Submitted:
05 January 2024
Posted:
08 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area

2.2. Methodology and Data
2.2.1. Modeling the Valuation of ES
2.2.2. AHP-FCE Based Ecosystem Service Evaluation model For Mulberry-Dyke and Fish-Pond System
| Level | Score range | Definition |
|---|---|---|
| Ⅰ | 4~5 | High ecosystem services |
| Ⅱ | 3~4 | Relatively high ecosystem services |
| Ⅲ | 2~3 | General ecosystem services |
| Ⅳ | 1~2 | Relatively low ecosystem services |
| Ⅴ | 0~1 | Low ecosystem services |
| Criterion Layer | Index Layer | Factor Layer | Level | ||||
|---|---|---|---|---|---|---|---|
| 5 | 4 | 3 | 2 | 1 | |||
| B1 Provisioning ecosystem services |
C1 Mulberry land production value |
D1(t / hm²) Mulberry leaf production |
≥75.00 | 52.50~75.00 | 45.00~52.50 | 37.50~45.00 | ≤37.50 |
| D2(t / hm²) Mulberry fruit production |
≥75.00 | 60.00~75.00 | 42.00~60.00 | 36.00~42.00 | ≤36.00 | ||
| C2 Fishpond production value |
D3(t / hm²) Conventional fish farming production |
≥90.00 | 67.50~90.00 | 45.00~67.50 | 22.50~45.00 | ≤22.50 | |
| D4(t / hm²) Ecological fish farming production |
≥45.00 | 33.80~45.00 | 22.50~33.80 | 11.3~22.50 | ≤11.30 | ||
| B2 Regulating ecosystem services |
C3 Basal environment regulation value |
D5(kg/hm²) Fertilizer application intensity |
<200.00 | 200.00~250.00 | 250.00~350.00 | 350.00~450.00 | >450.00 |
| D6(kg/hm²) Pesticide application intensity |
<2.50 | 2.50~3.00 | 3.00~4.00 | 4.00~4.50 | >4.50 | ||
| C4 Climate regulation value |
D7 (%) Relative humidity adjustment range |
>4.00 | 3.00~4.00 | 2.00~3.00 | 1.00~2.00 | <1.00 | |
| D8 (℃) Average temperature regulation |
>4.00 | 3.00~4.00 | 2.00~3.00 | 1.00~2.00 | <1.00 | ||
| D9 Air quality index |
<50.00 | 50.00~100.00 | 100.00~150.00 | 150.00~200.00 | >200.00 | ||
| Criterion Layer | Index Layer | Factor Layer | Definition |
|---|---|---|---|
| B3 Culture ecosystem services |
C5 Aesthetics value |
D10 Plant landscape richness | Hierarchical sense of trees, shrubs, and ground cover vegetation; diversity of species. |
| D11 Seasonal changes in the landscape | Seasonal changes in trees, shrubs, and ground cover vegetation, including both woody and herbaceous plants. | ||
| D12 Overall harmony | The overall sense of harmony within the village, formed by the cultural landscapes, streets, alleys, architecture, and vegetation within the village. | ||
| D13 Water clarity | The condition of water bodies in the environment. | ||
| D14 Leveling and hardening of road surface | Whether the road conditions are in accordance with the environment, including within the village and inside the Mulberry-Dyke and Fish-Pond System, with visual comfort as the criterion. | ||
| C6 Education value |
D15 Fish and mulberry culture education | The educational significance or value brought by fish-mulberry culture and the research-oriented activities centered around it. | |
| D16 Humanistic tradition | The existing stories of prominent individuals, their spirit, and character within the village that possess propagational and educational significance. | ||
| D17 Cultural propaganda and exhibition | The educational significance or value brought by the promotion and display of folk culture. | ||
| D18 Religious culture propaganda | The spiritual connotations brought by the religious culture atmosphere, as well as the level of understanding and acceptance of it. | ||
| C7 Leisure and entertainment value |
D19 Location conditions | The accessibility of the village's geographical location, transportation convenience, and natural environment. | |
| D20 Sanitary conditions | Environmental hygiene conditions. | ||
