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Abstract: In this paper, a novel nonlocal strain gradient anisotropic elastic shell model is developed 

to analyse the vibrations of simply supported single‒walled carbon nanotubes (SWCNTs). Sanders‒
Koiter shell theory is used to obtain the strain‒displacement relationships. Eringen nonlocal 

elasticity theory and Mindlin strain gradient theory are adopted to derive the constitutive equations, 

where the anisotropic elastic constants are expressed via Chang molecular mechanics model. The 

complex variable method is used to analytically solve the equations of motion and to obtain the 

natural frequencies of SWCNTs. First, the anisotropic elastic shell model is validated via 

comparisons with the results of molecular dynamics simulations reported in the literature. Then, 

the effect of nonlocal and material parameters on the natural frequencies of SWCNTs with different 

geometries and wavenumbers is analysed. From the numerical simulations it is obtained that the 

natural frequencies decrease with increasing nonlocal parameter, while they increase with 

increasing material parameter. Moreover, the decrease of natural frequencies with increasing 

SWCNT radius is exponential as the material parameter increases, while it is linear as the nonlocal 

parameter increases. Finally, as the number of waves increases, the natural frequencies linearly vary 

with increasing nonlocal parameter, while they exponentially increase with increasing material 

parameter. 

Keywords: carbon nanotubes; vibrations; nonlocal elasticity; strain gradient; anisotropic model; 

elastic shells 

 

1. Introduction 

The use of classical continuum mechanics models in the study of carbon nanotubes (CNTs) 

dynamics can lead to inaccurate results. This is due to the actual discrete structure of CNTs and to 

their reduced dimensions. Therefore, in order to accurately investigate vibrations and stability of 

carbon nanotubes, they should be considered non‒classical continuum mechanics models based on 

anisotropic and size‒dependent theories. 

Various anisotropic elastic shell theories were developed by the researchers. A very effective one 

was the theory first proposed by Chang [1,2], where the prediction of chirality and size‒dependent 

elastic properties of single‒walled carbon nanotubes was obtained via molecular mechanics model. 

The most important result obtained by Chang was that, for CNTs, the classical relationship from the 

isotropic elastic theory of continuum mechanics between Young’s modulus and shear modulus is not 

retained, and a more refined relationship taking into account the effect of tube diameter and chiral 

angle was proposed. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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Starting from this theory, Ghavanloo and Fazelzadeh [3] proposed an anisotropic elastic shell 

model  including chirality effect to investigate the vibration characteristics of SWCNTs. Considering 

Flügge shell theory and using complex variable method, they studied the effect of tube chirality and 

diameter on the natural frequencies of SWCNTs, together with the influence of external loads. On the 

basis of the anisotropic elastic shell model [3], the same Authors of the present paper carried out in 

Ref. [4] a comparison of shell theories for the vibration analysis of SWCNTs, specifically Donnell, 

Sanders and Flugge shell theories. Assuming as reference molecular dynamics results available in 

literature, they obtained that Flügge shell theory is the most accurate but also the most 

computationally expensive; on the other hand, they found that Donnell shell theory is not accurate 

while Sanders shell theory is very accurate in the vibration modelling of SWCNTs for all geometries 

and wavenumbers. 

In addition to anisotropic models, several size‒dependent theories were introduced in literature, 

where the first one was the nonlocal elasticity theory developed by Eringen [5,6]. In the nonlocal 

differential constitutive relations of Eringen, the stress tensor at a reference point of a body is written 

as a function not only of the strain tensor at that point but also of the strain tensor at all other points 

of the body. To this aim, in the nonlocal elasticity equations of Eringen, it is inserted a nonlocal 

parameter, which is a small length scale constant appropriate to each material, whose value must be 

obtained by means of comparisons with the results of molecular dynamics simulations. 

Starting from Eringen nonlocal theory, and taking into account the anisotropic model [3], 

Fazelzadeh and Ghavanloo [7] proposed a nonlocal anisotropic elastic shell model to study the linear 

vibrations of CNTs with arbitrary chirality. They investigated the effect of the nonlocal parameter on 

the natural frequencies of zigzag, armchair and chiral SWCNTs with different geometries and 

wavenumbers. 

Another important size‒dependent theory was the strain gradient theory developed by Mindlin 

[8,9], 

which represents an extension of the classical elasticity theory by considering additional higher‒
order strain gradient terms with respect to stress tensor. Specifically, Mindlin strain gradient theory 

is based on the assumption that the materials cannot be simply modelled as collections of points, but 

they have to be considered as atoms with higher‒order deformation mechanisms at small 

(micro/nano) scale. 

Combining nonlocal elasticity and strain gradient theories, Lim [10] proposed a new refined 

nonlocal strain gradient theory. Two different small length scale parameters, i.e., nonlocal and strain 

gradient (material) parameters, are adopted to account for the size‒dependent characteristics of 

nanomaterials. Dispersion relations based on the nonlocal strain gradient model with different values 

of nonlocal and material parameters with respect to wave propagation in the case of Euler–Bernoulli 

and Timoshenko nanobeams are analysed. 

The nonlocal strain gradient theory developed by Lim was adopted to investigate the linear 

dynamics of beams in the framework of an isotropic elastic beam model in Refs. [11‒14]. The effect 

of nonlocal and material parameters on vibrations and stability of beams was analysed, where 

nonlocal parameter was introduced to consider the influence of nonlocal elasticity, and material 

parameter was introduced to consider the significance of strain gradient. It was found that, when the 

material parameter is lower than the nonlocal parameter, the beam provides a stiffness‒softening 

effect on critical buckling force and natural frequencies, while, when the material parameter is higher 

than the nonlocal parameter, the beam exerts a stiffness‒hardening effect on critical buckling force 

and natural frequencies. Some 

interesting reviews of size‒dependent continuum mechanics models for the linear vibration 

analysis of nanostructures can be found in Refs. [15‒17]. 

Mehralian et al. [18] developed a nonlocal strain gradient isotropic elastic shell model to analyse 

the effect of nonlocal and material parameters on the linear vibrations of SWCNTs. The model 

reported in this paper is similar to the one reported in the present work. However, there is a relevant 

difference, that is the use of an isotropic (instead of an anisotropic) elastic shell model, where the 
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adoption of an isotropic model for simulating SWCNT vibrations is proven to be non‒accurate, due 

to the anisotropic characteristics that are inherent of nanostructures [19,20]. 

Adopting classical continuum mechanics theories to model the dynamic behaviour of 

nanostructures needs a careful choice of equivalent parameters. Specifically, in the case of SWCNTs, 

their effective discrete structure can be modelled by means of a continuous cylindrical shell if 

equivalent parameters, i.e., Young’s modulus, Poisson’s ratio and thickness, are properly selected. To 

this aim, Yakobson et al. [21] obtained the values of the equivalent parameters comparing them with 

the values of the strain energy of discrete SWCNTs derived through molecular dynamics simulations. 

Interesting results on molecular dynamics simulations for SWCNT vibration analysis can be found 

in Refs. [22‒26]. 

