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Abstract: In this paper, we consider particles together with the surrounding space as an indivisible

system, and then investigate the maximum symmetry of the system at the quantum level. We

introduce a new quantity to describe the evolution of this system before and after measurement. The

effective mass of gravity is estimated. We also show that a free quantum particle as the source of

energy and momentum do not produce gravity.
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1. Introduction

Quantum mechanics can be considered one of the most successful physical theories. It describes

the behavior of particles at the microscopic scale, where classical mechanics ceases to be an adequate

description. The development of quantum mechanics has been a fascinating journey. Schrödinger

formulated the wave equation, providing a mathematical description of quantum systems in terms

of wave functions. Concurrently, Born introduced the probabilistic interpretation, the so-called Born

rule, suggesting that the square of the wave function modulus represents the probability density of

finding a particle in a particular state and emphasizing the statistical nature of quantum outcomes.

Heisenberg, on the other hand, developed the dynamics based on the notion of commutation relations.

Heisenberg’s uncertainty principle establishes the inherent limitations in simultaneously measuring

certain pairs of physical properties. From a distinctive perspective, Feynman further expanded the

quantum narrative by introducing the path integral formulation. This formulation underscored phase

factors (actions) associated with different paths. Despite their differing starting points, they all arrived

at the same conclusions consistent with experimental observations. However, counterintuitive concepts

in quantum mechanics have been profoundly disturbing to physicists and philosophers alike. One

may wonder wonder whether it is a fact of nature, or a defect in the theory.

In 1964, Bell introduced an inequality to test the limits of classical correlations in quantum systems

[1]. Bell’s inequality plays a crucial role in addressing the EPR paradox [2] and provide a criterion

for testing the validity of local realism. For now, numerous experiments have tested and confirmed

the violation of Bell’s inequality [3–5]. This implies that no local hidden variables can determine the

outcome of quantum measurements and restore determinism. These results reaffirm the non-local

nature of quantum entanglement, the orthodox interpretation and the fundamental principles of

quantum mechanics. An investigation into the non-locality in quantum mechanics may help us

understand the nature of space-time.

In this paper, we propose a novel scenario to reinterpret the indeterminacy in quantum mechanics.

In this scenario, we consider particles together with the surrounding space as an indivisible whole

due to the non-local nature of quantum mechanics, and then investigate the maximum symmetry

of this system at the quantum level. Furthermore, gravitational energy is also non-local. From this

perspective, we define a new quantity to describe the change of the symmetry of this system before

and after measurement.

This paper is organized as follow. In Sec.2 we intrduced a new quantity related to symmetry.

Sec.3 is dedicated to the relationship between symmetry and mass (or spin) of a particle. In Sec.4 we

calculated the effective mass of gravity. Finally, in Sec.5 we summarize the main results obtained. For

convenience, we set c=1.
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2. DS and measurement

In the classical world, a physical system containing a particle localized at a point and the

surrounding space is evidently not in the most natural state, as it remains invariant under rotation but

lacks uniformity in energy distribution in space. It’s important to note that here we are referring to

the entire system rather than talking about the symmetry of this particle while treating the space as a

background. In quantum mechanics, before we make any measurement, this particle can find a more

natural state, namely, being evenly spread throughout the entire space. In other words, the particle

does not have a precise position prior to measurement and is in a superposition state of positions.

However, once we measure the particle’s position, we find it to be at a specific point. The measurement

causes the collapse of the wave function and breaks the symmetry. On the other hand, according to the

uncertainty principle, a particle at a specific position have possibilities of being in a state with higher

energy, and it is still not a stable and natural state.

Here, from another perspective, let us introduce a new quantity S to describe the evolution of a

system from a state of minimum symmetry or broken symmetry to a state of maximum symmetry (the

most natural state of the system). In other words, S can tell us about how much symmetry a system

possesses. Let us call it “degrees of symmetry” (DS). The DS is defined by

S = ln Ω, (1)

where Ω is the number of states (or relative number of states) and we have introduced logarithms to

make S additive. In some cases, the DS is somewhat similar to “entropy” but essentially different from

the thermodynamic entropy and the quantum entanglement entropy. Let us start with a simple case.

