

Brief Report

Not peer-reviewed version

Empowering Egypt: Unleashing 5G & Associated Economic Impact on GDP

Moutaz ElShahed * and Moutaz ElShahed

Posted Date: 9 January 2024

doi: 10.20944/preprints202401.0723.v1

Keywords: 5G technology; digital transformation; Egypt

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Brief Report

Empowering Egypt: Unleashing 5G & Associated Economic Impact on GDP

Moutaz ElShahed

Abstract: In an era of rapid technological advancement, Egypt stands at the crossroads of digital transformation. Our research delves into the intersection of economy and 5G technology, exploring how these forces can reshape the nation's economic landscape. By examining the impact on GDP, we aim to guide policymakers, telecom operators, and citizens toward a more connected and prosperous future. Join us on this journey as we unravel the potential of 5G and pave the way for inclusive growth.

Keywords: 5G technology; digital transformation; Egypt

1. Introduction

The Information and Communication Technology (ICT) sector has been a significant contributor to the global economy. According to a report by the Organization for Economic Co-operation and Development (OECD)(*The Economic Impact of ICT*, 2004), the ICT sector has become a key driver of economic growth over the past decade. The rapid diffusion of the Internet, of mobile and of broadband networks all demonstrate how pervasive this technology has become.

The introduction of 5G technology has been a significant milestone in the field of telecommunications. It has not only revolutionized the way we communicate but also has the potential to transform the global economy. According to a report by PwC (Chow & Tandetzki, 2030), the introduction of 5G technology could add US\$1.3tn to global GDP by 2030 in five sectors—healthcare, smart utilities, consumer and media, industrial manufacturing, and financial services. The report also estimates that the introduction of 5G technology could create up to 2.3 million jobs in Europe.

The potential benefits of 5G technology are not limited to Europe. A report by Analysys Mason highlights the potential economic benefits of 5G in emerging markets (Stewart et al., 2022). The report suggests that most countries are expected to generate overall economic benefits (GDP) three-to-seven times higher than the incremental cost of extending coverage. The report also estimates that 5G mobile broadband can generate consumer surplus between USD 1-10 billion per country 2020–35.

In developing countries, the adoption of 5G technology is expected to differ from that in developed regions. According to a report by the United Nations Conference on Trade and Development (UNCTAD)(United Nations Conference on Trade and Development, n.d.), the digital divide between developed and developing countries is widening, the article suggests that the adoption of 5G technology in developing countries will be driven by the need to provide basic services such as healthcare, education, and financial services to underserved populations, while In developed countries, the adoption of 5G technology is expected to be driven by the need to improve existing services and create new ones.

In recent years, Egypt has embarked on a transformative journey towards digital empowerment. The convergence of technological advancements, policy reforms, and societal aspirations has set the stage for a profound shift in how Egypt approaches its economic challenges. This research aims to explore the pivotal role of 5G technology in this context and its potential to catalyze inclusive development.

"Digital Egypt" initiative stands as a testament to the country's commitment to digital transformation. Launched to simplify access to government services, expand digital infrastructure, and foster innovation, this initiative has already begun reshaping the landscape of service delivery.

By leveraging technology, Egypt aims to enhance citizen engagement, improve efficiency, and create new opportunities for economic growth.

2. Justification

This Research analysis is crucial for understanding how 5G adoption in Egypt, as an emerging market, aligns with broader economic trends and potential benefits. From enabling smart cities and efficient logistics to empowering small and medium-sized enterprises (SMEs), the adoption of 5G technology has the potential to revolutionize Egypt's economy, 5G can drive productivity, attract investment, and create jobs. By analyzing the economic impact, we can uncover pathways for sustainable growth.

our research stands as a strategic initiative to comprehend, evaluate, and strategically position Egypt within the evolving landscape of global technological advancements and economic opportunities. Also it seeks to unravel the synergies between 5G technology and Egypt's economic growth. By doing so, we contribute to the ongoing dialogue on Egypt's digital transformation journey.

In light of these developments, the research aims to explore the potential impact of 5G technology on Egypt's GDP. The research will examine the potential of 5G technology and its impact on the economy of Egypt. Finally, the research will not only contribute to academic understanding but also offer practical recommendations for policymakers and stakeholders on how to maximize the benefits of 5G technology for the economy of Egypt.