Readers interested in deepening shell theories are invited to refer to the fundamental books [27‒
32]. In particular, Leissa [27] studied the linear vibrations of cylindrical shells under different 

geometries, boundary conditions and wavenumbers. In addition, readers that are interested in 

nonlinear vibrations and energy exchanges in CNTs are invited to refer to the related papers [33‒41], 

where also the effect of resonance interactions between different vibration modes, e.g., radial 

breathing and circumferential flexural modes, is evaluated, together with the influence of anisotropy 

and nonlocality. Finally, static models of CNTs considering the effect of nonlocal elasticity together 

with pull-in instability problems can be found in Refs. [42,43]. 

The aim of the present work is to develop an advanced elastic shell model for the vibration 

analysis of SWCNTs considering all three fundamental effects inherent to nanostructures previously 

reported, i.e., anisotropy, nonlocal elasticity and strain gradient. This is very important since a 

comprehensive hybrid anisotropic and size‒dependent model can lead to more realistic and therefore 

accurate results. 

Sanders‒Koiter shell theory is used to obtain the strain‒displacement relationships. Eringen 

nonlocal elasticity theory and Mindlin strain gradient theory are used to get the constitutive 

equations, where the anisotropic elastic constants are expressed by means of Chang molecular 

mechanics model. The complex variable method is considered to analytically solve the dynamic 

equations of motion and to obtain the natural frequencies of SWCNTs with simply supported 

boundary conditions. The present model is first validated in an anisotropic form (i.e., without size‒
dependent effects) via comparisons with the results of molecular dynamics simulations from the 

literature. Then, a parametric analysis is performed on the complete developed model to analyse the 

influence of size‒dependent effects (i.e., nonlocal and material parameters) on the natural frequencies 

of SWCNTs with different geometries and wavenumbers. 

2. Sanders‒Koiter Shell Theory for SWCNTs 

In the present paper, the actual discrete SWCNT is modelled by means of an equivalent 

continuous cylindrical shell, see Figures 1(a, b), with radius 𝑅 , length 𝐿  and thickness ℎ . A 

cylindrical coordinate system (𝑂, 𝑥, 𝜃, 𝑧)  is used, where the origin 𝑂  of the reference system is 

located at the centre of one end of the shell. Three displacements are measured: longitudinal 𝑢(𝑥, 𝜃, 𝑡) , circumferential 𝑣(𝑥, 𝜃, 𝑡)  and radial 𝑤(𝑥, 𝜃, 𝑡) , where the radial displacement 𝑤  is 

assumed as positive outward, (𝑥, 𝜃)  are the longitudinal and circumferential coordinates of an 

arbitrary point on the middle surface of the shell, 𝑧 is the radial coordinate along the thickness ℎ of 

the shell and 𝑡 is the time. 
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Figure 1. Coordinate system and dimensions of the cylindrical shell. (a) Complete shell. (b) Cross‒
section of the shell surface. 

In this paper, Sanders‒Koiter linear shell theory is considered to model SWCNT dynamics. The 

linear relationships between strains and displacements in Sanders‒Koiter theory are based on 

“Kirchhoff‒Love’s assumptions”, see Ref. [27] for the details. 

The consequences of these geometric assumptions are that, in presence of thin cylindrical shell, 

the transverse shear deformations may be neglected (𝛾௫௭ = 𝛾ఏ௭ = 0)  in the expression of the 

constitutive equations, and the rotary inertia of the shell can be neglected in the expression of the 

kinetic energy. By considering the previous assumptions, in the Sanders‒Koiter linear shell theory 

the middle surface strains (𝜀௫,଴, 𝜀ఏ,଴, 𝛾௫ఏ,଴) of the cylindrical shell are written as a function of the 

displacements (𝑢, 𝑣, 𝑤) in the following form [27]: 𝜀௫,଴ = 𝜕𝑢𝜕𝑥 𝜀ఏ,଴ = 1𝑅 𝜕𝑣𝜕𝜃 + 𝑤𝑅  𝛾௫ఏ,଴ = 1𝑅 𝜕𝑢𝜕𝜃 + 𝜕𝑣𝜕𝑥 (1) 

Again, by considering the previous assumptions, in the Sanders‒Koiter linear shell theory the 

middle surface changes in curvature and torsion (𝑘௫, 𝑘ఏ, 𝑘௫ఏ) of the cylindrical shell are expressed 

as [27]: 

𝑘௫ = − 𝜕ଶ𝑤𝜕𝑥ଶ  𝑘ఏ = 1𝑅ଶ 𝜕𝑣𝜕𝜃 − 1𝑅ଶ 𝜕ଶ𝑤𝜕𝜃ଶ  
𝑘௫ఏ = − 2𝑅 𝜕ଶ𝑤𝜕𝑥𝜕𝜃+ 12𝑅 ൬3 𝜕𝑣𝜕𝑥 − 1𝑅 𝜕𝑢𝜕𝜃൰ 

(2) 

According to the Sanders‒Koiter shell theory, the strain components (𝜀௫, 𝜀ఏ, 𝛾௫ఏ) at an arbitrary 

point of the surface of the cylindrical shell are related to the middle surface strains and changes in 

curvature and torsion via the radial coordinate 𝑧 by means of the following relationships [27]: 𝜀௫ = 𝜀௫,଴ + 𝑧𝑘௫ 𝜀ఏ = 𝜀ఏ,଴ + 𝑧𝑘ఏ 𝛾௫ఏ = 𝛾௫ఏ,଴ + 𝑧𝑘௫ఏ (3) 
The adoption of Sanders‒Koiter shell theory to model the SWCNT dynamics in the present work 

is justified on the basis of the results obtained by the same Authors in a previous paper, see Ref. [4]. 

In that paper, a comparison of shell theories for vibration analysis of SWCNTs based on an 

anisotropic elastic shell model, specifically Donnell, Sanders and Flugge shell theories, was achieved, 

where the results of molecular dynamics simulations available in the literature were considered as 

references to check the accuracy of the three different shell theories. Flügge shell theory was found 

to be the most accurate and, actually, this theory was adopted in several papers investigating the 

linear vibrations of SWCNTs based on anisotropic elastic shell models, see Refs. [3,7]. On the other 

hand, it was proven that the additional terms present in the expressions of force and moment 

resultants, which give Flügge shell theory greater accuracy than Sanders and Donnell ones, lead to 

very high computational effort in the numerical simulations of SWCNT dynamic behaviour. 

Moreover, on the basis of the parametric analyses performed, it was found that Donnell shell theory 

is not accurate for several geometries and wavenumbers, while Sanders shell theory is very accurate 
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for all geometries and wavenumbers. This is the reason why, in the present paper, Sanders shell 

theory is adopted instead of the more accurate but also more complex Flügge shell theory for the 

vibration modelling of SWCNTs. 

In the framework of Sanders‒Koiter linear shell theory, in the following Section, a novel 

advanced anisotropic elastic shell model will be proposed, taking into account both nonlocal elasticity 

and strain gradient, i.e., two relevant small length scale effects characterising the SWCNT dynamic 

behaviour. 

