Submitted:
05 January 2024
Posted:
08 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methodological Framework of Spatio-Temporal Kriging Incorporating Auxiliary Variables
2.1. Spatio-Temporal Regression Kriging
2.2. Spatio-Temporal Kriging with External Drift
3. Methodology of Spatio-Temporal Dual Kriging
3.1. Spatio-Temporal Dual Kriging with Fixed Coefficient Drift Function
3.2. Spatio-Temporal Dual Kriging with Adaptive Coefficient Drift Function
4. Application of the Proposed ST-DK Techniques for Temperature and Air Pressure Interpolations in Thailand
4.1. Study Area and Data Description
4.2. Selection of Auxiliary Variables
4.3. Accuracy Assessment
4.4. Results
4.4.1. Comparison of ST-RK and ST-DK with Fixed Coefficient Drift Function
4.4.2. Comparison of the ST-RK and ST-DK with Adaptive Coefficient Drift Function
| Variable | Temperature | Air Pressure |
|---|---|---|
| Temperature | 1.0000 | 0.8021 |
| Air Pressure | 0.8021 | 1.0000 |
| Relative Humidity | -0.0710 | 0.3432 |
| DEM | -0.5907 | -0.7608 |
5. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AST-DK | Spatio-temporal dual kriging with adaptive coefficient drift function |
| AST-RK | Spatio-temporal regression kriging with adaptive coefficient drift function |
| FST-DK | Spatio-temporal dual kriging with fixed coefficient drift function |
| FST-RK | Spatio-temporal regression kriging with fixed coefficient drift function |
| DEM | Digital Elevation Model |
| DK | Dual kriging |
| IDW | Inverse distance weighted |
| KED | Kriging with external drift |
| MAPE | Mean absolute percentage error |
| MLR | Multiple linear regression |
| Nitrogen dioxide | |
| OLS | Ordinary least squares |
| RMSE | Root mean square error |
| ST-DK | Spatio-temporal dual kriging |
| ST-KED | Spatio-temporal kriging with external drift |
| ST-OK | Spatio-temporal ordinary kriging |
| ST-RK | Spatio-temporal regression kriging |
| ST-SK | Spatio-temporal simple kriging |
Appendix A. The Formulation of the ST-KED System for Adaptive Coefficient Drift Function
Appendix A.1. Unbiasedness Condition
Appendix A.2. The Variance of the Estimation Error
Appendix A.3. Minimization Approach for the ST-KED System Construction
References
- Liu, L.; Özsu, M.T. Encyclopedia of database systems; Vol. 6, Springer New York, NY, USA:, 2009.
- Li, L.; Revesz, P. A comparison of spatio-temporal interpolation methods. In Proceedings of the International Conference on Geographic Information Science. Springer, 2002, pp. 145–160.
- Li, L.; Revesz, P. Interpolation methods for spatio-temporal geographic data. Computers, Environment and Urban Systems 2004, 28, 201–227.
- Eldrandaly, K.; Abdelmouty, A. Spatio-temporal interpolation: Current practices and future prospects. International Journal of Digital Content Technology and its Applications 2017, 11, 2017.
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software 2014, 53, 173–189. [Google Scholar]
- Xiao, Y.; Gu, X.; Yin, S.; Shao, J.; Cui, Y.; Zhang, Q.; Niu, Y. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. SpringerPlus 2016, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Losser, T.; Yorke, C.; Piltner, R. Fast inverse distance weighting-based spatiotemporal interpolation: a web-based application of interpolating daily fine particulate matter PM2. 5 in the contiguous US using parallel programming and kd tree. International journal of environmental research and public health 2014, 11, 9101–9141. [Google Scholar] [CrossRef]
- Du, Z.; Wu, S.; Kwan, M.P.; Zhang, C.; Zhang, F.; Liu, R. A spatiotemporal regression-kriging model for space-time interpolation: a case study of chlorophyll-a prediction in the coastal areas of Zhejiang, China. International Journal of Geographical Information Science 2018, 32, 1927–1947. [Google Scholar] [CrossRef]
- van Zoest, V.; Osei, F.B.; Hoek, G.; Stein, A. Spatio-temporal regression kriging for modelling urban NO2 concentrations. International Journal of Geographical Information Science 2020, 34, 851–865. [Google Scholar] [CrossRef]
- Adigi, J.A. Spatio-temporal regression kriging for predicting rainfall from sparse precipitation data in Ghana. Master’s thesis, University of Twente, 2019.