Consider the system of a particle confined in a box of volume V. Before measurement, the particle

is in the superposition state of positions. The number of the position eigenstates is proportional to

the volume of this box. The walls of the box will experience an “osmotic pressure” generated by this

particle. By using dimensional analysis, the DS is

S = ln Ω = ln
V

Vp
, (2)

where Vp is the Planck volume. After measurement, the particle is in an specific position eigenstate,

let us define the DS of this state as 0. In the case of the free particle, we have V → ∞ and S → ∞ and

the system is in a natural state with maximum symmetry due to the uniform spreading of energy in

space. However, the plane wave solutions does not represent physically realizable states; or, to put it

another way, there is no such thing as a free particle with a definite energy. On the other hand, when

considering relativistic effects, the limit of precision in locating a particle’s position is its Compton

wavelength. A physically realizable state is a wave packet and the number of the states should be

replaced by the wave packet width l. For the one-dimensional case, the corresponding DS is

S = ln
l

lp
, (3)

where lp is the Planck length.

Let us study the evolution of the DS of a particle with mass µ over time. Suppose that the initial

wave function of the particle is given by a gaussian wave packet:

Ψ(x, 0) =

(

2a

π

)1/4

exp(−ax2), (4)

where a is a constant. The uncertainty principle holds at all times, and at t = 0, the system reaches the

uncertainty limit: ∆x∆p = h̄/2. The square of the wave function at time t is
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|Ψ(x, t)|2 =

(

2

π

)1/2

β exp
(

−2β2x2
)

, (5)

where

β =

√

a

1 + (2h̄at/µ)2
. (6)

Then, the DS at time t is

S(t) ∼ ln
1

β
= ln

√

1 + (2h̄at/µ)2

a
. (7)

The DS increases over time and in the long time limit, we find

S(t) ∼ ln
2h̄

√
at

µ
. (8)

The free Schrödinger equation is formally similar to the particle diffusion equation if one substitutes

ih̄/2m with the diffusion coefficient. From this perspective, the uneven distribution of probability

density in space leads to its diffusion.

3. Intrinsic DS

We now turn to the intrinsic DS of quantum particles. Mass can be regarded as the energy confined

in a point particle and a massive particle with mass µ should have intrinsic DS. A simple way to

understand this is to recall that a quantum particle with uncertain position transitions into a classical

object as the mass increases and a heavy classical object located in a specific point has minimum DS. In

the opposite limit µ → 0, the Compton wavelength of the particle approaches infinity. The DS of a

massive particle is given by

S = ln
mp

µ
, (9)

where mp is the Planck mass. In fact, Eq. (8) already includes the contribution of mass to DS. For a

massless particle, such as the quantized electromagnetic field (photons), µ is replaced by hν with ν

being the frequency of a photon.

A particle carrying spin s should also have intrinsic DS. The classical angular momentum with a

specific spatial orientation, or equivalently the vector, has a broken symmetry. In quantum mechanics,

the three spatial component of spin sx, sy and sz are incompatible observables and we cannot know all

three components simultaneously. An uncertain orientation can restore symmetry. Let’s say we start

out with a particle of spin s in the spin up state along the z direction. After a measurement of sz, the

z-component of this particle’s spin angular momentum, we get the value +mh̄. But we don’t know the

values of sx and sy. The DS is defined as the logarithm of the circumference of a circle satisfying the

relation

s2
x + s2

y = s(s + 1)h̄2 − m2h̄2. (10)

Before measurement, its DS is

S0 = ln Ω0, (11)

where

Ω0 =
+s

∑
m=−s

2πh̄
√

s(s + 1)− m2. (12)

Thus, the relative m-dependent DS after measurement is

Sm = ln
Ωm

Ω0
= ln

(

√

s(s + 1)− m2

∑
+s
m=−s

√

s(s + 1)− m2

)

. (13)

In the case of the orbital angular momentum, s is replaced by the quantum number l.
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4. DS of a two-particle system

So far, we have only applied the DS to some simple cases. Let us consider a two-particle system

containing particle 1 and particle 2. The wave packet sizes of these two particles are w1 and w2,

respectively, and the distance between the centers of the wave packets is r. We add up the DS for these

two particles and obtain

S1 + S2 = ln Ω1 + ln Ω2 = ln
ρpw1

µ1
+ ln

ρpw2

µ2
= ln

ρ2
pw1w2

µ1µ2
, (14)

where ρp is the Planck density, and µ1 and µ2 are average masses, respectively. If particle 1 becomes

very heavy and turns into a classical object, the system will lose the uniformity caused by quantum

effects and only retain rotational invariance. However, once we add particle 2 to this system, it will

break the rotational symmetry. All we can expect is that these two particles tend to be somewhat closer

together to make the entire system invariant under rotation, see Figure 1. Since the most natural state is

when particle 1 and particle 2 coincide, the system behaves as though there were a “force of attraction”

between the two particles. This produces an additional DS that depends on r. That is

Figure 1. Rotational symmetry of a two-particle system. The left panel corresponds to a situation

where two particles are separated by a distance r. As a consequence, the system is not invariant under

rotation. On the right panel, these two particles tend to be closer together. As a consequence, the

system is invariant under rotation.