3. Nonlocal Strain Gradient Anisotropic Elastic Shell Model 

According to the nonlocal strain gradient theory developed by Lim et al. [12], the general 

constitutive equation for size‒dependent structures is expressed as: (1 − 𝜇ଶ∇ଶ)𝒕 = 𝐂: 𝜺 − 𝑙ଶ∇𝐂: ∇𝜺 (4) 
where 𝒕 is the stress tensor, 𝐂 is the fourth‒order elasticity tensor, 𝜺 is the strain tensor, ∇𝐂 is the 

elasticity gradient tensor, ∇𝜺  is the strain gradient tensor, ∇ଶ  is the Laplace operator, 𝜇  is the 

nonlocal parameter, which is introduced to investigate the effect of the nonlocal elasticity, and 𝑙 is 

the material parameter, which is introduced to analyse the influence of the strain gradient. 

For a shell‒type structure, the size‒dependent behaviour must be taken into consideration in the 

axial, circumferential and radial direction. Therefore, starting from the general equation (4), the 

constitutive equation of the nonlocal strain gradient anisotropic shell theory is given by: (1 − 𝜇ଶ∇ଶ)𝒕 = 1ℎ (1 − 𝑙ଶ∇ଶ)𝐘𝜺 (5) 

where 𝒕  and 𝜺  are the stress and strain vectors, respectively, which for an elastic shell‒type 

structure under plane stress hypothesis are expressed as: 𝒕 = ሾ𝜎௫, 𝜎ఏ , 𝜏௫ఏሿ୘ 𝜺 = ሾ𝜀௫ , 𝜀ఏ , 𝛾௫ఏሿ୘ (6) ℎ is the thickness of the shell, 𝐘 is the corresponding anisotropic elastic matrix, and: ∇ଶ= 𝜕ଶ𝜕𝑥ଶ + 1𝑅ଶ 𝜕ଶ𝜕𝜃ଶ (7) 

is the Laplace operator in the polar coordinate system. 

The constitutive equation (5) can be projected in the (𝑥, 𝜃) plane in the form: (1 − 𝜇ଶ∇ଶ)𝜎௫ = 1ℎ (1 − 𝑙ଶ∇ଶ)(𝑌ଵଵ𝜀௫ + 𝑌ଵଶ𝜀ఏ + 𝑌ଵଷ𝛾௫ఏ)  

(1 − 𝜇ଶ∇ଶ)𝜎ఏ = 1ℎ (1 − 𝑙ଶ∇ଶ)(𝑌ଶଵ𝜀௫ + 𝑌ଶଶ𝜀ఏ + 𝑌ଶଷ𝛾௫ఏ) (8) (1 − 𝜇ଶ∇ଶ)𝜏௫ఏ = 1ℎ (1 − 𝑙ଶ∇ଶ)(𝑌ଷଵ𝜀௫ + 𝑌ଷଶ𝜀ఏ + 𝑌ଷଷ𝛾௫ఏ)  

The surface elastic constants 𝑌௜௝ (8), as elements of the anisotropic elastic matrix 𝐘, are given by 

[1]: 𝑌௜௝ = 23√3 ൬𝐾ఘ𝐺௟௜𝐺௟௝ + 2𝐾ఏ𝑎ଶ 𝐻௟௜𝐻௟௝൰           𝑖, 𝑗, 𝑙 = 1,2,3 (sum over 𝑙) (9) 

where 𝑎  is the carbon‒carbon bond length, (𝐾ఘ, 𝐾ఏ)  are force constants associated with the 

stretching and angular distortion of the carbon‒carbon bond, respectively, see Ref. [1] for the details. 

The corresponding matrices 𝐆 and 𝐇 can be calculated as follows [3]: 𝐆 = 𝐁ି𝟏(𝐈 − 𝐃𝐅),     𝐇 = 𝐐𝐅 (10) 
where 𝐈 is the identity matrix, matrix 𝐅 is given by [3]: 
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𝐅 = ቈ𝐔𝐁ି𝟏𝐃 − ቆ 2𝐾ఏ𝐾ఘ𝑎ଶ 𝐕𝐀 + 𝐖ቇ቉ି𝟏 𝐔𝐁ି𝟏 (11) 

and matrices (𝐀, 𝐁, 𝐃, 𝐔, 𝐕, 𝐖, 𝐐) are given by [2]: 𝐀 = ൛𝐴௜௝ൟ = ൛− cos 𝜔௜௞ cos 𝜔௝௞ൟ          𝑖, 𝑗, 𝑘 = 1,2,3 (sum over 𝑘) (12) 𝐁
= 13√𝑛ଶ + 𝑛𝑚 + 𝑚ଶ ൮(2𝑛 + 𝑚) cos 𝜙ଵ −(𝑛 − 𝑚) cos 𝜙ଶ −(𝑛 + 2𝑚) cos 𝜙ଷ√3 𝑚 sin 𝜙ଵ −√3(𝑛 + 𝑚) sin 𝜙ଶ √3 𝑛 sin 𝜙ଷ(2𝑛 + 𝑚) sin 𝜙ଵ −(𝑛 − 𝑚) sin 𝜙ଶ −(𝑛 + 2𝑚) sin 𝜙ଷ ൲ 

(13) 

𝐃
= 13√𝑛ଶ + 𝑛𝑚 + 𝑚ଶ ൮−(2𝑛 + 𝑚) sin 𝜙ଵ (𝑛 − 𝑚) sin 𝜙ଶ (𝑛 + 2𝑚) sin 𝜙ଷ√3 𝑚 cos 𝜙ଵ −√3(𝑛 + 𝑚) cos 𝜙ଶ √3 𝑛 cos 𝜙ଷ(2𝑛 + 𝑚) cos 𝜙ଵ −(𝑛 − 𝑚) cos 𝜙ଶ −(𝑛 + 2𝑚) cos 𝜙ଷ൲ 

(14) 

𝐔 = ൮ sin 𝜙ଵ sin 𝜙ଶ sin 𝜙ଷcos 𝜙ଵ cos 𝜙ଶ cos 𝜙ଷ𝑚 cos 𝜙ଵ −(𝑛 + 𝑚) cos 𝜙ଶ 𝑛 cos 𝜙ଷ൲ (15) 

𝐕 = ൮− cos 𝜙ଵ − cos 𝜙ଶ − cos 𝜙ଷsin 𝜙ଵ sin 𝜙ଶ sin 𝜙ଷ0 0 0 ൲ (16) 

𝐖 = ൮ 0 0 00 0 0−𝑚 sin 𝜙ଵ (𝑛 + 𝑚) sin 𝜙ଶ −𝑛 sin 𝜙ଷ൲ (17) 

𝐐 = ൛𝑄௜௝ൟ = ൛− cos 𝜔௝௜ൟ          𝑖, 𝑗 = 1,2,3 (18) 

where [2]: cos 𝜔௜௝ = ቊ(cos 𝜙௜ sin 𝜙௞ cos 𝜑௝ − sin 𝜙௜ cos 𝜙௞) sin 𝜃௝⁄0            𝑖 ≠ 𝑗 ≠ 𝑘𝑖 = 𝑗  (19) 

and (𝑛, 𝑚) are the chirality indices of the SWCNT, which define its radius via the relation [1]: 𝑅 = √3 𝑎2𝜋  ඥ𝑛ଶ + 𝑛𝑚 + 𝑚ଶ (20) 