3. Research Questions

Quantifying the 5G introduction Impact on Egypt's GDP by simulating the 5G introduction in similar countries

- a. How does GDP growth trajectory change with 5G adoption?
- b. What are the relations between some specific indicators (5G population coverage, Network speed and spectrum allocation) with the GDP growth?
- c. Can we establish a relationship between 5G introduction and Egypt's GDP economic performance?

4. Research Objectives

The overarching goal of this research is to contribute to Egypt's strategic vision for digital transformation by exploring the potential impact of 5G technology. Specifically, we aim to understand how 5G deployment can drive economic growth and simulate the impact on Egypt's GDP.

a) Assessing Economic Implications:

- Objective: Analyze the relation between 5G introduction & the associated impact on the GDP
- Expected Outcome: Provide evidence-based insights for policymakers and stakeholders.

b) Promoting Digital Infrastructure & technology innovation in Egypt:

- o **Objective**: Simulate the 5G introduction impact on Egypt's GDP.
- o **Expected Outcome**: Recommend priorities for 5G introduction strategies to ensure successful launch for the 5G services.

By achieving these objectives, we aim to pave the way for Egypt's successful transition into the 5G era, fostering inclusive development and sustainable progress.

5. Hypothesis

- H1: There is a relationship between the 5G population coverage and the country's Gross Domestic Product (GDP)
- H2: There is a relationship between network speed and the country's Gross Domestic Product (GDP)

• H3: Efficient spectrum allocation contributes to the country's economic growth

6. Literature Review

The development of ICT, including 5G services, can drive economic growth by creating new opportunities for young people and promoting the formation of economic projects. Additionally, investments in information and communication technologies, such as 5G, have been found to have a positive association with economic growth globally. According to Pwc (Chow & Tandetzki, 2030), Adoption of 5G will add \$1.3 trillion to global GDP by 2030 where healthcare sector which will be the biggest contributor to the economic gains from 5G with potential to add over half a trillion dollars to global GDP, followed by the smart utilities management that will add US\$330bn to global GDP by 2030 mainly through the following 3 use cases:

- a) Enhanced smart meters & smart grids (US\$209bn)
- b) Better waste management & reduced solid waste (US\$82bn)
- c) Reduced water leakage (US\$39bn)

The report addressed that 5G-powered consumer and media applications could add US\$254bn to global GDP by 2030, also the 5G-powered industrial manufacturing will add US\$134bn and in addition to the financial-services applications contribution with US\$134bn

At the regional level, North America will experience the biggest percentage uplift to GDP from 5G, followed by Asia and Oceania and then by Europe, the Middle East and Africa (EMEA). In absolute dollar terms, North America also will rank highest, and Asia and Oceania are projected to outpace EMEA because of its larger overall economy. (The scale of a national economy will influence its absolute impact on global GDP: a 2% increase in the US economy is about six times the size in dollar terms of a 1.3% expansion in the Japanese economy.) Among the countries analyzed those with strong, modern industrial production sectors may benefit more than those that rely on service industries such as banking.

Another research comparing the ICT and economic growth in Developing (Niebel, n.d.), Emerging and Developed Countries confirms relationship between ICT capital and GDP growth with no statistically significant differences in output elasticities of ICT between country groups. There was no clear indication that developing and emerging countries gain more from ICT investments than developed economies.

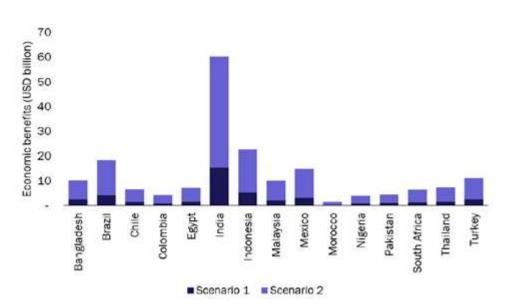
In USA, 5G promises massive job and GDP growth (5G Promises Massive Job and GDP Growth in the US, n.d.) as it will become a foundation for innovation and transform many sectors of the US economy. Timely rollout of 5G services and strong talent pipeline are critical for economic benefits that will improve business operations and consumer experience across the country. Coordination between policymakers, regulators, and private sector is needed for smooth rollout to generate not only direct but also indirect economic impact and contribute to employment and new revenue streams calculated with 1.2 trillion to GDP and create 3 million to 3.6 million new jobs from 2020 to 2030.

