Submitted:
06 January 2024
Posted:
09 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Analysis of the proposed algorithm
2.1. Fundamental idea of the -HPM
2.2. Convergence and error analysis
3. Numerical examples

4. Concluding remarks
References
- Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Physics Letters A 360, 109-113 (2006). [CrossRef]
- Abbasbandy, S., Shirzadi, A.: Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems, Numerical Algorithms 54, 521-532 (2010). [CrossRef]
- Abbasbandy, S., Ashtiani, M., Babolian, E.: Analytic solution of the SharmaTasso-Olver equation by homotopy analysis method. Zeitschrift für Naturforschung 65(4), 285-290 (2014). [CrossRef]
- Adamu, M.Y., Ogenyi, P.: Parameterized Homotopy Perturbation Method, Nonlinear Science Letters A 8(2), 240-243 (2017).
- Adamu, M.Y., Ogenyi, P.: New approach to parameterized homotopy perturbation method. Therm. Sci. 22, 1815–1870 (2018). [CrossRef]
- Akinyemi, L., Iyiola, O.S., Akpan, U.: Iterative methods for solving fourth- and sixth-order time-fractional Cahn-Hillard equation. Math. Meth. Appl. Sci. 1–25 (2020). [CrossRef]
- Akinyemi, L.: q-Homotopy analysis method for solving the seventh-order time-fractional Lax’s Korteweg–de Vries and Sawada-Kotera equations. Comp. Appl. Math. 38(4), 1-22 (2019).
- Akinyemi, L., Iyiola, O. S.: Analytical Study of (3+1)-Dimensional Fractional-Reaction Diffusion Trimolecular Models. International J. Appl. Comput. Math. 7(3), 1-24 (2021). [CrossRef]
- Aksoy, Y., Pakdemirli, M.: New perturbation-iteration solutions for Bratu-type equations. Comput. Math. Appl. 59(8), 2802–2808 (2010). [CrossRef]
- Ayub, M., Rasheed, A., Hayat, T.: Exact flow of a third grade fluid past a porous plate using homotopy analysis method. Inter. J. Eng. Sci. 41, 2091-2103 (2003). [CrossRef]
- Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Homotopy analysis method for singular IVPs of Emden-Fowler type. Communications in Nonlinear Science and Numerical Simulation 14, 1121-1131 (2009). [CrossRef]
- Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solving systems of ODEs by homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation 13, 2060-2070 (2008).
- Benton Edward, R.: Some new exact, viscous, nonsteady solutions of burgers’ equation. Phys. Fluids 9, 1247–1248 (1966).
- Biazar, J., Ghazvini, H.: Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Analysis Real World Applications 10(5), 2633–2640 (2009). [CrossRef]
- Crane, L.: Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645–647 (1970). [CrossRef]
- Elbeleze, A.A., Kılıçman, A. Taib, B.M.: Note on the convergence analysis of homotopy perturbation method for fractional partial differential equations. Abstract and Applied Analysis, 2014, 1-8 (2014).
- El-Tawil, M.A., Huseen, S.N.: The q-Homotopy Analysis Method (qHAM). Inter. J. Appl. math. mech. 8(15), 51-75 (2012).
- El-Tawil, M.A, Huseen, S.N.: On Convergence of The q-Homotopy Analysis Method, Int. J. Contemp. Math. Sciences 8(10), 481-497 (2013). [CrossRef]
- Fadravi, H.H., Nik, H.S., Buzhabadi, R.: Homotopy Analysis Method for Solving Foam Drainage Equation with Space- and Time Fractional Derivatives. Int. J. Differ. Equ. 2011(12), 1-12 (2011). 2011. [CrossRef]
- Feng, X., He, Y., Meng, J.: Application of homotopy perturbation method to the Bratu-type equations. Topol. Meth. Nonli. Anal 31(2), 243–252 (2008). [CrossRef]
- Ganji, D.D., Rajabi, A.: Assessment of homotopy-perturbation and perturbation methods in heat radiation equations. International Communications in Heat and Mass Transfer 33, 391-400 (2006).
- Ganji, D.D., Rafei, M.: Solitary wave solutions for a generalized HirotaSatsuma coupled KdV equation by homotopy perturbation method. Physics Letters A 356, 131-137 (2006). [CrossRef]
- Ganji, D.D., Afrouzi, G.A., Hosseinzadeh, H., Talarposhti, R.A.: Application of Homotopy perturbation method to the second kind of nonlinear integral equations. Phy. Letters A 371, 20-25 (2007). [CrossRef]
- Ganji, D.D., Tari, H., Bakhshi Jooybari, M.: Variational iteration method and homotopy perturbation method for nonlinear evolution equations. Comput. Math. Appl. 54, 1018-1027 (2007). [CrossRef]
- Ganji, D.D., Sadighi, A.: Application of He’s Homotopy-perturbation Method to Nonlinear Coupled Systems of Reaction-diffusion Equations, International Journal of Nonlinear Sciences and Numerical Simulation 7(4), 411-418 (2011).