| D21 Tourism infrastructure | Basic infrastructure including toilets, signage, parking spaces, medical service facilities, etc. | ||
| D22 Agricultural Diversity Experience | Diverse experiences provided by agricultural products such as freshwater fish, mulberry leaf tea, fruits, rice, sesame oil, etc., based on the raw materials produced in Digang Village, which are either processed or directly sold. | ||
| D23 Experience the diversity of tourism products | Satisfy diversified tourism needs by visiting Digang Village. | ||
| D24 Visual and psychological perception | Experiences of visual and psychological sensations brought about by exploring Digang Village. | ||
| C8 Cultural heritage value |
D25 Village architectural style | Whether the architectural style within the village conforms to the characteristics of the Jiangnan water town and rural farming. | |
| D26 Village Traditional customs | Whether traditional folk customs within the village are fully preserved, whether the atmosphere of folk customs is good, and whether they have distinctive features. | ||
| D27 Ancient bridges and other historical and cultural features | The distinctiveness of cultural landscapes such as ancient bridges, celebrity memorial halls, and the scenic beauty of Nantiao. | ||
| D28 Food culture characteristics | The distinctiveness of Di Gang cuisine, exemplified by the Chen family's dishes and local snacks. | ||
| D29 Fish and mulberry culture characteristics | The distinctive features of the fish-mulberry culture. |
2.2.3. Data
| Name | Unit | Data | Data sources |
|---|---|---|---|
| Mulberry land production | t/hm² | 75.00 | Huzhou Agricultural Science and Technology Development Center Academician and Expert Workstation |
| Mulberry fruit production | t/hm² | 75.00 | |
| Conventional fish farming production | t/hm² | 90.00 | |
| Ecological fish farming production | t/hm² | 45.00 | |
| Fertilizer consumption | t | 4.00 | |
| Pesticide consumption | CNY | 34500.00 | |
| Change in relative humidity (July-September 2022) | % | -1.42 | Internal level meteorological information of Huzhou Municipal Meteorological Bureau |
| Change in average temperature (July-September 2022) | ℃ | -0.42 | |
| AQI | / | 64.90 | http://www.weather.com.cn/ |
3. Results
3.1. AHP Weight for Each Indicator
3.2. Fuzzy Comprehensive Evaluation and Results
| Factor Layer | Membership Matrix | ||||
|---|---|---|---|---|---|
| 5 | 4 | 3 | 2 | 1 | |
| D1 Mulberry leaf production | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| D2 Mulberry fruit production | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| D3 Conventional fish farming production | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| D4 Ecological fish farming production | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| D5 Fertilizer application intensity | 0.6970 | 0.3030 | 0.0000 | 0.0000 | 0.0000 |
| D6 Pesticide application intensity | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
| D7 Relative humidity adjustment range | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
| D8 Average temperature regulation | 0.0000 | 0.0000 | 0.0000 | 0.4200 | 0.5800 |
| D9 Air quality index | 0.0000 | 0.7020 | 0.2980 | 0.0000 | 0.0000 |
| Factor Layer | Membership Matrix | ||||
|---|---|---|---|---|---|
| 5 | 4 | 3 | 2 | 1 | |
| D10 Plant landscape richness | 0.3600 | 0.5900 | 0.0500 | 0.0000 | 0.0000 |
| D11 Seasonal changes in the landscape | 0.3200 | 0.5900 | 0.0800 | 0.0000 | 0.0100 |
| D12 Overall harmony | 0.3100 | 0.5700 | 0.1000 | 0.0200 | 0.0000 |
| D13 Water clarity | 0.1100 | 0.5000 | 0.2900 | 0.0900 | 0.0100 |
| D14 Leveling and hardening of road surface | 0.2800 | 0.5100 | 0.1800 | 0.0300 | 0.0000 |
