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Abstract: Exoskeletons designed to assist patients with activities of daily living are becoming increasingly
popular, but still are subject to research. In order to gather requirements for the design of such systems, long-
term gait observation of the patients over the course of multiple days in an environment of daily living are
required. In this paper a wearable all-in-one data acquisition system for collecting and storing biomechanical
data in everyday life is proposed. The system is designed to be cost efficient and easy to use, using off-the-shelf
components and a cloud server system for centralized data storage. The measurement accuracy of the system
was verified, by measuring the angle of the human knee joint at walking speeds between 3 and 12 km/h in
reference to an optical motion analysis system. The acquired data was uploaded to a cloud database via a
smartphone application. Verification results showed that the proposed toolchain works as desired. The system
reached an RMSE from 2.9° to 8°, which is below most of the comparable system. The system provides a
powerful, scalable platform for collecting and processing biomechanical data, which can help to automize the
generation of an extensive database for human kinematics.

Keywords: medical engineering; biomechanics; exoskeleton; active knee orthosis; motion analysis;
sensor technologies; human activity recognition; wearable sensors

1. Introduction

The most common activities of daily living (ADL) are walking and climbing stairs [1]. The ability
to perform ADLs with ease is essential for the quality of life of patients or elderly persons. This is
especially important as disorders of the human gait pattern increase significantly with age. A study
by Mahlknecht et al. [2] revealed that the prevalence of gait and balance disorders ranges around 10%
for individuals aged between 60 and 69 years and exceeds 60% for those aged over 80 years. In context
of an ageing society, interest in effective and affordable treatment methods for gait disorders is
increasing. There are multiple approaches to reduce the impairment of gait disorders. One of them
are orthoses and exoskeletons, which can be used to support or even regain lower extremity functions
[3-11]. To develop and validate such devices and to adapt them to the user, long-term gait
observation is necessary. Parameters such as knee joint torque and angle, hip joint angular velocity,
and the speed of the subject’'s movement can be derived based on biomechanical measurements [5].
By evaluation of these parameters over the course of a day while performing ADL load collectives
can be generated for the lower limb. The collected data is instrumental in refining the design,
verification, and control of exoskeletons.

Biomechanical data can be captured with Motion Analysis Systems (MAS). There are several
methods for this purpose, which differ primarily in the choice of sensors.

A frequently selected method of recording motion kinetics is the use of optical systems [12]. An
example of such system has been described by Riener et al. [13].

This methodology with motion-detecting cameras has been proven for decades in biokinematics
but is inappropriate for a wearable biomechanical analysis system. Optical systems can record human
motion very accurately but are cost intensive and restrict the recording spatially into a stationary
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environment equipped with an array of cameras [12,14]. However, the precise data and the large
amount of test results in the literature can be used for the verification of a new measurement system
[13,15].

Wearable systems based on IMUs (Inertial Measurement Units) have been recently subject of
extensive research [12,14,16-43]. These systems, while not yet delivering the same accuracy as optical
systems, can be operated everywhere and not only in a stationary environment equipped with
cameras. Commercial solutions for inertial motion capturing have existed since the early 2000s. In
2008, Cloete et al. [33] benchmarked the commercially available MOVEN motion capture system by
XSENS, comparing it to a clinically used optical system. They concluded that the system can measure
the inclinations of body parts and joint angles with reasonable accuracy, while being exceptionally
fast to set up and flexible in its use [33]. However, the commercial solutions tested still are expensive,
with the latest version of XSENS motion capture suit costing more than 4.000 USD.

Due to their advantages, IMU Sensors are the most commonly used wearable technology for gait
analysis [30]. But this technology is still not used to its full potential. Benson et al. reviewed over 230
MAS for running gait analysis based on IMU sensors. 28% of the studies were conducted outdoors
and in 33% of all studies the analysed distance was greater than one step or stride or 200 m [44].
Which means most of the systems are not designed to run long-term measurements out of the
laboratory. Furthermore only 10% of the reviewed devices are used for measuring joint angles or
range of motion. Benson et al. suggest, to shift gait analysis research from controlled laboratory
settings to more real-world environments [44].