The structural parameters of the SWCNT, i.e., chiral angles (𝜙ଵ, 𝜙ଶ, 𝜙ଷ) , torsion angles (𝜑ଵ, 𝜑ଶ, 𝜑ଷ) and bond angles (𝜃ଵ,௜ , 𝜃ଶ,௜ , 𝜃ଷ,௜), can be calculated by means of the equations [1]: 𝜙ଵ = arccos 2𝑛 + 𝑚2√𝑛ଶ + 𝑛𝑚 + 𝑚ଶ 𝜙ଶ = 4𝜋3 + 𝜙ଵ 𝜙ଷ = 2𝜋3 + 𝜙ଵ (21) 𝜑ଵ = 𝜋√𝑛ଶ + 𝑛𝑚 + 𝑚ଶ cos 𝜙ଵ 𝜑ଶ = 𝜋√𝑛ଶ + 𝑛𝑚 + 𝑚ଶ cos ቀ𝜋3 + 𝜙ଵቁ (22) 
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𝜑ଷ = 𝜋√𝑛ଶ + 𝑛𝑚 + 𝑚ଶ cos ቀ𝜋3 − 𝜙ଵቁ cos 𝜃௜ = sin 𝜙௝ sin 𝜙௞ cos 𝜑௜ + cos 𝜙௝ cos 𝜙௞           𝑖, 𝑗, 𝑘 = 1,2,3          𝑖 ≠ 𝑗 ≠ 𝑘 (23) 

4. Force and Moment Resultants 

In the present nonlocal strain gradient anisotropic elastic shell model, the force (𝑁௫, 𝑁ఏ, 𝑁௫ఏ) 

and moment (𝑀௫, 𝑀ఏ, 𝑀௫ఏ)  resultants per unit length are derived by integrating the stress 

components of the constitutive equations (8) and considering the thin shell assumption (𝑧/𝑅 ≪ 1) 

of Sanders‒Koiter shell theory as follows:  (1 − 𝜇ଶ∇ଶ)𝑁௫ = (1 − 𝑙ଶ∇ଶ) ∙ ൤𝑌ଵଵ 𝜕𝑢𝜕𝑥 + 

(24) + 𝑌ଵଶ𝑅 ൬𝜕𝑣𝜕𝜃 + 𝑤൰ + 𝑌ଵଷ ൬𝜕𝑣𝜕𝑥 + 1𝑅 𝜕𝑢𝜕𝜃൰൨ (1 − 𝜇ଶ∇ଶ)𝑁ఏ = (1 − 𝑙ଶ∇ଶ) ∙ ൤𝑌ଶଵ 𝜕𝑢𝜕𝑥 + 

(25) + 𝑌ଶଶ𝑅 ൬𝜕𝑣𝜕𝜃 + 𝑤൰ + 𝑌ଶଷ ൬𝜕𝑣𝜕𝑥 + 1𝑅 𝜕𝑢𝜕𝜃൰൨ (1 − 𝜇ଶ∇ଶ)𝑁௫ఏ = (1 − 𝑙ଶ∇ଶ) ∙ ൤𝑌ଷଵ 𝜕𝑢𝜕𝑥 + 

(26) + 𝑌ଷଶ𝑅 ൬𝜕𝑣𝜕𝜃 + 𝑤൰ + 𝑌ଷଷ ൬𝜕𝑣𝜕𝑥 + 1𝑅 𝜕𝑢𝜕𝜃൰൨  (1 − 𝜇ଶ∇ଶ)𝑀௫ = (1 − 𝑙ଶ∇ଶ) ∙ ቈ−𝑋ଵଵ 𝜕ଶ𝑤𝜕𝑥ଶ + 𝑋ଵଶ𝑅ଶ ∙ 
(27) ∙ ቆ𝜕𝑣𝜕𝜃 − 𝜕ଶ𝑤𝜕𝜃ଶ ቇ + 𝑋ଵଷ ቆ− 2𝑅 𝜕ଶ𝑤𝜕𝑥𝜕𝜃 − 12𝑅ଶ 𝜕𝑢𝜕𝜃 + 32𝑅 𝜕𝑣𝜕𝑥ቇ቉ (1 − 𝜇ଶ∇ଶ)𝑀ఏ = (1 − 𝑙ଶ∇ଶ) ∙ ቈ−𝑋ଶଵ 𝜕ଶ𝑤𝜕𝑥ଶ + 𝑋ଶଶ𝑅ଶ ∙ 
(28) ∙ ቆ𝜕𝑣𝜕𝜃 − 𝜕ଶ𝑤𝜕𝜃ଶ ቇ + 𝑋ଶଷ ቆ− 2𝑅 𝜕ଶ𝑤𝜕𝑥𝜕𝜃 − 12𝑅ଶ 𝜕𝑢𝜕𝜃 + 32𝑅 𝜕𝑣𝜕𝑥ቇ቉ (1 − 𝜇ଶ∇ଶ)𝑀௫ఏ = (1 − 𝑙ଶ∇ଶ) ∙ ቈ−𝑋ଷଵ 𝜕ଶ𝑤𝜕𝑥ଶ + 𝑋ଷଶ𝑅ଶ ∙ 
(29) ∙ ቆ𝜕𝑣𝜕𝜃 − 𝜕ଶ𝑤𝜕𝜃ଶ ቇ +𝑋ଷଷ ቆ− 2𝑅 𝜕ଶ𝑤𝜕𝑥𝜕𝜃 − 12𝑅ଶ 𝜕𝑢𝜕𝜃 + 32𝑅 𝜕𝑣𝜕𝑥ቇ቉ 

where the elements of the bending stiffness matrix 𝐗 can be defined as [3]: 𝑋௜௝ = 𝑌௜௝ℎଶ12           𝑖, 𝑗 = 1,2,3 (30) 

It must be stressed that the force (𝑁௫, 𝑁ఏ, 𝑁௫ఏ) and moment (𝑀௫, 𝑀ఏ, 𝑀௫ఏ) resultants per unit 

length written by considering Sanders‒Koiter shell theory are different from the ones of Flügge shell 
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theory since, in the last theory, the ratio 𝑧/𝑅 is not neglected, i.e., the thin shell assumption is not 

taken into consideration, see Ref. [27] for the details. 