In Canada, a report prepared by GSMA (5G and Economic Growth: An Assessment of GDP Impacts in Canada, 2020) evaluated that 5G has the potential to enable new applications and use cases that could deliver 150 billion in additional value to the Canadian economy in the period 2020–2040. Timely access to spectrum is crucial for the speed and quality of 5G rollout as Canada's current 5G spectrum policy may limit investment and consumer benefits. The report emphasis that aligning 5G spectrum policies with international best practices can boost GDP growth.

The model was built around two main pillars: the first assesses how different use cases – applications and new/upgraded industrial processes supported by 5G technology can boost productivity and benefit the economy, the second looks into the impact on productivity and economic growth of 5G-based technologies and their impact on productivity. Together, these two pillars allow the model to forecast the impact on each sector of the economy.

In Africa, As of September 2023, 27 operators in 16 markets in Africa had launched commercial 5G services (*GSMA 5G in Africa*, n.d.). More markets are expected to follow soon, with operators in an additional 10 countries making a commitment to launch 5G in the coming years. 10 countries in

Africa have assigned spectrum for 5G services to operators (Table 1). Frequency bands below 3 GHz are being considered for 4G and 5G development in Africa. Also, The 700, 800, and 900 MHz bands can improve 4G and 5G coverage. while the 600 and 1500 MHz bands may provide capacity in the future.


Table 1. G spectrum assignments in Africa.

Country	Date	Bands	Number of winners
Angola	December 2021	3.5 GHz	3 – Africell (Lintel), Movicel, Unitel
Kenya	May 2022	2600 MHz	2 – Safaricom, Airtel Kenya
Mauritius	June 2021	2600 MHz 3.5 GHz	3 — Emtel (Currimjee), Chili (MTML), my.t (Mauritius Telecom)
Namibia	October 2023	700 MHz 800 MHz	3 – Loc8 Mobile, Telecom Namibia Limited, Mobile Telecommunications Limited (MTC)
Nigeria	December 2021	3.5/3.7 GHz	2 – MTN, Mafab Communications
Nigeria	December 2022	3.5 GHz 2600 MHz	1 – Airtel
Senegal	July 2023	700 MHz 3400 MHz	1 – Sonatel (Orange Senegal)
South Africa	March 2022	700 MHz 800 MHz 2600 MHz 3.5 GHz	6 – Rain, Vodacom, Telkom Mobile, Neotel, Cell C, MTN
Tanzania	October 2022	700 MHz 2300 MHz 2600 MHz 3.5 GHz	4 – Airtel, Millicom, Viettel, Vodacom
Uganda	June 2023	800 MHz 2300 MHz 2600 MHz	2 – Airtel, MTN
Zambia	July 2022	2600 MHz	1 – MTN
Zambia	October 2022	800 MHz 2600 MHz	1 – Airtel

Sources: (GSMA 5G in Africa, n.d.).

In Tanzania, focused research examines the impact of ICT on GDP growth that confirms causal relationship between ICT infrastructure/access and GDP growth(*Mwananziche et al., 2023*). Mobile telephone subscription growth has a significant impact on economic growth, meanwhile some key variables may influence economic growth, for instance, human capital, trade openness, the level of urbanization, and infrastructure such as electricity supply. Policymakers should focus on creating a solid ICT infrastructure and boosting internet access. Tanzanian authorities should prioritize investing in ICT to ensure a technologically connected workforce.

Analysys Mason conducted a study on the economics benefits of 5G deployment in 15 emerging nations including Egypt comparing 2 scenarios for the 5G spectrum deployment (Stewart et al., 2022), Scenario 1 based on extending low-band 5G coverage & Scenario 2 based on extending mid-band 5G coverage, where scenario 1 results in economic benefits of USD1-3 billion per country, while extending mid-band coverage (Scenario 2) could result in economic benefits of USD5-12 billion per country.

Figure 1. Cumulative net present value of economic benefits by 5G roll-out scenario (2020–35). *Source:* (Stewart et al., 2022).

Considering all these research findings collectively, there is a relation between 5G adoption, spectrum allocation and economic growth. However, the impact varies across regions and countries, emphasizing the importance of factors such as infrastructure readiness, regulatory policies, and timely access to spectrum.

Another area of debate could be the influence of various factors on economic growth such as the resources competency, educational level, openness for new 5G use cases and infrastructure such as electricity/fuel supply as well as the uncertainties associated with the long projections till 2030 & 2040.

Therefore, the implementation of 5G technology in Egypt and the associated impact on economic growth need to be assessed considering similar countries conditions and applying the proper regression and statistical measures to simulate the potential impact on Egypt's GDP.