This leads to the conclusion, that there is a research gap in developing a low-cost solution for
measurements of biomechanical data over the course of multiple days in an environment of daily
living.

Long-term measurements are required to obtain a complete set of biomechanical data in real-life
conditions. Field measurements offer a significantly larger and more realistic variety of load scenarios
compared to simulating selected walking activities in a laboratory. Additionally, simulating tasks can
lead to systematic errors. These errors can be avoided by measuring under real conditions.

Load collectives of the human leg will be calculated from the data of long-term measurements
obtained by the proposed system. The data sets will also help to identify different walking activities
(e.g., level walking, stair ascending and descending) performed by the user. This information will be
used in future work for the control of an active exoskeleton for the human knee.

For this purpose, SensAA is focused on measuring the kinematics of the lower human limbs.
SensAA will be used by elderly people; therefore, the use of the measurement system shall be as
intuitive as possible. The wearer does not need technical knowledge to operate the system and can
don and doff it on their own. No maintenance like recharging, sensor adjustment and calibration are
required during runtime. The system is implemented using off-the-shelf hardware and open source
software. This reduces cost and improves accessibility of the system.

SensAA is used in activities of daily living both indoors and outdoors. It is also used all day
without taking it off. Therefore, a small, compact, and wireless design is suggested, which is non-
obstructive to its wearer and does not cause discomfort.

To take full advantage of this wearable design, cloud-based software for data acquisition and
analysis is proposed. While the measurements are running, the data is automatically uploaded to a
database on a cloud server. The server allows for central data storage and online data collection for
multiple users simultaneously.

In literature there already are reports of approaches which use IMU sensors to measure lower
limb kinematics [32,45]. However, to our knowledge, no device has yet been described that combines
all desired goals. These approaches lack at least one of the following aspects:

e  Low-cost solution [19,27,28,31]

e  Easy setup and low calibration effort [16,18,19]

e  Compact and wireless design [14,25,46]

e  Continuous and secure data upload to cloud server [17,19,25,27,28,31,46—48]
e  Data upload outdoors without WIFI connection [19,27]

° Energy optimization for long-term measurements [19,27,28,31]
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. Secure data transfer for multiple users [17,25,28,31,46—48]
This paper presents a novel all-in-one solution, that combines solutions for accuracy, usability,
and security to close the shown research gap.

2. Materials and Methods

2.1. System Architecture

The system SensAA consists of the following three main components:
e  Wearable Sensor Boxes
e  Android Smartphone Application
e  Cloud Server System

The components and their interfaces are illustrated in Figure 1:

Cloud Server
System

Android
Smartphone
Application

Wearable Sensor Boxes

Figure 1. System Overview of SensAA.

SensAA uses IMU sensors to measure joint angles. This sensor principle enables the measuring
system to be used independently in every environment of daily living.

The IMU sensors measure acceleration and angular velocity to observe their inclination relative
to the gravity vector on earth. At least two sensors are required to measure the angle at one joint axis.
Each sensor is integrated in a housing, a wearable Sensor Box, which also contains a battery and a
Bluetooth® Low Energy (BLE) module (see Section 2.2).

In order to measure the angle of the human knee joint, one Sensor Box is attached to the thigh
and another one to the shank of a leg. The sensors are placed parallel to the sagittal plane of the user’s
body.

The data collected are transmitted wirelessly via BLE from the sensors to a smartphone (see
Section 2.3). The smartphone runs an Android application, which receives the data via BLE
notifications and forwards them to a Cloud Server System over the cellular network. The Cloud
Server provides a read and write interface to a central database for up- and downloading datapoints
(see Section 2.4). The link to this database gives the possibility to create data backups regularly. Since
the server is accessible from a public address, appropriate measures must be taken to ensure the
authenticity and authority of the users.
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Figure 2 shows the system architecture of SensAA. The three main components and their sub-
architectures are described in Sections 2.2 to 2.4.
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Figure 2. System Architecture of SensAA.
2.2. Sensor Box