5. Equations of Motion 

The classical dynamic equilibrium equations in terms of force and moment resultants are written 

as (external forces and moments are neglected) [3]: 𝜕𝑁௫𝜕𝑥 + 1𝑅 𝜕𝑁௫ఏ𝜕𝜃 − 12𝑅ଶ 𝜕𝑀௫ఏ𝜕𝜃 − 𝜌ℎ 𝜕ଶ𝑢𝜕𝑡ଶ = 0 (31) 

1𝑅 𝜕𝑁ఏ𝜕𝜃 + 𝜕𝑁௫ఏ𝜕𝑥 + 32𝑅 𝜕𝑀௫ఏ𝜕𝑥 + 1𝑅ଶ 𝜕𝑀ఏ𝜕𝜃 − 𝜌ℎ 𝜕ଶ𝑣𝜕𝑡ଶ = 0 (32) 

𝜕ଶ𝑀௫𝜕𝑥ଶ + 2𝑅 𝜕ଶ𝑀௫ఏ𝜕𝑥𝜕𝜃 + 1𝑅ଶ 𝜕ଶ𝑀ఏ𝜕𝜃ଶ − 𝑁ఏ𝑅 − 𝜌ℎ 𝜕ଶ𝑤𝜕𝑡ଶ = 0 (33) 

where 𝜌ℎ is the mass density per unit area (i.e., surface density) of the SWCNT. 

Applying the nonlocal elasticity operator (1 − 𝜇ଶ∇ଶ) on the dynamic equilibrium equations 

(31‒33), and then substituting equations (24‒29) into the modified equations (31‒33), we obtain: (1 − 𝑙ଶ∇ଶ) ቊቈ𝑌ଵଵ 𝜕ଶ𝜕𝑥ଶ + 2𝑌ଵଷ𝑅 𝜕ଶ𝜕𝑥𝜕𝜃 + ൬𝑌ଷଷ𝑅ଶ + 𝑋ଷଷ4𝑅ସ൰ 𝜕ଶ𝜕𝜃ଶ቉ 𝑢 

(34) 

+ ቈ𝑌ଵଷ 𝜕ଶ𝜕𝑥ଶ + ൬𝑌ଵଶ + 𝑌ଷଷ𝑅 − 3𝑋ଷଷ4𝑅ଷ ൰ 𝜕ଶ𝜕𝑥𝜕𝜃 + ൬𝑌ଶଷ𝑅ଶ − 𝑋ଶଷ2𝑅ସ൰ 𝜕ଶ𝜕𝜃ଶ቉ 𝑣 

+ ቈ𝑌ଵଶ𝑅 𝜕𝜕𝑥 + 𝑌ଶଷ𝑅ଶ 𝜕𝜕𝜃 + 𝑋ଵଷ2𝑅ଶ 𝜕ଷ𝜕𝑥ଶ𝜕𝜃 + 𝑋ଷଷ𝑅ଷ 𝜕ଷ𝜕𝑥𝜕𝜃ଶ + 𝑋ଶଷ2𝑅ସ 𝜕ଷ𝜕𝜃ଷ቉ 𝑤ቋ 

= 𝜌ℎ ቆ𝜕ଶ𝑢𝜕𝑡ଶ − 𝜇ଶ 𝜕ସ𝑢𝜕𝑥ଶ𝜕𝑡ଶ − 𝜇ଶ 1𝑅ଶ 𝜕ସ𝑢𝜕𝜃ଶ𝜕𝑡ଶ ቇ (1 − 𝑙ଶ∇ଶ) ቊቈ𝑌ଵଷ 𝜕ଶ𝜕𝑥ଶ + ൬𝑌ଵଶ + 𝑌ଷଷ𝑅 − 3𝑋ଷଷ4𝑅ଷ ൰ 𝜕ଶ𝜕𝑥𝜕𝜃 + ൬𝑌ଶଷ𝑅ଶ − 𝑋ଶଷ2𝑅ସ൰ 𝜕ଶ𝜕𝜃ଶ቉ 𝑢  

+ ቈ൬𝑌ଷଷ + 9𝑋ଷଷ4𝑅ଶ ൰ 𝜕ଶ𝜕𝑥ଶ + ൬2𝑌ଶଷ𝑅 + 3𝑋ଶଷ𝑅ଷ ൰ 𝜕ଶ𝜕𝑥𝜕𝜃 + ൬𝑌ଶଶ𝑅ଶ + 𝑋ଶଶ𝑅ସ ൰ 𝜕ଶ𝜕𝜃ଶ቉ 𝑣 
(35) + ቈ𝑌ଶଷ𝑅 𝜕𝜕𝑥 + 𝑌ଶଶ𝑅ଶ 𝜕𝜕𝜃 − 3𝑋ଵଷ2𝑅 𝜕ଷ𝜕𝑥ଷ − ൬𝑋ଵଶ + 3𝑋ଷଷ𝑅ଶ ൰ 𝜕ଷ𝜕𝑥ଶ𝜕𝜃 − 7𝑋ଶଷ2𝑅ଷ 𝜕ଷ𝜕𝑥𝜕𝜃ଶ 

− 𝑋ଶଶ𝑅ସ 𝜕ଷ𝜕𝜃ଷ቉ 𝑤ቋ = 𝜌ℎ ቆ𝜕ଶ𝑣𝜕𝑡ଶ − 𝜇ଶ 𝜕ସ𝑣𝜕𝑥ଶ𝜕𝑡ଶ − 𝜇ଶ 1𝑅ଶ 𝜕ସ𝑣𝜕𝜃ଶ𝜕𝑡ଶቇ  

(1 − 𝑙ଶ∇ଶ) ቊቈ− 𝑌ଵଶ𝑅 𝜕𝜕𝑥 − 𝑌ଶଷ𝑅ଶ 𝜕𝜕𝜃 − 𝑋ଵଷ2𝑅ଶ 𝜕ଷ𝜕𝑥ଶ𝜕𝜃 − 𝑋ଷଷ𝑅ଷ 𝜕ଷ𝜕𝑥𝜕𝜃ଶ − 𝑋ଶଷ2𝑅ସ 𝜕ଷ𝜕𝜃ଷ቉ 𝑢 

(36) + ቈ− 𝑌ଶଷ𝑅 𝜕𝜕𝑥 − 𝑌ଶଶ𝑅ଶ 𝜕𝜕𝜃 + 3𝑋ଵଷ2𝑅 𝜕ଷ𝜕𝑥ଷ + ൬𝑋ଵଶ + 3𝑋ଷଷ𝑅ଶ ൰ 𝜕ଷ𝜕𝑥ଶ𝜕𝜃 + 7𝑋ଶଷ2𝑅ଷ 𝜕ଷ𝜕𝑥𝜕𝜃ଶ 

+ 𝑋ଶଶ𝑅ସ 𝜕ଷ𝜕𝜃ଷ቉ 𝑣 + ቈ− 𝑌ଶଶ𝑅ଶ − 𝑋ଵଵ 𝜕ସ𝜕𝑥ସ − 4𝑋ଵଷ𝑅 𝜕ସ𝜕𝑥ଷ𝜕𝜃 − ൬2𝑋ଵଶ + 4𝑋ଷଷ𝑅ଶ ൰ 𝜕ସ𝜕𝑥ଶ𝜕𝜃ଶ 
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− 4𝑋ଶଷ𝑅ଷ 𝜕ସ𝜕𝑥𝜕𝜃ଷ − 𝑋ଶଶ𝑅ସ 𝜕ସ𝜕𝜃ସ቉ 𝑤ቋ = 𝜌ℎ ቆ𝜕ଶ𝑤𝜕𝑡ଶ − 𝜇ଶ 𝜕ସ𝑤𝜕𝑥ଶ𝜕𝑡ଶ − 𝜇ଶ 1𝑅ଶ 𝜕ସ𝑤𝜕𝜃ଶ𝜕𝑡ଶቇ 

which represent the equations of motion for an arbitrary chiral SWCNT in terms of longitudinal 𝑢, 

circumferential 𝑣 and radial 𝑤 displacements of the middle surface of the SWCNT. 