7. Research Methodology

a) Research Design:

This study adopts a quantitative research design to systematically investigate the impact of 5G introduction on Gross Domestic Product (GDP). Quantitative methods allow for the measurement and statistical analysis of the relationships between 5G variables and GDP.

b) Research Phenomenon:

The research phenomenon, denoted as Y, represents the economic impact of 5G technology on Egypt's Gross Domestic Product (GDP). Specifically, it examines how the deployment and utilization of 5G networks influence Egypt's overall economic growth by simulating similar countries.

c) Independent Factors:

The research independent factors, denoted as X1, X2 & X3, play a crucial role in shaping the economic impact of 5G in Egypt:

- X1 5G Population Coverage: The extent to which the 5G network covers the population in Egypt. It represents the proportion of people who have access to 5G services
- X2: Network Speed: The data transfer rate provided by networks, measured in megabits per second (Mbps). It reflects how quickly data can be transmitted and received
- X3: Spectrum Allocation: The allocation and management of enough radio frequency spectrum can encourage and accelerate 5G rollout

d) Conceptual framework:

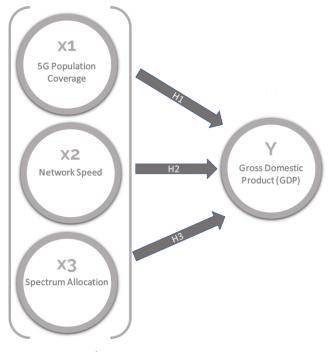


Figure 2. Modeling Overview.

e) Data Collection Method:

Secondary Data gathering the existing data from official reports, research papers and databases. Look for information on similar countries like Egypt including the GDP, ICT indices and technological indicators that are affecting the 5G introduction in these countries.

Table 2. IDI 2023 scores.