| D15 Fish and mulberry culture education | 0.3200 | 0.4700 | 0.1600 | 0.0400 | 0.0100 |
| D16 Humanistic tradition | 0.3500 | 0.5000 | 0.1100 | 0.0400 | 0.0000 |
| D17 Cultural propaganda and exhibition | 0.3000 | 0.4400 | 0.2200 | 0.0400 | 0.0000 |
| D18 Religious culture propaganda | 0.1200 | 0.2500 | 0.2500 | 0.3100 | 0.0700 |
| D19 Location conditions | 0.2800 | 0.4700 | 0.2200 | 0.0300 | 0.0000 |
| D20 Sanitary conditions | 0.3300 | 0.4900 | 0.1500 | 0.0200 | 0.0100 |
| D21 Tourism infrastructure | 0.2500 | 0.4900 | 0.2400 | 0.0200 | 0.0000 |
| D22 Agricultural Diversity Experience | 0.2100 | 0.6100 | 0.1800 | 0.0000 | 0.0000 |
| D23 Experience the diversity of tourism products | 0.1800 | 0.5900 | 0.2000 | 0.0300 | 0.0000 |
| D24 Visual and psychological perception | 0.3500 | 0.5300 | 0.0900 | 0.0300 | 0.0000 |
| D25 Village architectural style | 0.3700 | 0.4600 | 0.1600 | 0.0100 | 0.0000 |
| D26 Village Traditional customs | 0.3500 | 0.4900 | 0.1500 | 0.0100 | 0.0000 |
| D27 Ancient bridges and other historical and cultural features | 0.4200 | 0.4500 | 0.1200 | 0.0100 | 0.0000 |
| D28 Food culture characteristics | 0.3000 | 0.5100 | 0.1700 | 0.0200 | 0.0000 |
| D29 Fish and mulberry culture characteristics | 0.3000 | 0.5500 | 0.1400 | 0.0100 | 0.0000 |
4. Discussion
4.1. Optimized Management Strategy for Mulberry-Dyke and Fish-Pond System Based on AHP-FCE Approach
4.2. Effectiveness of the AHP-FCE Method for Ecosystem Service Assessment in Mulberry-Dyke and Fish-Pond System
4.3. Future Improvement Directions of AHP-FCE Method for Ecosystem Service Valuation of Mulberry-Dyke and Fish-Pond System
5. Conclusions
Appendix A
| Ecosystem Service Assessment of Mulberry-Dyke and Fish-Pond System | Provisioning Ecosystem Services B1 | Regulating Ecosystem Services B2 | Culture Ecosystem Services B3 | Normalized Weights |
|---|---|---|---|---|
| Provisioning ecosystem services B1 | 1 | 1 | 1/2 | 0.2247 |
| Regulating ecosystem services B2 | 1 | 1 | 1/5 | 0.1655 |
| Culture ecosystem services B3 | 2 | 5 | 1 | 0.6098 |
| ∑=1 | ||||
| Satisfying the consistency test |
| Provisioning Ecosystem Services B1 | Mulberry land Production Value C1 | Fishpond Production Value C2 | Normalized Weights |
|---|---|---|---|
| Mulberry land production value C1 | 1 | 1 | 0.5000 |
| Fishpond production value C2 | 1 | 1 | 0.5000 |
| ∑=1 | |||
| Satisfying the consistency test |
| Criterion Layer | Index Layer | Factor Layer | Factor Layer Weight Coefficient |
|---|---|---|---|
| Provisioning ecosystem services B1 | Mulberry land production value C1 | Mulberry leaf production D1 | 0.5000 |
| Mulberry fruit production D2 | 0.5000 | ||
| Fishpond production value C2 | Conventional fish farming production D3 | 0.5000 | |
| Ecological fish farming production D4 | 0.5000 |
Appendix B
References
- Li, B.; Yuan, X.; Xiao, H.; Chen, Z. Design of the dike-pond system in the littoral zone of a tributary in the Three Gorges Reservoir, China. Ecological Engineering 2011, 37, 1718–1725. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Transactions on Industrial Informatics 2021, 17, 4322–4334. [Google Scholar] [CrossRef]
- Garrett, R.D.; Cammelli, F.; Ferreira, J.; Levy, S.A.; Valentim, J.; Vieira, I. Forests and Sustainable Development in the Brazilian Amazon: History, Trends, and Future Prospects. Annual Review of Environment and Resources 2021, 46, 625–652. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability 2021, 13. [Google Scholar] [CrossRef]
- Nie, J.; Kiminami, A.; Yagi, H. Exploring the Sustainability of Urban Leisure Agriculture in Shanghai. Sustainability 2022, 14. [Google Scholar] [CrossRef]