From the equations of motion (34‒36), it can be observed that the strain gradient operator (1 −𝑙ଶ∇ଶ) is applied on the strains and changes in curvature and torsion, while the nonlocal elasticity 

operator (1 − 𝜇ଶ∇ଶ) is applied on the accelerations. 

6. Solution Method 

In this paper, the complex variable method is considered to analytically solve the partial 

differential equations of motion (34‒36) by setting the real and imaginary parts equal to zero and 

therefore to get the natural frequencies of the SWCNT. 

In the present work, simply supported boundary conditions are adopted. These boundary 

conditions, for the complex variable method, impose the relations Re(𝑣) = Re(𝑤) = 0 at both ends 𝑥 = (0, 𝐿) of the SWCNT. The displacement field that satisfies these boundary conditions can be 

written as [7]:  𝑢(𝑥, 𝜃, 𝑡) = 𝑈ഥ exp൫𝑖𝜆௤𝑥൯ cos(𝑠𝜃) cos(𝜔𝑡) 

(37) 𝑣(𝑥, 𝜃, 𝑡) = −𝑖𝑉ത exp൫𝑖𝜆௤𝑥൯ sin(𝑠𝜃) cos(𝜔𝑡) 

𝑤(𝑥, 𝜃, 𝑡) = −𝑖𝑊ഥ exp൫𝑖𝜆௤𝑥൯ cos(𝑠𝜃) cos(𝜔𝑡) 

where (𝑈ഥ, 𝑉ത, 𝑊ഥ ) denote the displacement amplitudes along the longitudinal 𝑢, circumferential 𝑣 

and radial 𝑤  directions, respectively, 𝑖  is the imaginary unit, 𝜆௤  is the wavenumber along the 

longitudinal direction, with 𝜆௤ = 𝑞𝜋/𝐿, where 𝑞 is the number of longitudinal half‒waves and 𝐿 is 

the length of the SWCNT, 𝑠 is the number of circumferential waves and 𝜔 is the circular frequency. 

Substituting equation (37) into equations (34‒36), a set of algebraic equations for the 

displacement amplitudes (𝑈ഥ, 𝑉ത, 𝑊ഥ ) is obtained, which can be written in the matrix form [7]: 

𝐄(𝜆௤, 𝑠, 𝜔)ଷ×ଷ ൦ 𝑈ഥ𝑉ത𝑊ഥ ൪ = ൦000൪ (38) 

where 𝐄 is a non‒symmetric matrix, whose elements are reported in Appendix. 

For a non‒trivial solution (𝑈ഥ = 𝑉ത = 𝑊ഥ = 0), the determinant of matrix 𝐄 (38) must be equal to 

zero: det 𝐄(𝜆௤, 𝑠, 𝜔)ଷ×ଷ = 0 (39) 
Solving equation (39) we get a third‒degree algebraic equation in 𝜔ଶ; this last equation provides 

three different eigenfrequencies for each number of waves (𝑞, 𝑠) that give three different vibration 

modes (i.e., longitudinal, torsional and radial modes). Since the highest natural frequency 

corresponds to the radial vibration mode, then in the numeric results only the radial natural 

frequencies will be computed. 

7. Numeric Results 

In this paper, the effect of nonlocal and material parameters on the natural frequencies of 

SWCNTs is considered. Sanders-Koiter shell theory is used to obtain the strain‒displacement 

relationships. An anisotropic elastic shell model is adopted to take into account the intrinsic chirality 
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effects of CNTs. Simply supported boundary conditions are imposed. Vibration modes with different 

number of waves along the longitudinal and circumferential directions are analysed. SWCNTs with 

different chiralities and geometries are investigated. 

In Table 1, the values of the carbon‒carbon bond parameters (𝑎, 𝑘ఘ, 𝑘ఏ) and the equivalent 

parameters (ℎ, 𝜌) retrieved from the pertinent literature are reported. In particular, parameters 𝑘ఘ 

and 𝑘ఏ, which are force constants related to the variance of carbon‒carbon bond length 𝑎 and angle 𝜃, respectively, are considered to obtain the surface elastic constants 𝑌௜௝ (9) of the SWCNT by means 

of the molecular mechanics model developed by Chang [1,2]. 

Table 1. Mechanical parameters adopted in the anisotropic elastic shell model [1,2,21]. 

Carbon‒carbon bond length a (nm) 0.142 

Carbon‒carbon bond elongation Kρ (nN/nm) 742 

Carbon‒carbon bond angle variance Kθ (nN·nm) 1.42 

Equivalent thickness h (nm) 0.0665 

Equivalent mass density ρ (kg/m3) 11700 

SWCNT radius R (nm) 1.34 

Moreover, in order to study the dynamics of the actual discrete SWCNT via an equivalent 

continuous cylindrical shell, an equivalent thickness ℎ, which is obtained from MD simulations of 

CNT energy, and an equivalent mass density 𝜌, resulting from the surface density of graphite, are 

considered, see Ref. [21] for the details. 

Finally, in the parametric analyses, a SWCNT with radius R = 1.34 nm (i.e., thickness ratio R/h = 

20) will be considered. It should be stressed that this value of thickness ratio respects the hypothesis 

that allows a thin shell theory (in this paper Sanders‒Koiter shell theory) to be applied, which is R/h 

> 10, see Ref. [27] for the details. 

7.1. Validation of the Anisotropic Elastic Shell Model 

The first step of the present work is the validation of the anisotropic elastic model based on 

Sanders–Koiter shell theory that will be adopted in the following to analyse the effect of nonlocal and 

material parameters on the natural frequencies of SWCNTs. 

This validation is carried out by comparing the results of the present anisotropic elastic shell 

model with the ones of molecular dynamics simulations available in literature [22]. The natural 

frequencies of the radial breathing mode (i.e., the undeformed vibration mode characteristic of CNTs 

presenting no longitudinal and circumferential waves) under different chirality indices are 

considered. 

From the comparisons it can be observed that the percentage difference is relatively low 

(maximum value ≈ 2.7%, medium value ≈ 1.6%) for all the considered chirality indices, see Table 2, 

and therefore the present anisotropic elastic shell model can be considered as accurate. 

Table 2. Natural frequencies of the radial breathing mode (q = 0, s = 0) of the SWCNT of Table 1 with 

aspect ratio L/R = 10. Comparisons between anisotropic elastic model with Sanders shell theory and 

molecular dynamics simulations. 