2.2.1. Electronic Structure

The Sensor Boxes with integrated inertial sensor and microcontroller are designed to have a
small form factor while maintaining a long battery life. Figure 3 shows the block diagram of the
electronic structure and interfaces of SensAA.
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/ Breakoutboard \
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STM32 || LsM | BLE-

L476 6DSM Module

ST-Link

Supply Voltage

LPS
22HB

Signal Connection
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Switc Charger Battery

- -

Figure 3. Electronic structure of SensAA.
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The long duration of recordings requires the use of energy-efficient hardware and an
appropriately dimensioned power source. IMU sensors based on MEMS (Micro-Electro-Mechanical
Systems) technology have a negligible power consumption and are well suited for the proposed
application. Processors and wireless transmitters also have to be carefully selected to keep the power
consumption to a minimum. For this reason, Bluetooth® Low Energy is the preferred protocol for
transmitting data wirelessly to a smartphone (see Section 2.3).

The compact STEVAL-STLCS02V1 (ST-Evaluation) sensor board from STMicrolectronics has
been chosen. This board is inexpensive and offers a suitable interface for programming the integrated
STM32-L476 microcontroller [49]. Furthermore, its small size (13.5 mm x13.5 mm) makes the board
ideal for the intended application. The board has a built-in IMU sensor, LSM6DSM, which
incorporates an accelerometer and a gyroscope. Linear acceleration can be measured up to +16 g
(gravity of the earth) and the angular velocity up to +2000 dps (degrees per second) [50]. BLE
communication is provided by the modules integrated on the STEVAL-Board.

A 500 mAh LiPo battery (lithium polymer battery) provides the power supply, which can be
switched on and off via a slide switch. The nominal battery voltage is 4.2 V. To recharge the battery
and provide long operating times, a LiPo-battery-charger from Adafruit® is used [51]. This charger
can be connected through a micro-USB (Universal Serial Bus).

For the connection to the supply voltage and the interface ports of the STEVAL-Board a
breakoutboard is required. Therefore, a custom PCB (Printed Circuit Board) has been designed. The
supply voltage of this breakoutboard PCB is 3.3 V, which is constantly provided by an LDO (low
dropout voltage regulator).

2.2.2. Mechanical Structure

The electronic components are mounted in a 3D-printed housing, the Sensor Box. The bottom
half of the housing provides cut-outs and guides for components and cables. One corner of the
custom PCB is cut at an angle, which prevents the PCB from being inserted incorrectly in the housing.
The PCB has an overall size of 17.5 mm x20 mm. The housing also provides openings for the slide
switch and the USB connector of the LiPo-charger.

The top half top half of the housing includes support structures to ensure that the components
do not move during measurements. While the Sensor Box is closed, these support structures are in
contact with the components and hold them down securely.

The Sensor Box has the final dimensions of 53.2 mm in length, 52.5 mm in width, and 11.6 mm
in height. Figure 4 shows the 3D printed housing with the fitted components.

Slide

LiPo-

Support
structure

Breakoutboard }
for STEVAL- LiPo-
Board battery

Figure 4. 3D-printed Sensor Box; left: bottom half, right: top half.
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2.3. Sensor Firmware and Smartphone Application

The firmware of the sensors is implemented in the C language with the following main
functions:

e  Reading values from the built-in accelerometer and gyroscope

e  Observing the inclination of the sensors by fusing the accelerometer and gyroscope data

e  Transmission of measurement data to the Android application
The Android application provides a user interface to interact with the sensors. The application

allows to connect, disconnect, and calibrate the sensors. Communication between the application and

the sensors is implemented using the BLE GATT (Generic Attribute Profile) protocol. All interactions
are mapped to GATT services and characteristics. A Service is a background-process, which may be
executed even when the device display is off. The Service is used to silently collect sensor data via

BLE without needing any interaction with the user.