- Gorguis, A.: A comparison between Cole-Hopf transformation and the decomposition method for solving Burgers equations. Appl. Math. Comput. 173, 126–136 (2006).
- Hashim, I. Abdulaziz, O., Momani, S.: Homotopy analysis method for fractional IVPs, Communications in Nonlinear Science and Numerical Simulation 14, 674–684 (2009).
- Hayat, T., Khan, M., Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid. Acta Mechanica 168(3-4), 213-232 (2004). [CrossRef]
- He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178(3-4), 257-262 (1999). [CrossRef]
- He, J.H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int. J. Nonlinear. Mech. 35(1), 37-43 (2000).
- He J.H.: Homotopy Perturbation Method: A New Nonlinear Analytical Technique, Appl. Math. Comput. 135, 73–79, (2003).
- He, J.H.: Limit cycle and bifurcation of nonlinear problems. Chaos Soliton. Fract. 26, 827-833 (2005). [CrossRef]
- He, J.H.: Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Nonlinear. Sci. Numer. Simul. 6(2), 207-208 (2005). [CrossRef]
- He, J.H.: Recent development of the homotopy perturbation method Topol. Methods. Non linear Anal. 31, 205-209 (2008).
- Huseen, S.N., Grace, S,R.: Approximate Solutions of Nonlinear Partial Differential Equations by Modified q-Homotopy Analysis Method (mq-HAM). J. Appl. Math. 2013, 1-9 (2013) Article ID 569674.
- Huseen, S.N., Grace, S.R., El-Tawil, M.A.: The Optimal q-Homotopy Analysis Method (Oq-HAM). International Journal of Computers and Technology 11(8), 2859-2866 (2013).
- Huseen, S.N.: Application of optimal q-homotopy analysis method to second order initial and boundary value problems. Int. J. Sci. Innovative Math. Res. 3, 18–24 (2015). 2015; 3.
- Huseen, S.N.: Solving the K(2,2) Equation by Means of the q-Homotopy Analysis Method (q-HAM). International Journal of Innovative Science, Engineering and Technology 2(8), 805-817 (2015).
- Huseen, S.N.: Series Solutions of Fractional Initial-Value Problems by qHomotopy Analysis Method. International Journal of Innovative Science, Engineering and Technology 3(1), 27-41 (2016).
- Huseen, S.N.: A Numerical Study of One-Dimensional Hyperbolic Telegraph Equation. Journal of Mathematics and System Science 7, 62-72 (2017).
- Iyiola, O.S., Ojo, G.O., Audu, J.D.: A Comparison Results of Some Analytical Solutions of Model in Double Phase Flow through Porous Media. Journal of Mathematics and System Science 4, 275-284 (2014).
- Lang, S.: Real and Functional Analysis, 3rd edn. Springer, Berlin (1993).
- Liao, S.J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D thesis, Shanghai Jiao, Tong University (1992).
- Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147(2), 499-513 (2004).
- Liao, S.J.: An approximate solution technique which does not depend upon small parameters: a special example. Int. J. Non-linear Mech. 30, 371-380 (1995).
- Liao, S.J.: Homotopy analysis method and its applications in mathematics. J. Basic Sci Eng. 5(2), 111-125 (1997).
- Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problem. Int. J. Non-Linear Mech. 34, 759-778 (1999).
- Liao, S.J.: A uniformly valid analytic solution of 2D viscous flow past a semi infinite flat plate. J Fluid Mech. 385, 101-128 (1999).
- Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems J. Fluid Mech. 453, 411-425 (2002).
- Liao, S.J., Tan Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297-354 (20. [CrossRef]
- Liao, S.J.: A general approach to get series solution of non-similarity boundary-layer flows. Commun. Nonlinear. Sci. Numer. Simulat. 14, 2144-2159 (2009).
- Liao, S.J.: Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169, 1186-1194 (2005). [CrossRef]
- Liang, S., Jeffrey, D.J.: Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation. communications in nonlinear science and numerical simulation 14(12), 4057-4064 (2009). [CrossRef]
- Magyari, E., Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur. J. Mech. B Fluids 19, 109–122 (2000). [CrossRef]
- Şenol, M., Iyiola, O.S., Daei Kasmaei, H., Akinyemi, L.: Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent-Miodek system with energy-dependent Schrödinger potential. Adv. Differ. Equ. 2019, 1-21 (2019). [CrossRef]
- Şenol, M., Akinyemi, L., Ata, A., Iyiola, O. S.: Approximate and generalized solutions of conformable type Coudrey-Dodd-Gibbon-Sawada-Kotera equation. International Journal of Modern Physics B, 35(02), 2150021 (2021).