- Chabert, A.; Sarthou, J.-P. Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services. Agriculture, Ecosystems & Environment 2020, 292. [Google Scholar] [CrossRef]
- Xia, X.; Ruan, J. Analyzing Barriers for Developing a Sustainable Circular Economy in Agriculture in China Using Grey-DEMATEL Approach. Sustainability 2020, 12. [Google Scholar] [CrossRef]
- Costanza, R. Ecosystem services: Multiple classification systems are needed. Biological Conservation 2008, 141, 350–352. [Google Scholar] [CrossRef]
- Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. Journal of Cleaner Production 2019, 240. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R. Ecosystems and human well-being-Synthesis: A report of the Millennium Ecosystem Assessment; Island Press: 2005.
- Kuhn, T.K.; Oinonen, S.; Trentlage, J.; Riikonen, S.; Vikström, S.; Burkhard, B. Participatory systematic mapping as a tool to identify gaps in ecosystem services research: insights from a Baltic Sea case study. Ecosystem Services 2021, 48. [Google Scholar] [CrossRef]
- Liu, D.; Tang, R.; Xie, J.; Tian, J.; Shi, R.; Zhang, K. Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China. Ecosystem Services 2020, 41. [Google Scholar] [CrossRef]
- Jin, G.; Chen, K.; Liao, T.; Zhang, L.; Najmuddin, O. Measuring ecosystem services based on government intentions for future land use in Hubei Province: implications for sustainable landscape management. Landscape Ecology 2020, 36, 2025–2042. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Meng, L.; Yang, L.; He, Y.; Huang, L. Evaluation on Service alue of Mulberry-base Fishpond Ecosystem in Huzhou. Science of Sericulture 2018, 44, 0615–0623. [Google Scholar] [CrossRef]
- Lu, H.; Peng, S.; Lan, F.; Chen, P. Energy value evaluation of dike-pond agro-ecological engineering modes. CHINESE JOURNAL OF APPLIED ECOLOGY 2003, 14, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Wang, Y.; Shi, K.; Ke, F.; Ying, S.; Lai, Q. Emergy-Based Sustainability Evaluation of the Mulberry-Dyke and Fish-Pond System on the South Bank of Taihu Lake, China. Sustainability 2022, 14. [Google Scholar] [CrossRef]
- Yue, J.; Yuan, X.; Li, B.; Ren, H.; Wang, X. Emergy and exergy evaluation of a dike-pond project in the drawdown zone (DDZ) of the Three Gorges Reservoir (TGR). Ecological Indicators 2016, 71, 248–257. [Google Scholar] [CrossRef]
- Spencer, C.; Robertson, A.; Curtis, A.J.J.o.E.M. Development and testing of a rapid appraisal wetland condition index in south-eastern Australia. Journal of Environmental Management 1998, 54, 143–159. [Google Scholar] [CrossRef]
- Gu, X.; Wu, H.; Shen, X.; Wu, Y.; Lou, J.; Lai, Q. Intertemporal Analysis on Input-Output Efficiency of the Mulberry-Dyke and Fish-Pond by the South Bank of Taihu Lake. Science of Sericulture 2020, 46, 0221–0232. [Google Scholar] [CrossRef]
- Vecco, M. A definition of cultural heritage: From the tangible to the intangible. Journal of Cultural Heritage 2010, 11, 321–324. [Google Scholar] [CrossRef]
- Dongmei, H.Y.Z.T.X. Evaluation on Cultural Value of Traditional Villages and Differential Revitalization: A Case Study of Jiaozuo City, Henan Province. ECONOMIC GEOGRAPHY 2020. [Google Scholar] [CrossRef]
- Li, X.; Pan, Y.; Shi, C.; Guo, Y. Research on Protection and Construction of Historical Village Landscape Based On AHP-FCE Model Evaluation. Journal of Northwest Forestry University 2022, 37, 257–265. [Google Scholar] [CrossRef]
- Min, J.; Pan, T.; Kumar, V. Landscape Evaluation of Forest Park Based on Analytic Hierarchy Process. Mathematical Problems in Engineering 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Wu, H.; Ye, M.; Lou, J.; Wang, L.; Yin, Y.; Zhang, Z. Status and Planning for Ecosystem Conservation of Mulberry-Dyke and Fish-Pond System in Huzhou, China. Bulletin of Sericulture 2017, 48, 40–42. [Google Scholar]