				IDI score and				E			IDI score and		
	Regilen	Group	IDI	group average		M.		Region	Group	IDI	group averag		1000
Economy		ğō	Score	Region	Univ.	M. Score	Economy	å	ĔŰ	Score	Region	Univ.	M. score
Afghanistan	ASP	LI.	28.9		17.7	40.1	Lao P.D.R.	ASP	LMI	64.6		59.6	69.6
Albania	EUR	UMI	81.6		74.8	88.3	Latvia	EUR	HI	93.8		90.2	97.5
Algeria	ARB		77.B		72.3	83.2	Lebenon	ARB		76.1		74.5	77.7
Andorra	EUR	HI	87.2		85.5	88.8	Lesotho	AFR		44.3		30.7	57.9
Angola	AFR	LMI	44.1		71.7	56.9	Libya	ARB		79.4		85.1	73.7
Antigue and Barbuda Argentina	AMS AMS	HI	79.7		78.5	87.8	Liechtenstein Lithuenia	EUR		91.9		93.6	90.2
Armenia	CIS	UMI	85.1		79.3	90.8	Luxembourg	EUR		92.1		92.2	92.0
Australia	ASP	HI	94.0		93.8	94.2	Macao, China	ASP		93.3		95.9	90.7
Austria	EUR	HI	92.5		89.2	95.8	Madagascar	AFR	LI	26.4		14.9	37.9
Azerbaijan	CIS	UMI	79.0		75.8	82,1	Malawi	AFR		31.5		23.3	39.7
Bahamas	AMS	HI	88.5		85.1	92.0	Malaysia	ASP		94.5		94.5	94.5
Bahrain	ARB	HI	96.5		96.7	96.2	Maldives	ASP		79.0		69.4	88.6
Bangladesh Barbados	ASP	LMI	77.3		70.2	83.0	Mali	AFR		87.0		33.5	94.0
Belarus	CIS	UMI	86.9	-	82.1	91.7	Mauritania	ARE		53.7	1110	51.7	55.8
Belgium	FUR	HI	88.2		85.7	90.8	Mauritius	AFR		81.7		75.2	88.2
Benin	AFR	LMI	38.3	100	33.3	43.4	Mexico		UMI	78.0		69.0	86.9
Bhutan	ASP	LMI	76.5		82.3	70.6	Moldova	EUR		77.1		64.2	90.1
Bolivia (Plurinational State	of AMS	LMI	68.0		62.4	73.7	Mongolia	ASP	LMI	85.9		82.5	89.3
Bosnia and Herzegovina	EUR	UMI	76.6		65.5	87.7	Montenegro	EUR	-	83.9	- 8	77.1	90,7
Botswana	AFR	UMI	74.0		74.7	73.3	Morocco	ARB		85.1		79.5	90.7
Brazil	AMS		81.9		78.2	85.5	Mozambique	AFR		25.8	100	16.3	35.3
Brunei Darussalam	ASP ELID	LIMI	94.8		95.7	94.0	Myanmar	ASP		65.7		60.4	64.2
Bulgaria Budos Esco	AFR	LI	28.5		24.2	32.8	Namibia Nothedands (Visadem of the)		UMI	93.5		96.5	75.8 90.5
Burkina Faso Burundi	AFR	Ш	23.0		11.7	34.2	Netherlands (Kingdom of the) New Zealand	EUR		89.5		87.4	91.6
Cabo Verde	AFR	LMI	68.1	-	68.8	67.4	Nicerague		LMI	56.1		47.7	64.5
Cambodia	ASP	LMI	68.5		62.5	74.4	Nigeria		LMI	44.2		31.6	56.7
Cameroon	AFR	LMI	36.8		39.8	33.8	North Macedonia	EUR		79.6		71.6	87.7
Canada	AMS	HI	87.2		83.4	91.1	Norway	EUR		90.9		88.6	93.1
Chad	AFR	LI	20.0		7.0	33.1	Omen	ARB		90.5		91.5	89.6
Chile	AMS	HI	90.7		88.0	93.4	Pakistan	ASP		48.7		28.5	68.8
China:	ASP	UMI	84.4		76.6	92.1	Palestine		UMI	67.3		63.9	70.7
Colombia	AMS		71.9		62.7	81.0	Penama	AMS		74.8		75.3	74.4
Comoros Congo (Rep. of the)	ARB	LMI	43.5		39.5	30.2	Peraguay Peru		UMI	71.7		59.9	85.0
Costa Rica	AMS	HUT	83.9	-	78.7	89.1	Philippines	ASP		65.0		49.4	80.5
Côte d'Ivoire	AFR	LMI	59.0		51.6	66.3	Poland	EUR		94.6		95.7	93.4
Croatia	EUR	HI	87.1		83.1	91.1	Portugal	EUR		85.6		79.2	92.0
Cube	AMS	UMI	55,3	E 1	44.0	66.7	Clater	ARB	H	97.3		98.7	96.0
Cyprus	EUR	HI	87.4		82.4	92.4	Romania	EUR	-	87.0		81.8	92.2
Czech Republic	EUR	HL	86.1		8.08	91.5	Russian Federation	CIS		88.9	- 1	84.5	93.4
Dem. Rep. of the Congo	AFR	LI.	29.1		23.6	34.6	Rwanda	AFR	-	82.3		25.4	54.9
Denmark	EUR	HI	96,9		98.2	95.6	Saint Kitts and Nevis Saint Lucia	AMS	UMI	73.3	1	76.5	79.9
Djibouti Dominica	ARB	LMI	76.9		71.0	73.6			_	73.0		75.0	71.0
Dominican Rep.	AMS		75.0		60.9	89.1	Saint Vincent and the Grenedin Samos	ASP		63.1		56.1	70.1
Ecuador	AMS		68.2		56.1	80.3	Sao Tome and Principe	AFR		54.5	110	49.9	59.1
Egypt	ARB	LMI	75.8		64.5	87.1	Saud: Arabia	ARB		94.9		93.2	96.5
El Salvador	AMS	UMI	61.9		46.0	77.8	Senegal	AFR	LMI	66.5		61.4	71.6
Equatorial Guinea	AFR	UMI	37.6		37.2	38.0	Serbia	EUR	UMI	85.1		80.4	89.9
Estonia	EUR	HI	96.9	10.00	97,5	96.4	Seychelles	AFR		80.9		75.8	86.0
Eswatini	AFR	LMI	71.7		16.5	76.6	Singapore	ASP		97.4		99.4	95.4
Ethiopia	AFR	UMI	73.2			73.9	Slovakie	EUR		87.1		82.6	91.6
Fiji Finland	EUR	HI	96.7		72.5	95.2	Slovenia						92.7
France	EUR	HI	89.4		84.2	94.6	Somelia South Africa	ARB		80.5		78.9	82.1
Gabon	AFR		72.9		73.7	72.0	Spain	EUR		91.4	100	90.1	92.7
Georgia	EUR	UMI	85.1		79.2	90.9	Sri Lanka	ASP		69.9	11	56.6	83.2
Germany	EUR	HI	87,3		85.3	89.2	Suriname	AMS		76.8		81.7	71.8
Ghana	AFR	LMI	65.9		58.3	73.6	Sweden	EUR	H	93.9		93.2	94.6
Greece	EUR	HI	83.7		78.4	69.1	Switzerland	EUR		91.6		89.1	94.1
Grenada	AMS		73.4		70.0	76.9	Syrian Arab Republic	ARB		49.6		36.9	62.3
Guatemala	AMS		54.8		32.2	77.5	Tanzania	AFR		37.2		25.4	48,9
Guinea-Bissau Honduras	AFR	LMI	33.1 56.3	111	28.4 42.6	70.0	Thailand Timor-Leste	ASP		88.7		85.9	91.6
Honguras Hong Kong, China	ASP	TWI	96.5		99.1	93.8	Togo	AFR		40.2		34.8	45.6
Hungary	EUR	HI	86.8		81.2	92.3	Yonga	ASP		58.2	-	45.5	71.0
Iceland	EUR	HI	94.8		93.2	96.4	Trinidad and Tobago	AMS		76.6	1	65.0	88.1
Indonesia	ASP	LIMI	80.1		76.1	84.2	Tunisia	ARB		75.4		62.7	88.1
Iran (Islamic Republic of)	ASP	LMI	80.9		78.7	83.1	Türkiye	EUR	UMI	85.8		79.2	92.5
Iraq		UMI	69.5		61.4	77.7	Uganda	AFR		34.8		31.0	
Ireland	EUR		88.9		88.7	89.1	Ultraine		LMI	80.8		74.6	
Israel	EUR	HI	91.1		88.3	94.0	United Arab Emirates	ARB		96.4		100.0	
Italy	EUR		86.4		78.8	94.0	United Kingdom		HI	92.8		91.8	
Jameica	AMS	UMI	77.0		69.0	85.0	United States	AMS		96.6		99.1	94.1
Japan Jordan	ARB		78.5		93.4 76.3	90.7	Uruguay Uzbekistan	AMS	LMI	87.1		84.2	90.1 79.7
Jordan Kazakhstan	CIS	UMI	88.9		85.9	91.9	Vanuatu		LMI	67.9		81.5	54.4
Kenya	AFR	LMI	54.2	100	41.0	67.3	Venezuela		n.a.	64.2		58.1	70.4
Kinbati	ASP	LMI	45.5		49.2	41.8	Viet Nam		LMI	80.6		74.0	
Korea (Rep. of)	ASP	HI	93.8		92.7	94.9	Zambia	AFR	LMI	49.5		36.1	62.8
Kuwait	ARB	HI	98.2		97.0	99.3	Zimbabwe		LMI	42.7		40.8	
Kyrgyzsten	CIS	LMI	84.7		83.6	85.9							