Natural frequency ωRBM (cm‒1) Difference % 

Chirality indices 

(n, m) 

Anisotropic elastic model 

(Sanders shell theory) 

Molecular dynamics 

simulations [22] 
 

(10, 0) 294.310 290.810 1.20 

(6, 6) 284.460 278.450 2.16 

(12, 0) 245.868 242.576 1.36 

(7, 7) 244.074 239.020 2.11 

(8, 8) 213.709 209.323 2.10 

(14, 0) 211.067 207.980 1.48 
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(16, 0) 184.870 181.960 1.60 

(10, 10) 171.104 167.644 2.06 

(18, 0) 164.443 161.773 1.65 

(20, 0) 148.073 145.577 1.71 

(12, 12) 142.650 139.778 2.05 

(25, 0) 118.551 116.439 1.81 

(15, 15) 114.161 111.878 2.04 

(30, 0) 98.835 97.013 1.88 

(18, 18) 95.153 93.253 2.04 

(33, 0) 89.865 87.507 2.69 

(20, 20) 85.645 83.935 2.04 

On the other hand, it must be underlined that the development and implementation of the 

anisotropic elastic shell model present high analytical complexity and computational effort. 

Therefore, it is useful to check if the corresponding isotropic elastic shell model, which presents low 

analytical complexity and computational effort, can provide similar results. 

From the comparisons between the results of the isotropic elastic shell model and molecular 

dynamics simulations [22] it can be observed that the percentage difference is higher than the 

anisotropic elastic shell model (maximum value ≈ 3.6%, medium value ≈ 2.9%) for all the considered 

chirality indices, see Table 3. 

Table 3. Natural frequencies of the radial breathing mode (q = 0, s = 0) of the SWCNT of Table 1 with 

aspect ratio L/R = 10. Comparisons between isotropic elastic model with Sanders shell theory and 

molecular dynamics simulations. 

Natural frequency ωRBM (cm‒1) Difference % 

Chirality indices 

(n, m) 

Isotropic elastic model 

(Sanders shell theory) 

Molecular dynamics 

simulations [22] 
 

(10, 0) 299.083 290.810 2.84 

(6, 6) 288.075 278.450 3.46 

(12, 0) 249.447 242.576 2.83 

(7, 7) 246.812 239.020 3.26 

(8, 8) 215.923 209.323 3.15 

(14, 0) 213.955 207.980 2.87 

(16, 0) 187.002 181.960 2.77 

(10, 10) 172.925 167.644 3.15 

(18, 0) 166.287 161.773 2.79 

(20, 0) 149.741 145.577 2.86 

(12, 12) 144.037 139.778 3.05 

(25, 0) 119.753 116.439 2.85 

(15, 15) 115.183 111.878 2.95 

(30, 0) 99.772 97.013 2.84 

(18, 18) 96.003 93.253 2.95 

(33, 0) 90.665 87.507 3.61 

(20, 20) 86.396 83.935 2.93 

Since the anisotropic elastic shell model was demonstrated to be significantly more accurate than 

the corresponding isotropic one, then it will be adopted in the following parametric analyses. 

7.2. Effect of Nonlocal and Material Parameters 

In this Section, the effect of nonlocal and material parameters on the natural frequencies of the 

simply supported SWCNT of Table 1 is studied. Different chiralities and geometries are analysed. 
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Vibration modes with different wavenumber along the longitudinal and circumferential directions 

are evaluated. 

The first goal is to analyse the effect of nonlocal and material parameters on the natural 

frequencies of the simply supported SWCNT of Table 1 for a generic vibration mode. 

In Figure 2, the natural frequencies of the vibration mode (q = 1, s = 2) with one longitudinal half‒
wave and two circumferential waves are presented. The chirality indices (n = 34, m = 0) (i.e., zigzag 

SWCNT) are considered. Thickness ratio R/h = 20 and aspect ratio L/R = 10 are adopted. From Figure 

2 it is observed that, for a fixed value of material parameter 𝑙, the natural frequencies decrease as the 

nonlocal parameter 𝜇 increases. On the contrary, for a fixed value of nonlocal parameter 𝜇, the 

natural frequencies increase as the material parameter 𝑙  increases. Therefore, an opposite effect 

between the two small length scale parameters on the natural frequencies is found. 

 

Figure 2. Natural frequencies of the mode (q = 1, s = 2) of the simply supported SWCNT of Table 1. 

Chirality indices (n = 34, m = 0). Thickness ratio R/h = 20. Aspect ratio L/R = 10. Effect of nonlocal 𝜇 

and material l parameters. 

The second goal is to study the effect of nonlocal and material parameters on the natural 

frequencies of the simply supported SWCNT of Table 1with different chiralities. 

In Figure 3, the natural frequencies of the same vibration mode (q = 1, s = 2) of Figure 2 are shown. 

A SWCNT with the same geometry but with different chirality indices (n = 20, m = 20) (i.e., armchair 

SWCNT) is considered. From Figure 3 it can be observed that the effect of nonlocal 𝜇 and material 𝑙 
parameters on the natural frequencies of the vibration mode (q = 1, s = 2) is the same of that of Figure 

2. Therefore, it can be deduced that the effect of the two small length scale parameters on the natural 

frequencies is independent of SWCNT chirality. Starting from this result, in the following simulations 

the chirality indices (n = 34, m = 0) (i.e., zigzag SWCNT) will be considered. 
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Figure 3. Natural frequencies of the mode (q = 1, s = 2) of the simply supported SWCNT of Table 1. 

Chirality indices (n = 20, m = 20). Thickness ratio R/h = 20. Aspect ratio L/R = 10. Effect of nonlocal 𝜇 

and material l parameters. 

The third goal is to analyse the effect of nonlocal and material parameters on the natural 

frequencies of the simply supported SWCNT of Table 1 with different geometries. 

In Figure 4, the natural frequencies of the same vibration mode (q = 1, s = 2) of Figure 2 are shown. 

A SWCNT with the same aspect ratio L/R = 10 but different thickness ratios R/h is considered. From 

Figure 4, it can be noted that the natural frequencies decrease as the value of the thickness ratio R/h 

increases. For relatively low thickness ratios 20 < R/h < 50, the decrease is exponential as the value of 

material parameter l increases, while it is linear as the value of nonlocal parameter 𝜇 increases. For 

relatively high thickness ratios R/h > 80, the decrease is linear and the natural frequencies are similar 

for all values of nonlocal and material parameters. Therefore, the effect of the two small length scale 

parameters on the natural frequencies is strongly dependent of SWCNT radius. 
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Figure 4. Natural frequencies of the mode (q = 1, s = 2) of the simply supported SWCNT of Table 1. 

Aspect ratio L/R = 10. Effect of nonlocal 𝜇 and material l parameters for different values of thickness 

ratio R/h. 

In Figure 5, the natural frequencies of the same vibration mode (q = 1, s = 2) of Figure 2 are shown. 

A SWCNT with the same thickness ratio R/h = 20 but different aspect ratios L/R is considered. From 

Figure 5 it can be observed that, for every value of nonlocal 𝜇 and material 𝑙 parameters, the natural 

frequencies are constant as the value of aspect ratio L/R increases, and therefore the effect of the two 

small length scale parameters on the natural frequencies is independent of SWCNT length. 

 

Figure 5. Natural frequencies of the mode (q = 1, s = 2) of the simply supported SWCNT of Table 1. 