- Liu, J.; Shen, S. Globally Important Agricultural Cultural Heritage Mulberry-Dyke and Fish-Pond System in Huzhou Research on Systematic Protection and Tourism Development. Modernizing Agriculture 2020, 2020, 57–60. [Google Scholar]
- Chen, C.; Huang, G.; Ye, Y.; Zhao, L.; Jin, L.; Liu, X. Change and ecological restoration of the dike-pond system in the Pearl River DeltaA case study of four villages in Foshan City. Resources Science 2021, 43, 328–340. [Google Scholar] [CrossRef]
- Roy, J.; Terrier, F.; Marchand, M.; Herman, A.; Heraud, C.; Surget, A.; Lanuque, A.; Sandres, F.; Marandel, L. Effects of Low Stocking Densities on Zootechnical Parameters and Physiological Responses of Rainbow Trout (Oncorhynchus mykiss) Juveniles. Biology (Basel) 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wu, H.; Lou, J.; Wang, L. Mulberry Cultivation and Management Technology of Mulberry-Dyke and Fish-Pond System in Huzhou, Zhejiang, China. Bulletin of Sericulture 2021, 52, 37–38. [Google Scholar]
- Tong, L.; Mao, X.; Song, X.; Wei, X.; Tang, W.; Deng, Y.; Yu, H.; Deng, Z.; Xiao, F.; Zhou, H.; et al. PSR-BP Neural Network-Based Health Assessment of the Huangshui Plateau Urban Wetlands in China. Frontiers in Ecology and Evolution 2022, 10. [Google Scholar] [CrossRef]
- Fang, X.-S.; Liu, S.; Chen, W.-Z.; Wu, R.-Z. An Effective Method for Wetland Park Health Assessment: a Case Study of the Guangdong Xinhui National Wetland Park in the Pearl River Delta, China. Wetlands 2021, 41. [Google Scholar] [CrossRef]
- Das, S.; Pradhan, B.; Shit, P.K.; Alamri, A.M. Assessment of Wetland Ecosystem Health Using the Pressure–State–Response (PSR) Model: A Case Study of Mursidabad District of West Bengal (India). Sustainability 2020, 12. [Google Scholar] [CrossRef]
- Hamback, P.A.; Dawson, L.; Geranmayeh, P.; Jarsjo, J.; Kacergyte, I.; Peacock, M.; Collentine, D.; Destouni, G.; Futter, M.; Hugelius, G.; et al. Tradeoffs and synergies in wetland multifunctionality: A scaling issue. Sci Total Environ 2023, 862, 160746. [Google Scholar] [CrossRef]
- Costanza, R.; d'Arge, R.; Groot, R.d.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O'Neill, R.V.; Paruelo, J.; et al. The value of the world's ecosystem services and natural capital Nature: International weekly journal of science. 1997, 387. [CrossRef]
- Fish, R.; Church, A.; Winter, M. Conceptualising cultural ecosystem services: A novel framework for research and critical engagement. Ecosystem Services 2016, 21, 208–217. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, L.; Cheng, Q. Stdy on ecosvstem healh evaluation and risk assessment for linghekou wetlands based on a PSR model. ACTA ECOLOGICA SINICA 2017, 37, 8264–8274. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.; Xia, J.; Zhang, S.; Li, X.; Liang, F. Studies on the ecological characteristics of different varieties of mulberry trees. Science of Sericulture 2003, 29, 120–124. [Google Scholar] [CrossRef]
- Zhu, C. Effects of urban lake wetland on temperature and humidity: a case study of Wuhan City. ACTA ECOLOGICA SINICA 2015, 35, 5518–5527. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Han, L.; Wen, C.; Hu, F. Study on Wetland Ecosystem Health Evaluation of Poyang Lake National Wetland Park. Journal of Hydroecology 2016, 37, 48–54. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Models, methods, concepts & applications of the analytic hierarchy process; Springer Science & Business Media: 2012; Volume 175.