Source: (Itu, 2023).

8. Research Analysis

Statistical analysis will include multiple linear regression analysis to examine the relationship between 5G population coverage, network speed, spectrum allocation, and GDP.

Data analysis will be conducted using IBM SPSS tool providing a robust statistical framework for drawing valid relations and conclusions.

	Statistics								
		GDP							
			5G Population	Network	Spectrum				
		(B\$ USD)	Coverage (%)	Speed (Mbps)	Dimension				
N	Valid	34	34	34	34				
	Missing	0	0	0	0				
Mean		409.93738445	26.945882352	36.429260367	49.099136587				
		4555500	941176	531340	073545				
Median		233.17468618	15.265000000	33.579157376	39.479945818				
		8658140	000000	354146	949005				
Mode		2.6271970326	.0000000000	17.998147945	20.011904761				
		00000ª	0000	717400ª	904800ª				
Std. Deviation	on	539.82293545	26.855101441	12.758287073	20.046328315				
		9480400	630882	834389	541280				
Variance		291408.802	721.196	162.774	401.855				
Skewness		1.547	.925	.841	.719				
Std. Error of	Skewness	.403	.403	.403	.403				
Kurtosis		1.362	593	1.049	459				
Std. Error of	Kurtosis	.788	.788	.788	.788				
Range		1917.4685819 90128800	86.140000000 000000	56.752631672 785660	73.854761904 761900				
Minimum		2.6271970326	.00000000000	17.998147945	20.011904761				
IVIII III III III		00000	0000	717400	904800				
Maximum		1920.0957790	86.140000000	74.750779618	93.86666666				
		22728700	000000	503060	666700				
Percentiles	25	13.409530740	5.8625000000	28.385366429	36.744047619				
		077484	00001	490126	047620				
	50	233.17468618	15.265000000	33.579157376	39.479945818				
		8658140	000000	354146	949005				
	75	438.94419511	52.662499999	44.221200445	67.875000000				
		0286000	999994	098350	000000				

