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Abstract: Sustainable agriculture has become increasingly important in Tunisia due to the drought that has
been affecting the country's climate in recent years. This has become a major threat to the economy, making it
necessary to explore alternative methods of agriculture that are more sustainable. Moreover, smart hydroponic
cultivation based on renewable energies has become increasingly widespread, promoting the quality and
efficiency of agricultural production despite weather parameters variations and global warming. This work
aims to create a sustainable agriculture system in Tunisia through the design and implementation of a smart
photovoltaic (PV) hydroponic greenhouse. The greenhouse will utilize advanced technology to optimize plant
growth and reduce water usage, while also incorporating solar panels to generate renewable energy. The end
goal is to create a self-sufficient and eco-friendly agricultural system that can provide fresh produce to local
communities year-round. In this work, we are interested to the automation of the hydroponic greenhouse
(HG)’s thermal conditioning system based on an asynchronous motor pump and powered by a PV generator.
In the first stage, we analyzed the mathematical modeling of a stand-alone PV-HG system that consists of a PV
generator, a three-phase inverter, an asynchronous motor pump, and a hydroponic system. After that, we
developed a Field Oriented Control based on proportional integral (PI) regulators to adjust the rotation speed
of the asynchronous motor pump, which aimed to provide the cooling and heating needs of the plant. The
simulation results demonstrated the effectiveness of the proposed system . Additionally, we designed and
implemented a smart system based on the internet of things (IoT) to enable remote control of internal and
external parameters of the HG. This intelligent solution utilizes sensors, microcontrollers, and other devices
and ensures the monitoring and the maintaining of the ideal growing conditions for our plants, guaranteeing
that they receive the proper amount of temperature, humidity, and lighting. This type of system can be an
invaluable tool for maximizing yields and achieving optimal results. With the right approach and attention to
detail, we can create a sustainable and efficient growing environment that will help our plants flourish year-
round.

Keywords: sustainable agriculture; smart greenhouse; hydroponic; photovoltaic; field oriented
control; IoT

1. Introduction

Food security is a prerequisite for the well-being and progress of the population. According to
the International Renewable Energy Agency, there is an urgent need to increase food production by
60% and increase water availability by 55% by 2030 [1]. This increased demand depends primarily
on agriculture, which represents one of humanity's oldest occupations and endeavors, with a variety
of influences that include natural resources, economic interactions, energy needs, and public health.
Greenhouses are proving to be a promising alternative to meet these increasing demands as they
have the potential to meet both energy and food production needs [2]. Ensuring the environmental

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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sustainability of agricultural systems represents a major challenge for nations, especially given the
need to adapt to climate change and mitigate its impacts on agriculture [3-5]. Given that the
agricultural sector is highly energy dependent, sustainable agriculture has become imperative to
address current environmental issues and adapt to the energy transition.

The effectiveness of agricultural production depends on a variety of environmental factors.
These include elements that influence photosynthesis, such as light intensity, atmospheric CO:
concentration, water supply, and mineral content. Climatic conditions, particularly temperature and
precipitation, are also essential factors [6,7]. In addition, the quality of the soil, including the presence
of ions, water circulation, and oxygenation of roots, has a significant impact on agricultural success
[8]. Even the presence of a deficiency in one of these factors can limit plant production, irrespective
of variations in other factors [9]. This leads to considerations about the feasibility of controlling
environmental factors [10].

Therefore, sustainability and efficient energy management have become a topic of great interest
in various sectors, including transportation, industry, and agriculture. An effective strategy to
mitigate future global warming is to reduce dependence on fossil fuels through the use of alternative
energy sources [11]. The key to achieving sustainability and reducing carbon emissions lies in
improving energy efficiency in all sectors and transitioning from traditional energy sources to
renewable energy sources (REs) [12,13]. Recently, renewable energy technologies such as solar
energy, geothermal energy [14-16] biomass [17-19], wind energy [20], hydrogen [21] and
photovoltaic energy [22-24] have gained global attention as new alternatives to electricity generation
for conditioning agricultural greenhouses. The share of renewable energy in electricity generation is
expected to increase from less than 27% in 2019 to 30% in 2050 [25,26]. Farms that use renewable
energy sources offer numerous benefits, including improved energy self-sufficiency, income
diversification, and improved resilience to climate change [27,28]. In recent years there has been a
growing interest in exploring soilless technologies, particularly in greenhouses, where the use of
renewable energy offers significant prospects for reducing energy [29]. In this context, solar energy
greenhouse represents an alternative to traditional agricultural systems [30-34]. Likewise,
photovoltaic hydroponic systems offer a unique range of benefits including significantly reduced
water consumption, improved health outcomes through minimal pesticide use, high crop yields, and
rapid plant growth [35-37].