- Saaty, T.L. Time dependent decision-making; dynamic priorities in the AHP/ANP: Generalizing from points to functions and from real to complex variables. Mathematical and Computer Modelling 2007, 46, 860–891. [Google Scholar] [CrossRef]
- Wu, X.; Hu, F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method. Ecological Indicators 2020, 113. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Paracchini, M.L.; Schulp, C.J.E.; Stürck, J.; Verkerk, P.J.; Verburg, P.H.; Lavorel, S. Bundles of ecosystem (dis)services and multifunctionality across European landscapes. Ecological Indicators 2017, 73, 23–28. [Google Scholar] [CrossRef]
- Hölting, L.; Jacobs, S.; Felipe-Lucia, M.R.; Maes, J.; Norström, A.V.; Plieninger, T.; Cord, A.F. Measuring ecosystem multifunctionality across scales. Environmental Research Letters 2019, 14. [Google Scholar] [CrossRef]
- Manning, P.; van der Plas, F.; Soliveres, S.; Allan, E.; Maestre, F.T.; Mace, G.; Whittingham, M.J.; Fischer, M. Redefining ecosystem multifunctionality. Nat Ecol Evol 2018, 2, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Caro, C.; Marques, J.C.; Cunha, P.P.; Teixeira, Z. Ecosystem services as a resilience descriptor in habitat risk assessment using the InVEST model. Ecological Indicators 2020, 115. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Wu, J. Grassland ecosystem services: a systematic review of research advances and future directions. Landscape Ecology 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Wang, G.; Xiao, C.; Qi, Z.; Meng, F.; Liang, X. Development tendency analysis for the water resource carrying capacity based on system dynamics model and the improved fuzzy comprehensive evaluation method in the Changchun city, China. Ecological Indicators 2021, 122. [Google Scholar] [CrossRef]
- Santoro, A.; Yu, Q.; Piras, F.; Fiore, B.; Bazzurro, A.; Agnoletti, M. From Flood Control System to Agroforestry Heritage System: Past, Present and Future of the Mulberry-Dykes and Fishponds System of Huzhou City, China. Land 2022, 11. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, L.; Wu, H.; Lou, J.; Zhu, Y. Effect and Thinking of Protection Work of Mulberry Fish PondSvstem in Huzhou, Zhejiang. Bulletin of Sericulture 2022, 53, 1–6. [Google Scholar] [CrossRef]

| Target Layer | Criterion Layer | Index Layer | Factor Layer |
|---|---|---|---|
| A Ecosystem service assessment of Mulberry-Dyke and Fish-Pond System |
B1 Provisioning ecosystem services |
C1 Mulberry land production value |
D1 Mulberry leaf production |
| D2 Mulberry fruit production | |||
| C2 Fishpond production value |
D3 Conventional fish farming production | ||
| D4 Ecological fish farming production | |||
| B2 Regulating ecosystem services |