a. Multiple modes exist. The smallest value is shown

Correlations

			GDP (B\$ USD)	5G Population Coverage	Network Speed	Spectrum Dimension
Spearman's	GDP	Correlation	1.000	(%) .071	(Mbps) .154	.455**
rho	GDF	Coefficient	1.000	.071	.134	.433
	(B\$ USD)	Sig. (2-tailed)		.690	.383	.007
		N	34	34	34	34
	5G Population Coverage (%)	Correlation Coefficient	.071	1.000	.328	.347*
	0010.ug0 (70)	Sig. (2-tailed)	.690		.058	.044
		N	34	34	34	34
	Network Speed (Mbps)	Correlation Coefficient	.154	.328	1.000	.246
	, ,	Sig. (2-tailed)	.383	.058		.161
		N	34	34	34	34
	Spectrum Dimension	Correlation Coefficient	.455**	.347*	.246	1.000
		Sig. (2-tailed)	.007	.044	.161	
		N	34	34	34	34

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Coefficients^a

		Unstand Coeffi		Standardize d Coefficients		
Mode		В	Std. Error	Beta	t	Sig.
1	(Constant)	-514.611	292.866		-1.757	.089
	5G Population Coverage (%)	-10.674	3.530	531	-3.024	.005
	Network Speed (Mbps)	10.651	6.878	.252	1.549	.132
	Spectrum Dimension	16.786	4.228	.623	3.970	.000

a. Dependent Variable: GDP

(B\$ USD)

Model Summary

		R	Adjusted R	Std. Error of
Model	R	Square	Square	the Estimate
1	.624ª	.389	.328	442.500149
				246291000

a. Predictors: (Constant), Spectrum Dimension, Network Speed (Mbps), 5G Population Coverage (%)

^{*.} Correlation is significant at the 0.05 level (2-tailed).

-1	-	٦
- 1	ı	ı

		Coeff	icients ^a			
				Standardize		
		Unstand	lardized	d		
		Coeffi	cients	Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	491.534	132.658		3.705	.001
	5G Population	-3.028	3.513	151	862	.395

Coverage (%)
a. Dependent Variable: GDP

(B\$ USD)

		Coef	ficientsa			
		Unstand		Standardize d		
		Coeffi	cients	Coefficients		
Mode	el	В	Std. Error	Beta	t	Sig.
1	(Constant)	232.546	286.328		.812	.423
	Network Speed (Mbps)	4.869	7.430	.115	.655	.517

a. Dependent Variable: GDP

(B\$ USD)

		Coe	fficients ^a			
				Standardize		
		Unstand	Unstandardized			
		Coeffi	Coefficients			
Mode	el	В	Std. Error	Beta	t	Sig.
1	(Constant)	-184.397	225.042		819	.419
	Spectrum	12.105	4.252	.450	2.847	.008
	Dimension					

a. Dependent Variable: GDP

(B\$ USD)

9. Discussion

- There is no significant related relation between 5G population coverage and GDP as P value = 0.69 > 0.05, accordingly we will reject H1
- There is no significant related relation between Network speed and GDP as P value = 0.383 > 0.05, accordingly we will reject H2
- There is significant moderate positive relation between the spectrum allocation and GDP as P value < 0.05 & r = 0.455 > 0.3, accordingly we will accept H3
- By running multiple linear regression analysis considering the GDP (dependent variable) and 5G population coverage, Network speed & spectrum allocation (independent variable), there is a significant effect of spectrum allocation & 5G population coverage in the presence of the network speed on the GDP considering that:
 - \circ P-value for the 5G population coverage = 0.005 < 0.05
 - \circ P-value for the spectrum allocation = 0.000 < 0.05

Therefore the formula will be as the following:

GDP = -514.611 + 16.786 x Spectrum allocation – 10.674 x 5G Population Coverage

38.9% Variation in the GDP is due to change in the spectrum allocation, 5G population coverage in the presence of network speed variable.