Moreover, it's fascinating to see how the concept of smart farming is catching the attention of
farmers, agriculturists, and researchers alike. One of the prominent approaches to smart farming is
the use of smart greenhouse farming, which is an enclosed cultivation process that leverages
information and communication technology to improve the quality and quantity of crops with
minimal human intervention. With the advent of IoT technology, there is a vast potential for
innovative methods and smart solution development that can revolutionize the agriculture sector.
Therefore, integrating the Internet of Things (IoT) with a greenhouse can transform it into a smart
and automated greenhouse, which is considered to be one of the ideal solutions. By doing so, IoT-
enabled greenhouses can address various challenges and assist growers in enhancing the
productivity of food and crops [38]. Numerous scientific investigations have been conducted to
advance the application of smart technologies within agricultural practices, particularly in
hydroponic greenhouses. An illustrative case is the study by Sadek and al. [39], in which they
developed a smart hydroponic and aeroponic system that included advanced sensors and devices for
monitoring various meteorological parameters both inside and outside the agricultural greenhouse.
This innovative system enables automated regulation of internal environmental conditions, tailored
to specific plant species and seasonal requirements. The results led to an 80% reduction in water and
energy consumption and a remarkable shortening of the growth period by 45 days compared to 75
days with the traditional system. Sudana et al. [40] developed a circulation-free drip hydroponic
system using IoT technology for pepper plants, which are among the most vitamin-rich vegetables
and provide an excellent opportunity for local and export markets. However, due to its susceptibility
to temperature and nutrient fluctuations, this plant requires intensive treatment. On the other hand,
evaporation from the plants also decreases within the greenhouse, and therefore the pepper rots,
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especially in the rainy season. Therefore, the solution proposed in this work is an effective way to
reduce risks and we have seen that thanks to this approach we have been able to minimize plant
degradation and contribute to the preservation of nutrient solutions. Then, smart and remotely
connected agricultural greenhouses emerged with a sustainable development architecture such as
the prototype of Fernandes et al. [41], who developed a connected hydroponic system that allows
users to remotely monitor and control plant growth and environmental conditions. The results of the
work carried out made it possible to implement optimal control strategies to reduce costs while
increasing crop growth. With the same goal, Chaiwongsai [42] was interested in developing a
hydroponic system in a tropical climate that can automatically control the factors suitable for
different vegetables in different nutrient solution tanks using IoT to monitor crop condition, water
levels, and others control pH value. Al-Naemi and Al-Otoom [43] are developing a smart, sustainable
greenhouse model powered by solar energy, advanced control systems, and efficient water
management, with significant benefits including reduced water consumption, profitable vegetable
farming, and significant potential to improve food security in the Gulf Countries Council (GCC)
countries. The economic analysis for commercial implementation revealed an attractive investment
with a return on investment of 340% and a payout period of 5 years. The study by Andrianto et al.
[44] focuses on developing loT-based smart greenhouses for pesticide-free hydroponic cultivation
using an Arduino Mega2560 controller to monitor and control various environmental parameters.
The system enables remote monitoring and control via a smartphone application, ensuring efficient
and pesticide-free plant growth.

In Tunisia, photovoltaic hydroponic systems can significantly contribute to the development of
sustainable agriculture due to sufficient solar resources and an ever-growing policy approach to
promoting renewable energy and fighting global warming. To this end, the photovoltaic hydroponic
system installed at the site of Borj Cedria-Tunis, developed by Bouadila et al. [45,46] constitutes a
prototype aimed at improving the production and use of PV energy in agricultural systems. In
addition, this energy is then transmitted to the electricity network, which will help to increase the
penetration rate of renewable energy in the distribution network. This flexibility allows for optimal
energy management and ensures that the system can operate even in the event of a power outage.
The system has two operating modes: ON-GRID and OFF-GRID. In ON-GRID mode, the air
conditioner is powered directly from the grid. In OFF-GRID mode, however, the air conditioning
system is powered by the PV source. The main aim of this work is to analyze and experiment with
the standalone PV conditioning system of the hydroponic greenhouse. The focus is on modeling and
control to ensure optimal performance and efficiency. Through experimental studies, we hope to gain
valuable insights into the behavior of the system and identify opportunities for improvement. The
work is divided into four main parts. The first part focuses on the mathematical modeling of the
various components of the system. The second part deals with the development of control laws to
optimize system performance. A numerical simulation using Simulink is also presented to
demonstrate the effectiveness of the proposed study. The fourth part of the article focuses on the
experimental implementation of a smart solution based on an IoT-based solution to remotely control
the internal and external parameters of the hydroponic PV system. This solution uses sensors,
microcontrollers, and other devices to monitor and maintain the ideal growing conditions for the
plants.