The following GATT-Services are provided:

e  The “Metric” service provides the sensor data. For each type of sensor data (acceleration, angular
velocity, inclination), a GATT characteristic is defined, which can be subscribed by the
smartphone app. Furthermore, a GATT-descriptor is added to each characteristic, describing the
scale and unit of the provided metrics. Using the descriptor, the full scale of the device can be
reconfigured, without reprogramming the scaling in the smartphone application.

e The “Version” service provides the firmware version running on the sensor. It features two
characteristics, one for reading the major and minor version numbers and one for the exact build
revision.

e  The “Control” service is used to imperatively trigger different processes in the sensor firmware.
Each characteristic of the service is assigned to an action in the sensor firmware. For now, it is
only used to initiate the self-calibration function.

Figure 5 illustrates the main state machine of the sensor firmware. On reset, the system goes into
the Init state. In the Init state, the microcontroller and its peripherals are configured. After
initialization, the system goes into the Operating state. In the Operating state, the sensors are read,
and the notifications are updated. The user can trigger self-calibration of the sensors via the “Control”
GATT-service. During self-calibration, the offset in the gyroscope values is calculated while the
sensor is in a stationary state. This offset is then stored in flash and applied to all subsequent sensor
readings. When calibration is finished, the system goes back into the Operating state, resuming
characteristic updates. During operation, the sensors calculate their orientation using an Extended
Kalman Filter (EKF) based observer algorithm. The observer estimates the direction of the gravity
vector from which the inclination of the sensor is derived. The inclination is published via the
‘Inclination” GATT characteristic in radians as a 32bit floating point number.

( Init }

n\ tialize Perlpherals

Calrbratlon done
Heartbeat Reset

f Callbratmg Ooerating W /

Callbrate Gyroscope tiendmg notlflcatlons

N

Calibration requested
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Figure 5. Sensor State Machine of the sensor firmware of SensAA.

Depending on the number of sensors connected, the sensors reach a sampling rate from at least
20 Hz (with four sensors) up to 50 Hz (with two sensors). The average frequency of walking is
between 1.5 Hz and 2.5 Hz [52] and can go up to 4.5 Hz while climbing stairs [53]. According to the
Nyquist-Shannon Sampling Theorem, a sampling rate of at least 9 Hz is needed to record the gait
pattern of a subject correctly. Therefore, the sampling rate of SensAA is sufficient for human motion
analysis.

2.4. Cloud Server System

The Cloud Server System has the responsibility of persistent data storage, while keeping the
data accessible, integrous, and consistent. The consistency and integrity requirement can be met by
using a database management system and a well-defined data model. For this purpose, a MySQL
database management system is used. To enable cross-platform access to a database system, an
interface application based on web technologies has been chosen. Therefore, the system
communicates using the Hypertext Transfer Protocol (HTTP), which is the standard protocol for web
applications. To achieve high accessibility, an architecture is developed that allows for fast
deployment and updatability. The clients interacting with the Cloud Server System are connected via
public, mobile networks. The Cloud Server System is listening on a public IP address. When exposing
the application to the internet, data security becomes an immediate concern. To prevent unauthorized
access to the system all communications are encrypted and an authentication and authorization
system is used.

Figure 6 shows the proposed Cloud Server System architecture. For simple interaction, the
system acts as a single HTTP Server towards the client. Internally, the system is implemented as a
docker container network. Each container runs specific services, each responsible for enabling distinct
functions of the system. All containers can be maintained and updated individually. This allows
incremental updates, without the need to shut down the entire system. All services are connected to
the clients via HTTP based Application Programming Interfaces (APIs). However, from a client’s
point of view, it is easier to communicate with a single server offering all these services. The API-
Gateway is a reverse proxy that addresses this issue. Depending on the path of the request, the
request is relayed to the service handling it. To ensure data security, API-Gateway uses Transport
Layer Security (TLS). The API-Gateway decrypts incoming HTTP messages and relays the
unencrypted message to its destination service. In this way, while the services are not handling
security themselves, the API-Gateway ensures that no unencrypted data can leave the system.