10. Conclusion

The allocation of the 5G spectrum is anticipated to yield substantial economic benefit to Egypt, constituting a pivotal factor in ensuring the successful introduction of 5G. Particularly during the initial launch phase, it is imperative to consider conservative approach for the 5G population coverage at the beginning to prevent any adverse impact on the economic growth facilitated by the introduction of 5G. Additionally, careful selection of use cases and their associated coverage will play a crucial role in enabling stakeholders and the broader 5G ecosystem to realize significant GDP growth in Egypt.

11. Recommendations

the following recommendations are proposed for policymakers and stakeholders to ensure a successful introduction of 5G and maximize its positive impact on the country's GDP:

I. Strategic Spectrum Allocation:

- Develop and implement a comprehensive spectrum allocation strategy that aligns with international best practices.
- Prioritize the allocation of frequency bands below specially in the mid-band for 5G development, considering their impact on coverage and capacity.

II. Collaborative Policymaking:

- Foster collaboration between policymakers, regulators, and the private sector to create a conducive environment for 5G deployment.
- Establish clear and transparent regulatory frameworks that facilitate the timely rollout of 5G services and ensure a smooth transition.

III. Investment in ICT Infrastructure:

- Prioritize investments in ICT infrastructure, including robust connectivity and accessibility, to create a solid foundation for 5G deployment.
- Focus on enhancing internet access to support the growth of digital services and applications.

IV. Regional Considerations:

- Take into account regional dynamics and collaboration, especially within the North African context, to optimize 5G strategies and share best practices.
- Collaborate with neighboring countries and regional organizations to foster a harmonized approach to 5G adoption.

V. Research and Development Initiatives:

- Encourage research and development initiatives that explore innovative use cases and applications for 5G technology.
- Support local businesses and startups in developing 5G-enabled solutions that can contribute to economic growth.

VI. Education and Skill Development:

- Invest in education and skill development programs to ensure a technologically competent workforce capable of leveraging 5G advancements.
- Foster partnerships between academic institutions and industry to align educational programs with the needs of the evolving digital landscape.

VII. Monitoring and Evaluation:

- Implement mechanisms for ongoing monitoring and evaluation of 5G deployment, regularly assessing the economic impact and adjusting strategies as needed.
- Establish key performance indicators (KPIs) to measure the success of 5G initiatives and ensure they align with broader economic development goals.

VIII. International Collaboration:

- Engage in international collaboration and knowledge-sharing initiatives to stay abreast of global trends and advancements in 5G technology.
- Participate in forums and partnerships that facilitate the exchange of best practices and lessons learned from other countries undergoing 5G adoption.

By incorporating these recommendations into policymaking and strategic planning, Egypt can position itself to harness the full potential of 5G technology. This holistic approach, addressing spectrum allocation, collaboration, infrastructure, regional dynamics, innovation, education, and ongoing evaluation, will contribute to a successful 5G introduction and foster sustainable economic growth.

References

5G and economic growth: an assessment of GDP impacts in Canada. (2020). www.gsmaintelligence.com 5G Promises Massive Job and GDP Growth in the US. (n.d.).

Chow, W., & Tandetzki, T. (2030). The global economic impact of 5G. Powering your tomorrow ATM 2 PwC The global economic impact of 5G.

GSMA 5G in Africa. (n.d.).

Itu. (2023). The ICT Development Index 2023 International Telecommunication Union Development Sector.

Mwananziche, J., Myovella, G., Karacuka, M., Haucap, J., & Moshi, G. (2023). Is digitalization a booster for economic growth in Africa? Short run and long run evidence from Tanzania. *Telecommunications Policy*, 47(10). https://doi.org/10.1016/j.telpol.2023.102679

Niebel, T. (n.d.). ICT and Economic Growth-Comparing Developing, Emerging and Developed Countries. www.zew.de/en.

Stewart, J., Lacour, H.-A., & Yi-Ju Chern, A. (2022). Future value of mobile in emerging markets. www.analysysmason.com

Speedtest Intelligence, https://intelligence.speedtest.net

GSMAi Sign in. (n.d.). https://data.gsmaintelligence.com/signin?returnPath=%2Fdata

World Bank Open Data. https://data.worldbank.org

World Bank Country and Lending Groups – World Bank Data Help Desk. (n.d.). World Bank Country and Lending Groups – World Bank Data Help Desk. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups

The Economic Impact of ICT. (2004). OECD. https://doi.org/10.1787/9789264026780-en

United Nations Conference on Trade and Development. (n.d.). *Digital economy report* 2021: *cross-border data flows and development: for whom the data flow*.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.