2. Materials and Methods

2.1. Description of the PV Hydroponic Greenhouse (PV-HG)

The studied PV Hydroponic greenhouse (PV-HG) developed by Bouadila et al. [45,46] as shown
in Figure 1, includes all the essential components to ensure an ideal growth environment.
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Figure 1. The PV alimentation source (a), the storage batteries system (b), the internal view of the PV-
HG (c) and (d) Actuators.

To meet the energy needs of the hydroponic greenhouse, a custom-designed hybrid PV system,
as shown in Figure 1, was sized based on the peak power requirement, which was 2.1 kWp. This
system includes solar cell modules, solar charge controllers, inverters and protection devices. In the
event of possible overproduction, batteries are installed to store energy. This PV/battery hybrid setup
includes six 350Wc solar cell modules, a 30A solar charge controller, and a 24V/500VA off-grid
inverter. To facilitate energy storage, four 12V/200AH solar batteries are integrated, accompanied by
a battery protection unit and a DC protection box with pre-wired MC4 connectors. It is complemented
by a data acquisition and control system installed in the greenhouse. This system records various
parameters, including climate, electrical, and energy data, and manages actuators (Figure 1 (d)) to
regulate indoor climate and crop conditions. It allows control of air temperature, airflow, water
temperature, water circulation, and lighting, adjusting these parameters depending on plant
requirements. The actors responsible for these functions are listed in Table 1.
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Table 1. Actuators used in the hydroponic greenhouse.

Equipment (units) Technical specifications Power (kW)
Absorption chiller (NH3/H20),
Heat pump model GA Line ACF 60-00 of the 17.72
ROBUR brands
Device for oxygenation (2) AquaOxy 4800 0.06
Variable speed control (1) CHINT NVE2-1.5/TS4 inverter 0.9
Fan type 1 and 2 (2/1) THERMIVENT extractors 0.250/0.05
Controller for irrigation (1) Hunter X-core controller 0.010
Centrifugal water pump (2) DAB, KPS 30/16 M 0.370
Dosing pump (1) Green Line Dosatron D25 0.01
Lighting fixture (8) Fluorescent lamp 0.016

The hydroponic greenhouse is a thermally insulated structure with a surface area of 24 m? and
a height of 3 m, facing southeast. It features a galvanized steel structure covered with polyurethane
sandwich panels for insulation. The greenhouse consists of two different rooms: a growth room with
glazed sides on the north and south facades and fixed or removable screens to control light and
sunlight. The second room is dedicated to the germination of various plants and is ventilated by an
electric aerator. The greenhouse is equipped with an irrigation and water collection system that
optimizes water and nutrient supply, promoting plant growth and metabolism. Additionally, the
soilless growing system includes a ventilation system with three fans, one on the south side and two
on the north side, to improve air quality, as well as a lighting system to compensate for the limited
winter sun. Figure 2 describes this system’s synoptic diagram.

DC bus

@ Giid utiiities
DC/AC -
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Air Temperature
| ———..

Relative humidity
——

Figure 2. The synoptic scheme of the PV Hydroponic Greenhouse.

The system integrates two DC-DC converters dedicated respectively to tracking the maximum
power point of the PV generator and regulating the DC voltage. A three-phase inverter connected to
the network via an RL filter ensures DC-AC conversion. The hydroponic system represents a local
load connected to the network by an AC bus.

The system can operate in two scenarios. The first scenario is ON-GRID where the hydroponic
system is powered directly by the grid. The second scenario is OFF-GRID where the system is
considered as a stand-alone PV installation and the hydroponic load is powered by the PV source
through the inverter.
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2.2. Modeling of the Stand-alone PV-HG

In this work, we are interested in the OFF-GRID mode of the stand-alone PV hydroponic system
powered by the PV source. This system is described as shown in Figure 3. The conditioning system
described in the article is designed to meet the heating and cooling needs of the plant depending on
the season and climatic conditions. It utilizes an asynchronous motor pump to ensure hot water in
the winter season and cold water in the summer season, ensuring that the plant is provided with a
climate that meets its needs.
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Figure 3. The synoptic scheme of the stand-alone PV-HG conditioning system.