- Sekulić, A.; Kilibarda, M.; Protić, D.; Tadić, M.P.; Bajat, B. Spatio-temporal regression kriging model of mean daily temperature for Croatia. Theoretical and Applied Climatology 2020, 140, 101–114. [Google Scholar] [CrossRef]
- Hu, D.; Shu, H.; Hu, H.; Xu, J. Spatiotemporal regression Kriging to predict precipitation using time-series MODIS data. Cluster Computing 2017, 20, 347–357. [Google Scholar] [CrossRef]
- Subba Rao, T.; Terdik, G. On the frequency variogram and on frequency domain methods for the analysis of spatio-temporal data. Journal of Time Series Analysis 2017, 38, 308–325. [Google Scholar] [CrossRef]
- Mateu, J.; Giraldo, R. Introduction to Geostatistical Functional Data Analysis. Geostatistical Functional Data Analysis 2022, pp. 1–25.
- Idir, Y.M.; Orfila, O.; Judalet, V.; Sagot, B.; Chatellier, P. Mapping urban air quality from mobile sensors using spatio-temporal geostatistics. Sensors 2021, 21, 4717. [Google Scholar] [CrossRef]
- Snepvangers, J.; Heuvelink, G.; Huisman, J. Soil water content interpolation using spatio-temporal kriging with external drift. Geoderma 2003, 112, 253–271. [Google Scholar] [CrossRef]
- Bargaoui, Z.K.; Chebbi, A. Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. Journal of Hydrology 2009, 365, 56–73. [Google Scholar] [CrossRef]
- Carrera-Hernández, J.; Gaskin, S. Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico. Journal of Hydrology 2007, 336, 231–249. [Google Scholar] [CrossRef]
- Trochu, F. A contouring program based on dual kriging interpolation. Engineering with computers 1993, 9, 160–177. [Google Scholar] [CrossRef]
- Chaveesuk, R.; Smith, A.E. Dual Kriging: an exploratory use in economic metamodeling. The Engineering Economist 2005, 50, 247–271. [Google Scholar] [CrossRef]
- De Iaco, S.; Posa, D. Predicting spatio-temporal random fields: Some computational aspects. Computers & Geosciences 2012, 41, 12–24. [Google Scholar]
- Montero, J.M.; Fernández-Avilés, G.; Mateu, J. Spatial and spatio-temporal geostatistical modeling and kriging; Vol. 998, John Wiley & Sons, 2015.
- Weenink, P.L. Local spatio-temporal regression kriging for property price predictions. PhD thesis, 2022.
- Kyriakidis, P.C.; Journel, A.G. Geostatistical space–time models: a review. Mathematical geology 1999, 31, 651–684. [Google Scholar] [CrossRef]
- Rivoirard, J. Which models for collocated cokriging? Mathematical geology 2001, 33, 117–131. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Christakos, G. Prediction of soil heavy metal distribution using Spatiotemporal Kriging with trend model. Ecological Indicators 2015, 56, 125–133. [Google Scholar] [CrossRef]
- Derakhshan, H.; Leuangthong, O. A review of separable spatiotemporal models of regionalization 2006.
- Wikle, C.K.; Zammit-Mangion, A.; Cressie, N. Spatio-temporal statistics with R; CRC Press, 2019.
- Rouhani, S.; Hall, T.J. Space-time kriging of groundwater data. In Proceedings of the Geostatistics: Proceedings of the Third International Geostatistics Congress September 5–9, 1988, Avignon, France. Springer, 1989, pp. 639–650.