∆S = ln f (r), (15)

where f (r) is a function of r. The total DS is

Stotal = S1 + S2 + ∆S = ln
ρ2

pw1w2 f (r)

µ1µ2
. (16)

The classical gravitational potential energy U of two pairwise point particles is given by

U = −Gµ1µ2

r
. (17)

Then, Eq. (16) becomes

Stotal = ln

(

−
Gρ2

pw1w2 f (r)

Ur

)

. (18)
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If we choose f (r) ∝ r, the potential energy can be given by

U ∝
mp

Ω
. (19)

However, due to the non-locality of quantum mechanics, we assume that the distance is a classical

notion that can be derived from quantum gravity theory in the classical limit. When discussing this

global symmetry, we should try to avoid using classical notions such as coordinates and distances.

Here, we cannot present more details about f (r). We now define the effective masses of particle 1 and

particle 2 as

µe1 = Vp
µ1

w1
, µe2 = Vp

µ2

w2
. (20)

Thus, Eq. (16) can be written as

Stotal = ln
m2

p f (r)

µe1µe2
. (21)

If these two particles are free particles, we have w1 → ∞ and w2 → ∞, thus the effective masses

drop to zero. It implies that a truly free quantum particle as the source of energy and momentum do

not produce gravity. On the other hand, a free particle can be regarded as a massive particle whose

Compton wavelength approaches infinity in the limit µ → 0. Obviously, as the mass decreases, gravity

weakens.

5. Conclusions and Discussion

In this paper, all considerations are based on treating the object together with the surrounding

space as an indivisible whole, and then analyzing the maximum symmetry of this system at the

quantum level. We don’t need to be perplexed by the indeterminacy of quantum mechanics since it is

actually a more natural state. We introduce a new quantity DS to measure the symmetry present in

a system. We show that a massive particle carrying spin has intrinsic DS. In the case of a quantum

particle trapped in a box, the walls of the box will experience an “osmotic pressure” generated by this

particle since the system tends to be in a state with maximum symmetry. We might imagine that this

particle is in a thermal bath and the walls of the box act as “semi-permeable membranes.” Here, for

simplicity, we only consider the uniform spreading of energy in space. However, the procedure outline

here may be used to include the spreading of energy in space-time. Similarly, the quantum spin tends

to have an uncertain orientation to restore symmetry. More generally, any classical quantity with a

definite spatial orientation has a broken symmetry and an uncertain orientation can restore symmetry

at the quantum level. Thus, the linear momentum should also have uncertain direction at the quantum

level.

According to the gauge field theory, a system containing a gauge field can maintain local symmetry.

Hence, it is reasonable to investigate the symmetry of the system including objects along with their

surrounding space-time as general relativity states that the gravitational field is the space-time itself.

General relativity tells us that anything with energy or mass curves space-time. But general relativity

does not tell us how gravity behaves with a quantum wave function. As a consequence, we cannot

locate the curvature until the moment we measure it since this quantum particle is described by a

wave function and could be anywhere prior to a measurement. Here, we define a gravitational

effective mass. It is shown that a free particle as the source of energy and momentum do not

produce gravity. Furthermore, the vacuum energy of zero point fluctuations derives from the genuine

quantum process and is uniformly distributed throughout space. We may expect that it does not

generate gravitational effects to avoid the humongous discrepancy between theoretical expectation

and astrophysical observations. However, this guess needs a further exploration. Since little was

known about quantum gravity, our intention was only to test the feasibility of this approach in the

simplest possible framework and results are only adequate in the semi-classical case. We only focus

on the mass source of gravity without showing other details. A deeper investigation into symmetry
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including space-time may shed more light on quantum gravity. I believe that a convincing theory of

quantum gravity should be able to describe the gravitational properties of the vacuum fluctuations

and to regulate the ultra-violet infinities that appear in the calculation of vacuum energy.
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