2.2.1. Modeling of the PV source

The mathematical model of the Photovoltaic Generator (PVG) is illustrated by equations (1) and
(2) [53]:

I,=N,I,-N,I, [exp((VPv +RI,)INV,) —1} (1)

V,=nK,T/q )

where:

- Ipv (A)and Vpv (V) are respectively the PV current and the PV voltage,

- Iph(A)is the light generated current,

- Rs (Q) and Rsh (Q) are respectively PV arrays series and shunt resistances,

- Ais the ideality factor of the PV panel, K is the Boltzmann constant, T (°K) is the temperature
cell, q is the electronic charge and VT (V) is the thermodynamic potential of the PV cell.

The simulation results presented in Figure 4 demonstrate how changes in solar irradiation (a)
and temperature (b) affect the characteristic curves of the PV generator.
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Figure 4. Influence of variations in solar irradiation (a) and temperature (b) on characterized curves
of PVG.

The performance of a PVG is affected by changes in solar irradiation and temperature, which
can cause variations in the output voltage and current. Therefore, it is important to analyze the
behavior of a PVG under different environmental conditions to optimize its performance and ensure
the efficient operation of the greenhouse. By understanding the impact of these factors on the PVG,
we can design a system that is better equipped to handle weather changes and ensure consistent
energy production.

2.2.2. Modeling of the DC-bus

To maintain an energy balance between the power generated by the PVG and the power
alimenting the motor pump by charging or discharging the capacitor, it is crucial to use a DC-bus.
Equation (3) gives the expression of the DC-bus current [54].

1. =Cdv, /dt (3)

where Ic (A) and Vdc (V) are respectively the DC-bus current, and voltage and C is the capacity value.

2.2.3. Modeling of the three-phase inverter

The DC energy generated by the PVG is converted into AC energy using a three-phase inverter,
which is then used to power the asynchronous motor pump. The simple modulated voltages which
are the output voltages of the inverter (Vs1, Vs2, Vs3) are expressed by (4), where (K1, K2, K3) are the
switches control signals of the inverter [55].

Ve, 2 -1 -1\(Kl
V

Vs, :Td" -1 2 -1 K2 4)

Ve, -1 -1 2 | K3

2.2.4. Modeling of the asynchronous motor pump

The mathematic model of the asynchronous motor in the dq-Park referential is given by (5) and
(6) [50].
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.

where:

- Igsand Iy are respectively the d and q stator currents,
- Vs and V, are respectively the d and q stator voltage,
- @4 and @y, are respectively the d and q rotor flux,
- ws and w, are respectively the stator and rotor electrical speed,
- Rsand Rr are respectively the stator and rotor resistance,
- Ly and L, arerespectively the stator and rotor inductance,
- oisaconstant depending on motor parameters, M is the mutual inductance,
- ] is the rotor inertia moment, P is the number of poles pairs.

The hydrodynamic load torque C, of the pump is given by (7) where A, is the torque constant
as in [49].

Cr = Ay}

(7

The model of the centrifugal pump is described by similarity’s lows such as in (8)
( Q' i Q
"N

H’ B Nl 2 H (8)
\N
Where:

- Net N’ are the real and nominal pump speeds,
- Q et Q) are the real and nominal water flow,
- HetH are the real and nominal pump heights.

2.2.5. Modeling of the Hydroponic Greenhouse

The hydroponic greenhouse thermal equilibrium model developed to describe the internal
microclimate, simplified by neglecting several physical phenomena: radiative heat exchange between
walls and roofs; the storage capacity of sandwich panel walls and the roof; the absorptive capacity
and heat capacity of the enclosed air; and conductive heat exchange between the interior air,
sandwich panel walls and the roof. The four main parameters for heat exchange into the greenhouse
are temperature, humidity, solar radiation, and COs. In this model we will ignore the effect of CO:
(Figure 5).


https://doi.org/10.20944/preprints202401.0643.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 January 2024 do0i:10.20944/preprints202401.0643.v1

PV-Hvdro ponicheem
(PV-HG)

aimesadway

( CO; concentration

Figure 5. The synoptic scheme of Hydroponic greenhouse.