The API-Server container hosts the Metrics-API, which is responsible for accessing the database.
The Metrics-API provides one endpoint for each type of measurement, each reachable on a distinct
HTTP path. There is a corresponding database table for each endpoint. The scheme of this table
describes the measurement datatype. When inserting a datapoint, the body of the client’s request
contains a JSON (Java Script Object Notation) document, which contains an array of JSON objects,
each representing a single measurement. When retrieving datapoints, the body of the HTTP response
contains the data points in the same format. To support selective retrieval of the datapoints, the
endpoints provide filter options for each column of the datatype in question. The supported filter
operators depend on the column datatype. A text value can only be compared for equality. For
numerical types, the column can be filtered using a comparison value, with either an equality, greater
than, or less than operator applied. To filter a range of values, both a greater than and a smaller than
operator can be applied to the same column. The filters are passed to the API with the HTTP request
query string.
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Figure 6. Architecture of the SensAA Cloud Server System.

2.5. Verification

To verify the accuracy and the data transmission reliability of the proposed inertial measurement
system, several tests are carried out, which ensure that the set requirements are met and that correct
measurement results are achieved. Verification includes a Battery Life Test, a Pendulum Test, and a
Treadmill Test.

2.5.1. Battery Life Test

The goal of the Battery Life Test is to verify whether the battery-based power supply of the
Sensor Boxes is sufficient for long-term recording. Sensor Boxes need to be able to record and transmit
data over a complete day, at least 16 hours (cf. Section 1.3). For this purpose, two sensor modules are
switched on and connected to a smartphone via the Bluetooth® Low Energy interface. This starts the
data acquisition and the test. The smartphone is logged into the Cloud Server System and
continuously delivers measurement data. Sensors remained stationary during the test. The sensor
board has a supply voltage of 3.3 V. When the voltage drops below this threshold, the sensor is turned
off, and the recording stops. This timepoint can be determined precisely because the data are
recorded with absolute timestamps. The battery charge of the smartphone (in %) and the sensors (in
V) are recorded regularly in a one-hour interval.

2.5.2. Pendulum Test

The goal of this test is to verify the EKF based observer algorithm and to determine the accuracy
of SensAA (see Section 2.2.3). Two wearable Sensor Boxes are attached to the setup shown in Figure
7. One Sensor Box is fixed along the vertical axis, while the other is mounted on a free-swinging
pendulum. The angle a in the figure denotes the angle measured by the system. For this experiment,
an optical MAS (LaiTronic GmbH, Innsbruck, Tirol, Austria, former Steinbichler) is used as reference
for comparing the measurement data (cf. Section 1.2.1). The infrared markers are attached to the
vertical axis and the far end of the pendulum. Therefore, the MAS measures the same angel as the
wearable sensors. The sampling rate of the MAS must be configured for the test setup. The maximum
sampling rate of the system is limited by the distance to the markers. Here, the MAS is set about three
meters away from the test setup. In this configuration, a sampling rate of 220 Hz resulted in clean
measurements of a.
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Sensor Box

Figure 7. Pendulum Test setup with marked angle a and two Sensor Boxes. Sensor Box 1 is fixed on
a stationary vertical axis, and Sensor Box 2 is mounted on a free-swinging pendulum. Both the axis
and pendulum are marked with infrared markers to measure a with an optical MAS simultaneously.

2.5.3. Treadmill Test

With measurements on a treadmill the behavior of the sensor accuracy under real conditions
when walking at different velocities is tested. The goal is to compare the angle progression measured
by SensAA with that of MAS. The setup of the treadmill test is shown in Figure 8.

Optical Motion Treadmill

Analysis
System (MAS)

Figure 8. Treadmill Test setup with optical MAS positioned three meters away from the treadmill.

The wearable Sensor Boxes are attached to a healthy subject’s thigh and shank of the right leg
with elastic bandages. These are easy to put on and off and are adjustable to the thickness of the
wearer’s leg.

As shown in Figure 9, the infrared markers of the MAS are mounted centered on the Sensor
Boxes. An additional marker is located at the rotation point of the knee joint to form a triangle with
the markers on the thigh and the shank when the knee is flexed. From this triangle, the knee angle is
calculated.
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Sensor

Knee joint angle
Infrared marker

Sensor Box 2

Figure 9. Sensor Boxes attached with bandages to the thigh and shank of the right leg. Additionally,
three infrared markers for an optical MAS are attached to the leg. They form a triangle that covers the
angle a of the knee joint.