- Gräler, B.; Pebesma, E.J.; Heuvelink, G.B. Spatio-temporal interpolation using gstat. R J. 2016, 8, 204. [Google Scholar] [CrossRef]
- De Cesare, L.; Myers, D.; Posa, D. Product-sum covariance for space-time modeling: an environmental application. Environmetrics: The official journal of the International Environmetrics Society 2001, 12, 11–23. [Google Scholar] [CrossRef]
- Cressie, N.; Wikle, C.K. Statistics for spatio-temporal data; John Wiley & Sons, 2015.
- Cressie, N. Fitting variogram models by weighted least squares. Journal of the international Association for mathematical Geology 1985, 17, 563–586. [Google Scholar] [CrossRef]
- Sideris, I.V.; Gabella, M.; Erdin, R.; Germann, U. Real-time radar–rain-gauge merging using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland. Quarterly Journal of the Royal Meteorological Society 2014, 140, 1097–1111. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate geostatistics: an introduction with applications; Springer Science & Business Media, 2003.
- Clasen, R.J. Numerical methods for inverting positive definite matrices; Rand Corporation, 1966.
- Chariyaphan, R. Thailand’s country profile 2012. Department of Disaster Prevention and Mitigation, Ministry of Interior, Thailand 2012.
- Laonamsai, J.; Ichiyanagi, K.; Kamdee, K. Geographic effects on stable isotopic composition of precipitation across Thailand. Isotopes in Environmental and Health Studies 2020, 56, 111–121. [Google Scholar] [CrossRef] [PubMed]
- OpenData. Available online: https://data.hii.or.th (accessed on 14 October 2020).
- von Hippel, P.; Lynch, J. Efficiency gains from using auxiliary variables in imputation. arXiv, 2013; arXiv:1311.5249 2013. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. Noise reduction in speech processing 2009, pp. 1–4.
- Senthilnathan, S. Usefulness of correlation analysis. Available at SSRN 3416918 2019.
- Du, K.L.; Swamy, M.N. Neural networks and statistical learning; Springer Science & Business Media, 2013.
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Alsafadi, K.; Mohammed, S.; Mokhtar, A.; Sharaf, M.; He, H. Fine-resolution precipitation mapping over Syria using local regression and spatial interpolation. Atmospheric Research 2021, 256, 105524. [Google Scholar] [CrossRef]
- Craven, B.; Islam, S.M. Ordinary least-squares regression. The SAGE dictionary of quantitative management research 2011, pp. 224–228.
- Chokngamwong, R.; Chiu, L.S. Thailand daily rainfall and comparison with TRMM products. Journal of hydrometeorology 2008, 9, 256–266. [Google Scholar] [CrossRef]
- Wongkoon, S.; Jaroensutasinee, M.; Jaroensutasinee, K. Distribution, seasonal variation & dengue transmission prediction in Sisaket, Thailand. The Indian journal of medical research 2013, 138, 347. [Google Scholar] [PubMed]
- Parlett, B.N. A new look at the Lanczos algorithm for solving symmetric systems of linear equations. Linear algebra and its applications 1980, 29, 323–346. [Google Scholar] [CrossRef]
- Marcia, R.F. On solving sparse symmetric linear systems whose definiteness is unknown. Applied Numerical Mathematics 2008, 58, 449–458. [Google Scholar] [CrossRef]
- Mele, G.; Ringh, E.; Ek, D.; Izzo, F.; Upadhyaya, P.; Jarlebring, E. Preconditioning for linear systems; KD Publishing, 2020.
- Bertsekas, D.P. Constrained optimization and Lagrange multiplier methods; Academic press, 2014.



| Variable | Temperature | Air Pressure |
|---|---|---|
| Temperature | 1.0000 | 0.5775 |
| Air Pressure | 0.5775 | 1.0000 |
| Relative Humidity | -0.2264 | 0.2204 |
| DEM | -0.4284 | -0.7577 |
| Target Variable | Auxiliary Variable | Error | FST-RK | FST-DK |
|---|---|---|---|---|
| Temperature | Air Pressure | |||
| Air Pressure |
| Target Variable | Auxiliary Variable | Error | AST-RK | AST-DK |
|---|---|---|---|---|
| Temperature | Air Pressure | |||
| Temperature | ||||
| Air Pressure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