This model consists of four components: the single-wall cover, the internal air, canopy and the
protected floor as in Figure 6.
where

" Qv Qirop—covs Qfivor—cov Qéropr Qfioor—crop AN Qfjo0r are the absorbed heat of solar energy in
all greenhouse components.

" Q%v_amp and Qf, are the convective heat outside and inside the greenhouse.

. Q}:{fmr is the heat exchanged by conduction from the floor.

. Qf:l”_c amp 1 the heat losses by infiltration.

*  Qfop-in the heat exchanged by evapotranspiration of the crop.

" Qfov—sky: Qfov—in' chop—ini Qc};op—sky' Q}l‘eloor—n'n and Qflioor—sky are the heat losses due to radiation

from the greenhouses and their surroundings.

S
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Figure 6. Schematic representation of the heat flux in hydroponic greenhouse.

Each of these elements is defined by a state variable, namely the temperature, which is assumed
to be uniform across their cover and protected floor surfaces. The indoor air is also characterized by
a uniform absolute humidity throughout the entire greenhouse volume. To address this problem,
four balances are created for the indoor air of the greenhouse [51]. The heat balance at the cover is
given by (9):
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dzz:ov 1 S N S
dt = d C A (Qcov + chop—)cov + Qﬂoor—)cov - Qcov amb Qm Qcov sky Qcov m) (9)
p~“cov

where:
- Teop: coverture temperature - dg;,- : air density - Cp: specific heat of air at constant pressure -
A_.»: surface area of the coverture

The calculation of the crop's energy balance involves the utilization of (10):

dT 1

crop

dt d,C,A4

crop

R
(chop Qﬂoorﬁcmp chop—in - crop—sky chop m) (10)

where:
- Terop : Crop temperature - Aoy surface area of the crop

The calculation of the energy balance at the greenhouse floor is performed by employing (11):

dT 1
floor __ S _ _ B
dt _%ﬁ;émxgm” e = -0~ st ) (1)

where:
- Tfip0r: floor temperature - A0 : surface area of the floor

The dynamical equation describing the thermal evolution of the internal air is computed using
(12):

dT,

dll‘n d C, V(Qm QcRov—in - cliop—in N ii:{“’”b) (12)

where:

T;,: crop temperature - V: volume of the greenhouse.
2.3. Control of the PV-HG system

2.3.1. Field oriented control applied to the Asynchronous conditioning motor pump

Field Oriented Control (FOC) is a method used to control the asynchronous machine as an
independent excited direct current machine. This method takes advantage of the natural decoupling
between the rotor's and stator's current, which allows for a very rapid torque response. Additionally,
FOC eliminates the influence of rotor leakage reactance and stator, resulting in better outcomes
compared to methods based on the orientation of the stator flux or the air gap flux [52].

In this work, the indirect FOC method was chosen where the Park angle is calculated from the
stator pulsation. The pulsation is reconstituted using the speed of the machine and its rotor to control
the stator current and subsequently fix its operating point.

The FOC is based on the orientation of the Park (d,q) referential such that the q axis component
of the rotor flux is zero as in (13).

Gy = Pp
Lar 2o (13)

Therefore, the model of the control is given by (14):
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S dt s (14)

The electromagnetic torque is expressed by (15).
Com = (3pM/2Lr)‘pr1qr (15)

(a) Decoupling: It is interesting to add decoupling terms to make the d and q axes completely
independent. Above all, this decoupling makes it possible to easily write the equations of the
machine and the control part and thus calculate the coefficients of the speed and current
controllers. By going through a Laplace transformation, the machine model can be placed under
the following form described by Figure 7.

glplgsoog alzlgzeug
It " = e
o~ | @ ~ T
s Rg ':.1 + po Ls}
Taz FLplgotag T Lglgsios
: +l Vgs =
| e T
= o |—— @ > I S
L +T - T R.(1+ pok,)
Ige M M
Ewscpr Ewg'i’:r

Figure 7. d and q axes decoupling in the motor pump model.

(b) Regulation loops: For controlling current and speed to their reference values, we implemented
a conventional Proportional-Integral (PI) controller to adjust the control speed by proportional
action and eliminate the static error between the controlled and actual variables by integral
action. Figure 8 and 9 describe control loops for current and speed, respectively.

I, + kg 1 In’.s-
lT 14 pTy i R:(1 + pol;) -

In’a'

Figure 8. Current regulation loop.
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|
?
\

O 1+ pTig

Figure 9. Speed regulation loop.