To perform the test, both SensAA and the MAS are started and the treadmill is initially set to
3 km/h walking speed. A dataset over at least one minute is recorded before the speed is gradually
increased. The experiment was carried out three times at walking speeds of 3 km/h, 6 km/h, 9 km/h
and 12 km/h. When the speed is increased to 12 km/h, the subject must change their gait from walking
to jogging. This test serves as a system load test to evaluate how the quality of the knee angle
progression performs at high speed.

The calculated data are transmitted via BLE and stored in the Cloud Server System as described
in Sections 2.1, 2.3 and 2.4.

3. Results

3.1. Battery Life Test

The discharge curves of the Sensor Boxes batteries and the capacity estimation of the smartphone
during the Battery Life Test are shown in Figure 10 (see Section 2.5.1). After approx. 26 hours of
runtime the batteries dropped below the 3.3 V threshold, at which the sensor module can no longer
be supplied, and the data recording stops. The discharge curves of the batteries show typical Li-lon
behavior. The smartphone's battery level is at 7 % after 20 hours. The battery was then recharged, but
the data recording continued.
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Figure 10. Discharge curves of the batteries of the sensor modules at the shank and thigh and the
smartphone.

3.2. Pendulum Test

The result of the Pendulum Test (see Section 2.5.2) is shown in Figure 11. The graph shows the
comparison of the measured angle obtained from the MAS and the proposed measurement system.
The main metric used to quantify the comparison is the Euclidean distance between the two datasets,
also referred to as the Root Mean Square Error (RMSE). To further evaluate the quality of the
measurements, the difference of the angle curves and their mean value is calculated. For this purpose,
the mean standard deviation is used, which reflects the average distance of all measured points from
the mean value. Table 1 summarizes the results.
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Figure 11. Results of the Pendulum Test; Knee joint angle of the IMU sensors of SensAA in comparison

to reference MAS.
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Table 1. Pendulum Test results, angle difference between SensAA and reference MAS.

3.3. Treadmill Test

Standard  Average
RMSE deviation Difference
3.5° 3.4° 2.3°
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To verify the wearable sensor data, the resulting knee angle signal is compared to the results of
the MAS system. First, the offset in the time axis of both signals is determined and applied to the
data. Then both datasets are interpolated onto the same sampling time points. Since the MAS system
has a significantly higher sampling rate compared to SensAA, the time points of the wearable sensor
data were used for interpolation. Figure 12 shows both signals compared to each other. To quantify
the comparison between the two datasets, the RMSE of SensAA in reference to the MAS was
calculated. Additionally, the average, minimum, and maximum distance and the standard deviation
between both signals were determined. Table 2 shows the comparison results. The lowest RMSE
value was measured for a speed of 3 km/h at 2.9°. For speeds of 6 and 9 km/h the RMSE is at 6.1° and
5.2°. The highest RMSE of 8.0°was reached at 12 km/h. The average deviation is below 5° at all four
walking speeds and the standard deviation is between 1.6° and 6.7°.
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Figure 12. Comparison of the knee angle measured by IMU sensors of SensAA and reference MAS on
treadmill at a) 3 km/h, b) 6 km/h, c) 9 km/h and d) 12 km/h walking speed.

Table 2. Verification Results of the Treadmill Tests, from 3 km / h up to 12 km/h.

. Standard Difference
Walking Speed - RMSE deviation Average Minimum Maximum
3 km/h 2.9° 1.6° 24° -3.0° 7.0°
6 km/h 6.1° 5.1° 3.4° -11.1° 18.2°
9 km/h 52° 5.1° 1,0° -10.1° 16.3°
12 km/h 8.0° 6.7° 4.3° -11.9° 24.2°

Figure 13 shows the phases of the gait cycle at a speed of 12 km/h. At such speeds there are
phases in which both feet no longer touch the ground and as a result the test person bounces off the
ground. In the fifth sequence, it can be recognized that the knee angle experiences a significantly
greater maximum in the swing phase compared to walking. Here, the maximum knee angle is
between 80° and 90°, which can be seen from the knee angle curve in Figure 12. For comparison, the
maximum knee angle ranges between 60° and 70° during walking.
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Figure 13. Gait cycle on the treadmill at 12 km/h.