C3 Basal environment regulation value |
D5 Fertilizer application intensity | |
| D6 Pesticide application intensity | |||
| C4 Climate regulation value |
D7 Relative humidity adjustment range | ||
| D8 Average temperature regulation | |||
| D9 Air quality index | |||
| B3 Culture ecosystem services |
C5 Aesthetics value |
D10 Plant landscape richness | |
| D11 Seasonal changes in the landscape | |||
| D12 Overall harmony | |||
| D13 Water clarity | |||
| D14 Leveling and hardening of road surface | |||
| C6 Education value |
D15 Fish and mulberry culture education | ||
| D16 Humanistic tradition | |||
| D17 Cultural propaganda and exhibition | |||
| D18 Religious culture | |||
| C7 Leisure and entertainment value |
D19 Location conditions | ||
| D20 Sanitary conditions | |||
| D21 Tourism infrastructure | |||
| D22 Agricultural Diversity Experience | |||
| D23 Experience the diversity of tourism products | |||
| D24 Visual and psychological perception | |||
| C8 Cultural heritage value |
D25 Village architectural style | ||
| D26 Village traditional customs | |||
| D27 Ancient bridges and other historical and cultural features | |||
| D28 Food culture characteristics | |||
| D29 Fish and mulberry culture characteristics |
| Criterion Layer | Normalized Weights | Indicator Layer | C-Layer Weight | Normalized Weights | Factor Layer | D-Layer Weight | Normalized Weights | Rank |
|---|---|---|---|---|---|---|---|---|
| B1 | 0.2572 | C1 | 0.3556 | 0.0878 | D1 | 0.2869 | 0.0262 | 14 |
| D2 | 0.7131 | 0.0652 | 3 | |||||
| C2 | 0.6444 | 0.1693 | D3 | 0.3033 | 0.0503 | 6 | ||
| D4 | 0.6967 | 0.1155 | 1 | |||||
| B2 | 0.2338 | C3 | 0.3786 | 0.0884 | D5 | 0.5000 | 0.0442 | 9 |
| D6 | 0.5000 | 0.0442 | 8 | |||||
| C4 | 0.6214 | 0.1454 | D7 | 0.2574 | 0.0374 | 10 | ||
| D8 | 0.2568 | 0.0373 | 11 | |||||
| D9 | 0.4859 | 0.0706 | 2 | |||||
| B3 | 0.5091 | C5 | 0.1616 | 0.0838 | D10 | 0.2478 | 0.0204 | 22 |
| D11 | 0.1330 | 0.0109 | 28 | |||||
| D12 | 0.2309 | 0.0190 | 23 | |||||
| D13 | 0.1662 | 0.0137 | 26 | |||||
| D14 | 0.2221 | 0.0183 | 24 | |||||
| C6 | 0.2335 | 0.1226 | D15 | 0.4771 | 0.0567 | 4 | ||
| D16 | 0.2952 | 0.0351 | 12 | |||||
| D17 | 0.1512 | 0.0180 | 25 | |||||
| D18 | 0.0766 | 0.0091 | 29 | |||||
| C7 | 0.2549 | 0.1320 | D19 | 0.1606 | 0.0208 | 20 | ||
| D20 | 0.1753 | 0.0228 | 17 | |||||
| D21 | 0.1979 | 0.0257 | 15 | |||||
| D22 | 0.1314 | 0.0171 | 26 | |||||
| D23 | 0.1679 | 0.0218 | 18 | |||||
| D24 | 0.1668 | 0.0217 | 19 | |||||
| C8 | 0.3500 | 0.1706 | D25 | 0.1500 | 0.0267 | 13 | ||
| D26 | 0.1402 | 0.0250 | 16 | |||||
| D27 | 0.1155 | 0.0206 | 21 | |||||
| D28 | 0.3146 | 0.0561 | 5 | |||||
| D29 | 0.2798 | 0.0498 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).