() Reference values calculation: The reference values of rotor flux, I; and I, currents are
respectively by (16) and (17).

LV,
(@:(0) = B if <o,
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The reference value of the motor speed is estimated in order to track the maximum power point
of the PV generator as detailed in section 2.3.4.

2.3.2. The MPPT polyfit-based control low

The MPPT used in this work was tested by Marouani et al.[53,54]. If we neglect the frictions and
losses of the induction motor, we can express the power according to the torque and speed as follows.

~ — 3
P~ ()= A0 (1)

Therefore, the equation (19) expresses the measured speed of the asynchronous motor where
PM is the maximum power generated by the PVG.

_3PM

Omes = | (19)

p

To optimize the performance of the hydroponic greenhouse system, the reference speed of the
asynchronous motor pump needs to be calculated based on the amount of solar irradiation received
by the PV generator. This is achieved by using a light sensor to measure the amount of light that falls
on the generator. The least squares method is then used to determine the optimal speed value by
taking different lighting points and calculating the corresponding speed value for each point. This
approach ensures that the pump operates at the optimal speed to provide the necessary cooling and
heating needs of the plants, while also minimizing energy consumption.

The MPPT control low is described by (20). [53,54]

Qpp = 36,33 + 0,35E — 5,8. 107*E? +5,61.1077E3 — 2,1.10*E* (20)

Simulation results with Simulink show the trajectory of MPP under different solar irradiation
values as illustrated in Figure 10.
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Figure 10. Trajectory of MPP under different solar irradiation values.

Finally, Figure 11 shows the synoptic diagram of the PV-HG system with the field-oriented

control and the MPPT.
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Figure 11. The synoptic diagram of the PV-HG system with the field-oriented control and the
MPPT.

2.4. Simulation result of the PV-HG system with Matlab/Simulink

Using Matlab's Simulink tool, we simulate the developed model of the PV-HG controlled system
under different values of solar irradiance and see its effects on the characteristic variables of the stand-
alone PV-HG conditioning system.

Figure 12 (a) shows the variation of solar radiation at 800 W/m2, 500 W/m? and 600 W/m?2. Thanks
to the MPPT algorithm developed by Marouani et al. [55] and implemented in this work, the PV
current and the intermediate circuit voltage are optimally evaluated, which contributes to
maximizing the power output of the PV generator, as shown in Figure 12 (b) and (c).
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Figure 12. Solar irradiation profile (a), PV current (b), and DC-bus voltage (b) waveforms.

Figure 13 shows the reference and measured speed waveforms of the asynchronous motor under
solar irradiation variation. We can see that the measured speed profile follows the reference one,
proving the effectiveness of the MPPT and the FOC developed in this study.

0 =flt) Q="lt)

Figure 13. Reference and measured motor speed waveforms.

In Figure 14, we can also see the variation of the resistance and electromagnetic pairs versus the
speed of the induction motor, which proves the effectiveness of the proposed simulation study.
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Figure 14. Resistive and electromagnetic versus speed.

It appears that the pump speed and water flow are affected by the changes in climatic
parameters, proving that the system performances are optimized even under deteriorated climatic
conditions. This is shown in Figure 15.
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Figure 15. Pump speed and water flow waveforms.

The temperature and humidity of the PV-HG in the heating system are shown in Figure 16.
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Figure 16. Temperature and humidity waveforms.
3. Experimental set-up

3.1. Implementation of Smart PV_HG control parameters

The goal of deploying IoT infrastructure for PV Hydroponic Greenhouse automation is to
transform it into a connected system capable of achieving complete system perception, reliable data
transmission and intelligent processing of its environmental parameters. The greenhouse
environment is controlled by a set of sensors and actuators connected to a real-time measurement
and alarm system. The information provided by the sensors is transferred to the microcontroller that
will in turn integrate all the data into a single platform, analyze it and then make a decision by
interacting remotely with the user via the internet: the Wi-Fi connection with the cloud allows
recorded data to be transmitted and stored in databases. Subsequently, actuators such as the nutrient
tank, water pumps and fans are used to execute the user command.

In this work, we have chosen to implement an IoT solution for remote control of internal and
external parameters of the plant such as lighting, internal and external temperature, relative
humidity, and soil moisture.