- Srivastava, H.M., Kumar, D., Singh, J.: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192-204 (2017). [CrossRef]
- Turkyilmazoglu, M.: Convergence accelerating in the homotopy analysis method: a new approach. Adv. Appl. Math. Mech. 10, 1-24 (2019). [CrossRef]
- Turkyilmazoglu, M.: Is homotopy perturbation method the traditional Taylor series expansion. Hacet. J. Math. Stat. 44, 651-657 (2015). [CrossRef]
- Turkyilmazoglu, M.: An effective approach for approximate analytical solutions of the damped Duffing equation. Phys. Scr, 86, 1-6 (2012). [CrossRef]
- Turkyilmazoglu, M.: Some issues on HPM and HAM methods: A convergence scheme Mathematical and Computer Modelling 53(9–10), 1929-1936 (2011).
- Turkyilmazoglu, M.: Convergence of the homotopy perturbation method. Int. J. Nonli. Sci. Numer. Simul. 12, 9–14 (2011).
- VanGorder, R.A., Vajravelu, K.: Analytic and numerical solutions to the Lane–Emden equation. Phys. Lett. A 372, 6060-6065 (2008). [CrossRef]
- Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput. 166(3), 652-663 (2005). [CrossRef]


| -HPM () | HPM () | ||||||
|---|---|---|---|---|---|---|---|
| x | t | Exact | Approx. | Absolute error | Approx. | Absolute error | |
| 0 | 0.1353352832 | 0.1353352832 | 0 | 0.1353352832 | 0 | ||
| 0.1 | 0.1224564283 | 0.1224564283 | |||||
| 2 | 0.2 | 0.1108031584 | 0.1108031584 | ||||
| 0.3 | 0.1002588437 | 0.1002588437 | |||||
| 0.4 | 0.0907179533 | 0.0907179533 | |||||
| 0.5 | 0.0820849986 | 0.0820849986 | |||||
| 0 | 0.0024787522 | 0.0024787522 | 0 | 0.0024787522 | 0 | ||
| 0.1 | 0.0022428677 | 0.0022428677 | |||||
| 6 | 0.2 | 0.0020294306 | 0.0020294306 | ||||
| 0.3 | 0.0018363048 | 0.0018363048 | |||||
| 0.4 | 0.0016615573 | 0.0016615573 | |||||
| 0.5 | 0.0015034392 | 0.0015034392 | |||||
| -HPM () | HPM () | ||||||
|---|---|---|---|---|---|---|---|
| x | t | Exact | Approx. | Absolute error | Approx. | Absolute error | |
| 0.08 | 0.0172413793 | 0.0172416459 | 0.0172404940 | ||||
| 0.10 | 0.0166666667 | 0.0166670364 | 0.0166632809 | ||||
| 0.12 | 0.0161290323 | 0.0161295280 | 0.0161188868 | ||||
| 0.01 | 0.14 | 0.0156250000 | 0.0156256389 | 0.0155993038 | |||
| 0.16 | 0.0151515152 | 0.0151522465 | 0.0150939574 | ||||
| 0.18 | 0.0147058824 | 0.0147063985 | 0.0145884896 | ||||
| 0.20 | 0.0142857143 | 0.0142850695 | 0.0140633199 | ||||
| 0.08 | 0.0862068966 | 0.0862082293 | 0.0862024701 | ||||
| 0.10 | 0.0833333333 | 0.0833351819 | 0.0833164046 | ||||
| 0.12 | 0.0806451613 | 0.0806476400 | 0.0805944342 | ||||
| 0.05 | 0.14 | 0.0781250000 | 0.0781281946 | 0.0779965188 | |||
| 0.16 | 0.0757575758 | 0.0757612326 | 0.0754697868 | ||||
| 0.18 | 0.0735294118 | 0.0735319927 | 0.0729424482 | ||||
| 0.20 | 0.0714285714 | 0.0714253477 | 0.0703165993 | ||||
| Approx. | Approx. | Approx. | |||||||
|---|---|---|---|---|---|---|---|---|---|
| x | Exact | PIA[9] | PIA[9] | ||||||
| 0.1 | 0.04985 | 0.04985 | 0.04984 | 0.04985 | 0.04970 | 0.04949 | 0.04983 | ||
| 0.2 | 0.08919 | 0.08919 | 0.08918 | 0.08918 | 0.08892 | 0.08851 | 0.08915 | ||
| 0.3 | 0.11761 | 0.11761 | 0.11759 | 0.11759 | 0.11723 | 0.11665 | 0.11756 | ||
| 0.4 | 0.13479 | 0.13479 | 0.13477 | 0.13476 | 0.13434 | 0.13365 | 0.13473 | ||
| 0.5 | 0.14054 | 0.14054 | 0.14052 | 0.14051 | 0.14006 | 0.13934 | 0.14048 | ||
| 0.6 | 0.13479 | 0.13479 | 0.13477 | 0.13476 | 0.13434 | 0.13365 | 0.13473 | ||
| 0.7 | 0.11761 | 0.11761 | 0.11759 | 0.11759 | 0.11723 | 0.11665 | 0.11756 | ||
| 0.8 | 0.08919 | 0.08919 | 0.08918 | 0.08918 | 0.08892 | 0.08851 | 0.08915 | ||
| 0.9 | 0.04985 | 0.04985 | 0.04984 | 0.04985 | 0.04970 | 0.04949 | 0.04983 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).