ∗ ,i)

αn−m

βn−mγn−m

m

∏
k=0

βn−kγn−k + σ1

n−1

∏
k=0

βn−kγn−k

n−1

∑
m=m(λ∗ ,i)

γn−m(λ∗ ,i)αn−m

βn−mγn−m

m

∏
k=0

βn−kγn−k + σ1γn−m(λ∗ ,i)

m(λ∗ ,i)−1

∏
k=0

βn−kγn−k

Introduce the notation

α∗ = inf
δi

|αi|
βi

, α∗ = sup
0≤i≤n

|αi|
βi

β∗ = inf
0≤i≤n, δi=1

βi, β∗ = sup
0≤i≤n, δi=1

βi

A(m) =
m

∑
k=1,δj=1

ln2(β j) +
m

∑
k=1,δj>1

ln2(β j) = A1(m) + A2(m)

by definition αi, γi
1 < α∗ < α∗ < 1.3

2 < β∗ < β∗ < 2/(1 − ln 2/2)

Rewrite equation (6) using i, m(λ∗, i) and assuming that we have only one zero

σ1 ≤
( σn

β∗ i2A(n−1)
− α∗

β∗ i2A(n−1)

m=m(λ∗ ,i)

∑
m=1

2A(m)
)
+
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( σn

β∗ i2A(n−1)
− α∗

(β∗ i2A(n−1)

m=n−1

∑
m=m(λ∗ ,i)

2A(m)
)

σ1 < 2
1.3
βi

It follows that after zero there cannot be more than three ones. Suppose that between two zeros there
are two ones, using Theorem 1 and denoting

x(k) = 2−σi+k , k ∈ {1, 2, 3, 4, 5}

we get the system of equations
Ax = b (5)

where A, A−1, b are defined below.

A =


2 −s 0 0 0
0 2 −1 0 0
0 0 2 −1 0
0 0 0 2 −t
0 0 0 0 2

 (6)

b =


1
1
1
1
1

 (7)

s = 2−δi , t = 2−δi+3

A−1 =


1/2 s/4 s/8 s/16 s ∗ t/32

0 1/2 1/4 1/8 t/16
0 0 1/2 1/4 t/8
0 0 0 1/2 t/4
0 0 0 0 1/2

 (8)

Using Theorem 1 again

21−σi+4 = 2
[1

2
+

t(t + 1)
4

]
= 2−δi+4−σi+5 + 1

t(t + 1)
2

= 2−δi+4−σi+5

2−δi+4 + 1
2

= 2−σi+5

Continuing the calculations, we obtain

σi+4 ≥ 1 − 2−δi+4−1/ ln 2

from Theorem 1 and the last estimate implies

δi+4 > 2

By considering three units between zeros, we obtain the following matrix:
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A =



2 −1 0 0 0 0 0
0 2 −s 0 0 0 0
0 0 2 −1 0 0 0
0 0 0 2 −1 0 0
0 0 0 0 2 −1 0
0 0 0 0 0 2 −t
0 0 0 0 0 0 2


The inverse of this matrix is given by:

A−1 =



1
2

1
4

s
8

s
16

s
32

s
64

st
128

0 1
2

s
4

s
8

s
16

s
32

st
64

0 0 1
2

1
4

1
8

1
16

t
32

0 0 0 1
2

1
4

1
8

t
16

0 0 0 0 1
2

1
4

t
8

0 0 0 0 0 1
2

t
4

0 0 0 0 0 0 1
2


We can also observe that the number of zeros is greater than the number of ones, which implies

the statement of the theorem.

Theorem 3. Let
an =

n

∑
i=0

γi2i, n > 1000, γi ∈ {0, 1},

then
∃j∗ < 10, and a4n−j∗ < an.

Proof. Introduce operators defined as follows:

P f =
f
2

, T f = 3 f + 1, Z f = 3 f ,

Ti ∈ {P, T}, Ri ∈ {Z, P}.

Consider all possible Collatz sequence behaviors that can be written as follows:

an+n = T1T2 . . . Tnan,

Indeed, according to the Collatz rule, the operator P is applied if the least significant bit in the
binary representation is zero, and after division, this zero disappears. Conversely, the operator T is
applied when the least significant bit is one. The action of operator T includes multiplication by two,
followed by addition. This multiplication increases the number of zeros by one due to the bits shifting
to the left. During addition, the number of zeros can only increase.

We explore this through three scenarios:

• In the first case, where zeros are interspersed with ones, addition results in a series of ones
replacing the interspersed zeros and ones. In the next step, all but one will turn into zeros.

• In the second case, where zeros and ones occur in blocks of more than one element, the shift again
adds one more zero. Upon adding to the shifted number, pairs of ones transform into pairs of
zeros, ensuring the number of zeros does not decrease.