3.1.1. Temperature and humidity sensor

Temperature is one of the primary environmental factors that affect plant growth and
development. The ideal temperature range for most plants is between 65-75 °F (18-24 °C) [45].
Temperatures outside of this range can cause stress to the plants and affect their growth rate and
overall health. High temperatures can cause wilting and dehydration, while low temperatures can
slow down growth and even cause damage to the plant's tissues. Therefore, maintaining the ideal
temperature range is crucial for optimal plant growth and development. We use a DHT11 sensor to
measure the ambient temperature inside and outside the greenhouse. This sensor is versatile and
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inexpensive, and it can monitor air temperature and humidity using an NTC negative temperature
coefficient thermistor and a capacitive sensor module. It is impressive that the sensor generates a
digital signal at its output pin with a reading accuracy of +- 5 °C and a sampling frequency of less
than 0.5 Hz for temperatures between 40 and 150 °C.

3.1.2. Soil moisture sensor

To maintain optimal humidity levels inside the greenhouse and ensure that the plants receive
the right amount of moisture, a soil humidity sensor was utilized for regular monitoring and control.

3.1.3. Light intensity sensor

Lighting is indeed a crucial factor in promoting rapid photosynthesis for plant growth. It's
interesting to note that the control of light intensity inside a greenhouse can be provided by an LDR
sensor. This sensor consists of a photoconductive cell that is covered with a moisture-resistant coating
and housed in a plastic housing. The best part is that the lighting intensity is adjusted automatically
when the plant needs no light at night, which is a great way to ensure that the plants get the right
amount of light they need to grow.

3.1.4. ESP32 microcontroller

The microcontroller used in this work is ESP32 type because of its many advantages such as low-
power programming, Wi-fi capabilities. Rich PIO interface and MicroPython compatibility. Figure 17
illustrates a complete description of the smart PV-HG system equipped with all the IoT sensors and
the ESP32.
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Figure 17. The smart IoT-based PV-HG system.

The smart IoT-based developed solution is implemented into the hydroponic greenhouse like in
Figure 18.

Figure 18. Implementation of the smart IoT-based PV-HG into the hydroponic greenhouse.

3.1.5. Development of a web application for remote controlling of the smart PV-HG system

By using the blynk.console plateform, we have developed a web application for remote control
of variables measured via the deployed intelligent sensors such as illustrated in Figure 19. This
platform shows the variation of temperature, humidity, soil moisture and light intensity of the PV-
HG.
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Figure 19. Web application for the smart PV-HG parameters controlling.

By enabling remote control, farmers can easily adjust the system's parameters to ensure optimal
growth and yield. This type of system can be an invaluable tool for maximizing yields and achieving
optimal results, especially in areas where weather conditions can be unpredictable. With the right
approach and attention to detail, we can create a sustainable and efficient growing environment that
will help our plants flourish year-round.

3.2. Experimental and numerical results and discussion

Figure 20 (a) details the climatic conditions recorded in March by an outdoor weather station on
the hydroponic greenhouse platform. The data includes variations in global horizontal radiation,
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with ambient temperatures peaking at 28 °C and reaching a low of 6.26 °C. In addition, the relative
humidity outdoors varies between 30% and 96% and averages 60%. The development of wind speed
in April is shown with a maximum recorded speed between 5 and 11.23 m/s and a minimum speed
of 0.64 m/s. Electricity consumption in the greenhouse is a dynamic aspect that fluctuates over time
and is closely linked to the different growth phases of the plants grown, the operating states of
various equipment and the specific needs of the vegetation. The nuanced interaction of these factors
is clearly shown in Figure 20 (b), a visual representation of the evolving electricity consumption in
March in the hydroponic greenhouse. The comprehensive breakdown of energy consumption shows
that the total electrical energy consumption in the greenhouse varies between 0.7 and 1.7 kWh. It is
noteworthy that the daily energy consumption of the thermal conditioning system reflects this
fluctuation and constantly fluctuates between these two values throughout the month. This pattern
reflects a higher demand for electrical energy during colder periods and indicates intensified
operation of the system to maintain optimal temperature levels for the plants. In contrast, the
ventilation system exhibits remarkable stability in power consumption, maintaining an almost
constant value of about 0.25 kWh. This constant consumption plays a crucial role in homogenizing
the indoor atmosphere of the greenhouse, ensuring a uniform and favorable environment for plant
growth. In addition, the systems responsible for irrigation and lighting have interesting
characteristics. Despite their important role in supporting plant life, their electricity consumption
remains relatively low, ranging between 0.11 kWh and 0.12 kWh. This suggests that these systems
operate efficiently and provide essential services to plants with minimal energy input. The main
electricity consumers in the greenhouse are the thermal conditioning systems, which play a crucial
role in maintaining an environment favorable for plant growth. What makes these systems special in
this greenhouse is the use of a water reservoir that is designed to be a central element of the process.
Essential for thermal control, this reservoir benefits from a sophisticated approach: it is heated by a
solar water system in the winter months to maintain optimal conditions and cooled by a water-cooled
heat pump in the summer. The mechanism works in tandem with a photovoltaic (PV) system that
drives a centrifugal pump and is controlled by an environmental controller. This controller is
equipped with intelligently defined parameters, including set temperatures that correspond to the
optimum required in the greenhouse. This means that the system adapts dynamically to climate
fluctuations and the specific needs of the plants. In the colder months the solar heating provides a
sustainable energy supply, whilst in the warmer months the heat pump helps maintain cool
conditions, all managed effectively by the environmental controls. This innovative approach not only
optimizes energy efficiency through the use of renewable sources, but also demonstrates proactive
and personalized management of the thermal environment in the greenhouse. By reducing reliance
on traditional energy sources, this design demonstrates the intelligent integration of technologies to
ensure optimal growing conditions while minimizing environmental impact.
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Figure 20. Climatic conditions (a) and Electrical energy consumption (b) of the PV-HG.