4. Discussion

In this paper SensAA is proposed, a low-cost, highly mobile biomechanical measurement system
capable of measuring the angle of the knee joint based on Inertial Measurement Units. The system
uses centralized cloud-hosted data storage and an Android smartphone to design a solution that is
both inexpensive (see Section 2.5) and easy to set up. With BLE as the wireless transmission protocol,
a battery life of more than 24h was achieved. This result is well suited for long-term recordings. It
should be mentioned that no other activities were performed on the smartphone during the test. No
extensive screen time or other activities should be carried out on the smartphone during long-term
recording.

The proposed system was first verified with a Pendulum Test. For angle measurement accuracy
the RMSE of 3.5° and the standard deviation of 3.4° were achieved. This proves that the implemented
observer algorithm can calculate the angle between two Sensor Boxes in the sagittal plane accurately.

The system was further tested with a Treadmill Test at different walking speeds. This test had
the purpose of a first-time technical verification of the system on a human body. For this reason, only
one participant took part in the measurements. The acquired results are dependent from the
individual subject characteristics (e.g., age, gender, height) and do not give a reliable answer about
the overall accuracy of the system. To achieve this information a higher number of participants is
needed in the future. However, the presented results show, that SensAA is working in general and
has the potential to reach one of the highest overall accuracies compared to other systems.

SensAA achieved an RMSE of 2.9° to 8° for walking speeds between 3 and 12 km/h. The results
of walking at 3 km/h deviate less than those of most previous studies which report RMSE values
between 3.2° and 5.9° [16-19,24,25,28,32]. These studies describe the walking activity during their
measurement routine only as walking and do not give an exact speed. Therefore, no comparison of
the measuring accuracy of the systems at the exact same speed can be made.

To our knowledge, only Robert-Lachaine et al. analyzed the motion of the human body at
specified speeds [27]. They investigated speeds from 0.6 to 1.2 m/s. At a speed of 0.8 m/s, which is
about 3 km/h, the RMSE was 3.2°. Compared to this result SensAA achieved a smaller RMSE at the
same walking speed.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2024 d0i:10.20944/preprints202401.0686.v2

14

Joukov et al. [23] and Teufl et al. [31] achieved lower errors with RMSE values of 2.5° and 2.38°
to 2.65°. Joukov et al. [23] proposed a system based on a Rhythmic Extended Kalman Filter, which
considers the periodicity of movements when walking. This significantly improves the state
estimation of a regular EKF algorithm. Teufl et al. [31] achieved high accuracy by following an
iterated extended Kalman filter approach. The inertial data were processed twice. First to obtain a
converged estimate of the acceleration bias that was then used as initial guess for the second
calculation [31]. Compared to SensAA the downside of these two algorithms is the increased
computing effort and runtime.

The RMSE values of SensAA increase with a higher walking speed. Other studies have
experienced the same problem with increasing complexity of speed and increasing gait movement
[18,24]. It should be noted that the error for the speed of 6 km/h (RMSE 6.1°) is greater than for 9 km/h
(RMSE 5.2°), which is contrary to the expected trend. One explanation could be a slightly loose
attachment of one Sensor Box during the 6 km/h run, which causes false sensor inclination
calculations.

The higher increase in error compared to other studies might be caused by the way the Sensor
Boxes are mounted. Sensors were not attached directly to the skin but to the participant’s pants. Fast
walking leads to movement of the fabric, which could again result in inclination of the sensor and
false calculations.

In order to achieve high accuracy for the measurement of joint angles using IMU sensors,
Niswander et al. [54] point out that the positioning of the sensors must be optimised. They compared
different sensor positions and reached the lowest RMSE for knee angle with sensors positioned at the
middle lateral shank and the lower anterior thigh [54]. In addition to this sensor position, they also
recommend the positioning which has been chosen for SensAA.