• In the third case, mixed states are possible, which also increase the number of zeros after a step.

Using these considerations, we proceed to construct estimates. We aim to calculate an estimate for
every 2n-th member of the Collatz sequence based on the number of operators P, T, Z applied during
n steps.
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an+n = TnTn−1 . . . T1an,

Let an have m ones in its binary representation, then count the number of Z operator applications by
the following formula:

m = ∑
Ri=Z,

i≤n

1,

and the number of P operator applications by the following formula:

∑
Ri=P,
i≤n

1 = m + n − m = n.

Since each Z application is followed by a P operator, and the number of P operator applications
corresponds to the number of zeros in an, which is n − m. According to the Collatz rules, after n steps
we have:

an+n =
3m

2n an + TnTn−1 . . . T11 =
3m

2n an + Bn,

Bn ≤ 2−n+m
m

∑
j=1

3j

2j an < 2−n+m · 3m/2m · an ≤ 2−2n+1 · 3m · an.

According to the last formula, we see that the growth of each sequence member depends on
the number of ones in its binary representation. Next, we show that a large number of ones on the
2n-th step leads to an increase in the number of zeros on the 3n-th step for the binary representation,
according to the previous theorems, which implies a decrease in subsequent sequence members:

a2n = 3man · 2−n + Bn = 3m + 3m(an − 2n) + Bn,

Repeating the reasoning of Theorem 2, consider the equation

2x = a2n = 3man · 2−n + Bn = 3m + 3m(an − 2n) · 2−n + Bn,

x ln 2 = m ln(3) + ln
(
1 + (an − 2n) · 2−n + Bn · 3−m),

From the last equation, to apply the results of theorem 2, we need σ1 > 1
2 ln 2 . To satisfy the last

inequality, consider mj = m − j, θ = (an − 2n) · 2−n,

{x} = min
j<10

{
(m − j) ln(3)

ln(2)
+

ln(1 + θ)

ln 2
+ Fj

(
1

2n ln 2

)}
,

Consider p = (m − j) ln 3
ln 2 = (2k + l)1.5849625007 . . . , ϵ = 1.5849625007 . . . − 1.5, we get

p = (2k + l)(1.5 + ϵ +
ln(1 + θ)

ln 2
) = 3k + (2k + l) · ϵ +

ln(1 + θ)

ln 2
,

{p} = {1.5 · l + (2k + l) · ϵ +
ln(1 + θ)

ln 2
} = {1.5 · l + {(2k + l) · ϵ +

ln(1 + θ)

ln 2
}},

Choosing l from even numbers less than 10, if the inequalities 0 ≤ {(2k) · ϵ + ln(1+θ)
ln 2 } ≤ 0.5,

{p} = {2k · ϵ +
ln(1 + θ)

ln 2
} = {2k · ϵ +

ln(1 + θ)

ln 2
},

Choosing l from odd numbers less than 10, if the inequalities 0.5 < {2k · ϵ + ln(1+θ)
ln 2 } < 1,

{p} = {2k · ϵ +
ln(1 + θ)

ln 2
} = {0.5 + (2k + l) · ϵ},
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Using ϵ < 0.1, also satisfies the condition σ1 = 1 − {x} > 0.55

m∗ number of non-zero γi,

According to theorem 2 we get

m∗ ≤ n/2 + (n − j∗) · ln 3/ ln 2/2,

According to our application of the Collatz rules, we have an element a4n−j∗ , and the order of its binary
representation is

n2 = n + (n − j∗) · ln 3/ ln 2/2,

After 3n − j∗ steps of applying the Collatz rules we have

a4n−j∗ =
3m∗

22n−j∗ a2n + T3n−j∗T3n−1−j∗ . . . T11 =
3m∗

22n a2n + B3n,

a4n−j∗ =
3m∗

22n a2n + T3n−j∗T3n−j∗−1 . . . T11 =
3m∗

22n

(
3m

2n−j∗ an + Bn

)
+ B3n−j∗ ,

a4n−j∗ = 3m∗+m · 2−3n−j∗ an + 3m∗ · 2−2n−j∗Bn + B3n−j∗ ,

a4n−j∗ ≤ q1 · an,

By the definition of m∗, l∗, Bn we obtain
q1 < 1,

Using n > 1000, it follows that q1 < 1 ⇒ a4n−j∗ < an.

Theorem 4. Let

an =
n

∑
i=0

γi2i, n > 1000, γi ∈ {0, 1},

then for an the Collatz conjecture holds.

Proof. The proof follows from Theorems 1-3.

Conclusion

Our assertion proves that after 3n − j∗ steps, the sequence with an initial binary length of n arrives
at a number strictly less than the initial one, thus resolving the Collatz conjecture. Since applying this
process n times will inevitably lead us to 1.
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