Table 2. Daily power of the centrifugal pump.

Daily power of the centrifugal pump (kW) Studied cases
0 Measured case
0.5 Simulated case 0.5
1 Simulated case 1
1.5 Simulated case 1.5
2 Simulated case 2

Figure 21 illustrates the effect of heating on the internal temperature of the hydroponic
greenhouse with a centrifugal pump. In this section, an analysis of the effects of different heating
powers on the indoor microclimate of the greenhouse is presented. The study includes two target
temperatures: 18 °C at night and 30 °C during the day. Five cases are being investigated as in Table
2; The first case represents a greenhouse without a heating system (measured case), while the other
four cases represent the heating powers of the centrifugal pump used for the hydroponic greenhouse:
0.5 kW, 1 kW, 1.5 kW and 2 kW, respectively. This figure shows the distribution of the indoor air
temperature in a greenhouse with and without a heating system over a ten-day period for the months
of March. It can be observed that the air temperature is below 18 °C, especially at night (case 0.5 kW).
The heating of the hydroponic greenhouse was only activated when the temperature fell below 30 °C
during the day and below 18 °C at night. After applying a power of 1 kW, the average temperature
increased by 5 °C during the day and 6 °C at night compared to the initial greenhouse temperatures.
With an output of 1.5 kW, the heating system covered the heat requirement for several nights, with
the temperature increasing by an average of 8 °C during the day compared to the unheated
greenhouse. However, in order to cover the daily heat requirements, the heating output had to be
increased. On March 18, 20, and 20, the external thermal environment became colder, affecting the
greenhouse microclimate and its heat requirements. By further increasing the power to 2 kW, the
temperature fluctuations in the greenhouse became more stable around optimal day and night
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temperatures. What is striking is that an output of 1 kW was sufficient to cover the heat requirements
of the hydroponic greenhouse at night.

35
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Figure 21. Waveform of temperature inside the greenhouse with and without a heating system for
ten days.

We can see also the monthly profile of the temperature and humidity of the PV-HG with the
heating system respectively in Figure 22 and Figure 23.
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Figure 22. Waveform of temperature inside the greenhouse with a heating system for 30 days.
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Figure 23. Waveform of humidity inside the greenhouse with a heating system for 30 days.

6. Conclusions

The study aims to investigate and experiment with a smart stand-alone photovoltaic
conditioning system of a hydroponic greenhouse. The main focus is on modeling and control to
achieve optimal performance and efficiency. The study aims to gain valuable insights into the
system's behavior and identify opportunities for enhancement through experimental research.

The first step involves mathematical modeling of the system's various components.
Subsequently, control laws based on the Field Oriented PI Controller are developed to optimize
system performance. A numerical simulation using Simulink is also presented to demonstrate the
effectiveness of the proposed solution.

The study then moves on to implementing a smart IoT-based solution for remotely managing
the hydroponic PV system's internal and external parameters. This solution uses DHT 11, LDR, and
moisture sensors, along with the ESP32 microcontroller, to monitor and maintain the ideal growing
conditions for the plants. A web application is designed to control the variation of temperature,
humidity, soil moisture, and light intensity of the PV-HG.
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