Another crucial aspect of MAS is the sensor calibration procedure [18,20,55]. Di Raimondo et al.
[18] describe three possible types of IMU calibration: manual, static, and functional calibration. They
propose a functional calibration method that integrates hip abduction-adduction motion, sit-to-stand,
and walking movements. With this method, the RMSE could be reduced from 7.8°, with manual
calibration, to 3.9°. SensAA is calibrated with a static method.

It must be considered that SensAA cannot be compared to a reliable ground truth. The optical
reference system is also subject to errors. Teufl et al. [31] showed that MAS based on optical markers
can suffer from soft tissue artefacts (STA) when the markers are placed on anatomical landmarks (cp.
[21,24,28]). Teufl et al. [31] achieved higher accuracy by using rigid marker clusters fixed on the thigh
and shank with straps (RMSE reduction of up to 1.3°). For the Treadmill Test we attached two
markers to the rigid Sensor Boxes, but one marker on the rotation axis of the knee. This marker might
be affected by STA in addition to the fabric movement.

The measuring accuracy of SensAA could possibly be improved by optimising the sensor
attachment, sensor positions, and the calibration method. However, SensAA shows viable
performance for gait analysis purposes. Errors between 2° and 5° are considered clinically acceptable
[18]. This threshold was achieved by walking at 3 km/h. Speeds from 6 km/h to 12 km/h are rarely
measured in everyday life situations, especially for elderly people [56,57].

At this point, SensAA has been tested in a laboratory. However, the tests conducted showed that
the proposed toolchain of joint angle measuring, and cloud-based data storage works as desired. The
system produces clinically acceptable results for knee joint angle measurements and is applicable for
long-term observation in everyday life.

5. Conclusions and Outlook

In this paper, we introduce SensAA, a wearable cloud-based biomechanical data acquisition
system. The system is verified for long-term measurements of the human knee joint angle. It uses
low-cost commercially available components and open-source software. SensAA is an all-in-one
solution which provides high accuracy, high usability, and high security.

While SensAA demonstrates promising performance, further optimizations are necessary to
ensure consistent accuracy for walking speeds exceeding 3 km/h. Future plans include conducting a
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long-term study with human test subjects to validate the system's performance in real-world
environments.

For future work, SensAA can be used to calculate realistic load collectives of the human leg and
identify different walking activities. These measurements could be used for designing and controlling
an active exoskeleton, which assists the user with ADLs like walking, climbing stairs, sitting down,
and standing up.

The system is not limited to the knee joint and the lower limbs but can be used on the whole
body. Additional Sensor Boxes could be used to examine other human joints simultaneously. SensAA
can also be used not only for measuring joint angles, but also for measuring the acceleration and
angular velocity of body parts.

SensAA provides a powerful, scalable platform for collecting and processing biomechanical
data. Thanks to the cloud-based data storage solution, a large group of participants can be examined
highly automated. This could help create an extensive database for human kinematics.
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Abbreviations

The following abbreviations are used in this manuscript:
ADL Activities of Daily Living
API Application Programming Interface
BLE Bluetooth® Low Energy
ECG Electrocardiography
EIT Electrical Impedance Tomography
EKF Extended Kalman Filter
EMG Electromyography
GATT  Generic Attribute Profile
GRF Ground Reaction Force
HTTP  Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
MU Inertial Measurement Unit
IP Internet Protocol
JSON  Java Script Object Notation
LDO Low Drop-Out Voltage-Regulator
LiPo Lithium Polymer
LTE Long Term Evolution
MAS Motion Analysis System
MEMS  Micro-Electro-Mechanical Systems
OLED  Organic Light Emitting Diode
OPD Organic Photo Diode
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PCB Printed Circuit Board

RMS Root Mean Squared

RMSE  Root Mean Squared Error
STA Soft Tissue Artifacts

SQL Structured Query Language
TLS Transport Layer Security
USB Universal Serial Bus
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