Thickness ratio R/h = 20. Effect of nonlocal 𝜇 and material l parameters for different values of aspect 

ratio L/R. 

The last goal is to analyse the effect of nonlocal and material parameters on the natural 

frequencies of the simply supported SWCNT of Table 1 for vibration modes with different 

wavenumbers. First it is evaluated the effect of the number of longitudinal half‒waves q. 

In Figure 6, the natural frequencies of the axisymmetric modes (s = 0) of the SWCNT of Table 1 

with thickness ratio R/h = 20 and aspect ratio L/R = 10 are considered. The effect of nonlocal μ and 

material l parameters for a different number of longitudinal half‒waves q is investigated. From Figure 

6, first of all, it is derived that the natural frequency of the undeformed mode (q = 0, s = 0) is 

independent of the two small length scale parameters (i.e., it is constant). Moreover, increasing the 

value of nonlocal parameter μ, it is found a linear decrease of the natural frequencies within the range 

q = (0 ‒ 3) and a subsequent linear increase by further increasing the number of longitudinal half‒
waves. On the other hand, increasing the value of material parameter 𝑙, it is observed an exponential 

increase of the natural frequencies as the number of the longitudinal half‒waves increases within the 

range q = (0 ‒ 5). 
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Figure 6. Natural frequencies of the axisymmetric modes (s = 0) of the SWCNT of Table 1. Thickness 

ratio R/h = 20. Aspect ratio L/R = 10. Effect of nonlocal 𝜇 and material l parameters for different 

number of longitudinal half‒waves q. 

In Figure 7, the natural frequencies of the beam‒like modes (s = 1) of the same SWCNT of Figure 

6 are analysed. The effect of nonlocal μ and material l parameters for a different number of 

longitudinal half‒waves q is investigated. From Figure 7, as the value of nonlocal parameter μ 

increases, it is found a little decrease of the natural frequencies within the range q = (0 ‒ 3) and a 

subsequent little increase by further increasing the number of longitudinal half‒waves. On the other 

hand, increasing the value of material parameter 𝑙 , it is obtained an exponential increase of the 

natural frequencies as the number of the longitudinal half‒waves increases within the range q = (0 ‒ 

5), where this exponential increase is lower than the one of Figure 6 for the axisymmetric modes (s = 

0). 

 

Figure 7. Natural frequencies of the beam‒like modes (s = 1) of the SWCNT of Table 1. Thickness ratio 

R/h = 20. Aspect ratio L/R = 10. Effect of nonlocal 𝜇 and material l parameters for different number of 

longitudinal half‒waves q. 
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In Figure 8, the natural frequencies of the shell‒like modes (s = 2) of the same SWCNT of Figure 

6 are analysed. The effect of nonlocal μ and material l parameters for a different number of 

longitudinal half‒waves q is studied. From Figure 8 it is obtained that, increasing the number of 

longitudinal half‒waves within the range q = (0 ‒ 5), the natural frequencies remain quasi‒constant 

increasing the value of nonlocal parameter, while they increase exponentially increasing the value of 

material parameter, where this exponential increase is lower than the one of Figure 7 for the beam‒
like modes (s = 1). 

 

Figure 8. Natural frequencies of the shell‒like modes (s = 2) of the SWCNT of Table 1. Thickness ratio 

R/h = 20. Aspect ratio L/R = 10. Effect of nonlocal 𝜇 and material l parameters for different number of 

longitudinal half‒waves q. 

Therefore, by comparing Figures 6‒8, it is obtained that, as the number of longitudinal half‒
waves q increases, the natural frequencies first linearly decrease and then linearly increase with 

increasing the nonlocal parameter μ, while they exponentially increase with increasing the material 

parameter l. The magnitude of these opposite behaviours reduces with increasing the number of 

circumferential waves s (i.e., the linear first decrease and then increase of natural frequencies with 

increasing the nonlocal parameter μ becomes quasi‒constant, the exponential increase of natural 

frequencies with increasing the material parameter l becomes quasi‒linear). 

Then it is investigated the effect of the number of circumferential waves s. 

In Figure 9, the natural frequencies of the modes with zero longitudinal half‒waves (q = 0) of the 

SWCNT of Table 1 with thickness ratio R/h = 20 and aspect ratio L/R = 10 are considered. The effect 

of nonlocal μ and material l parameters for a different number of circumferential waves s is evaluated. 

From Figure 9, first of all, it is confirmed that the natural frequency of the undeformed mode (q = 0, s 

= 0) is independent of the two small length scale parameters. Additionally, with increasing the value 

of nonlocal parameter μ, it is observed a little increase of the natural frequencies as the number of the 

circumferential waves increases within the range s = (0 ‒ 5). On the other hand, increasing the value 

of material parameter 𝑙, it can be observed a strongly exponential increase of the natural frequencies 

as the number of the circumferential waves increases within the range s = (0 ‒ 5). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2024                   doi:10.20944/preprints202401.0806.v1

https://doi.org/10.20944/preprints202401.0806.v1


 17 

 

 

Figure 9. Natural frequencies of the modes with (q = 0) of the SWCNT of Table 1. Thickness ratio R/h 

= 20. Aspect ratio L/R = 10. Effect of nonlocal 𝜇 and material l parameters for different number of 

circumferential waves s. 

In Figures 10 and 11, the natural frequencies of the modes with respectively one (q = 1) and two 

(q = 2) longitudinal half‒waves of the same SWCNT of Figure 9 are analysed. The effect of nonlocal μ 

and material l parameters for a different number of circumferential waves s is investigated. From 

Figures 10 and 11, it is noted exactly the same behaviour of the natural frequencies of that in Figure 

9. 

 

Figure 10. Natural frequencies of the modes with (q = 1) of the SWCNT of Table 1. Thickness ratio R/h 

= 20. Aspect ratio L/R = 10. Effect of nonlocal 𝜇 and material l parameters for different number of 

circumferential waves s. 
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Figure 11. Natural frequencies of the modes with (q = 2) of the SWCNT of Table 1. Thickness ratio R/h 

= 20. Aspect ratio L/R = 10. Effect of nonlocal 𝜇 and material l parameters for different number of 

circumferential waves s. 

Therefore, by comparing Figures 9‒11, it is observed that, as the number of circumferential 

waves s increases, the natural frequencies have a little increase with increasing the nonlocal 

parameter μ, while they have a strongly exponential increase with increasing the material parameter 

l, and this behaviour is independent of the number of longitudinal half‒waves q. 

8. Conclusions 

The main contribution of this paper is the development of a novel nonlocal strain gradient 

anisotropic elastic shell model to analyse the linear vibrations of SWCNTs. Based on Eringen nonlocal 

elasticity and Mindlin strain gradient theories, and taking into account the inherent anisotropic elastic 

behaviour of nanostructures by adopting Chang molecular mechanics model, for the first time, to the 

Authors’ knowledge, the combined effect of nonlocal and material (strain gradient) parameters on 

the natural frequencies of SWCNTs with different chirality, geometry and wavenumber is 

investigated. 

The most relevant findings of the present work are summarised as follows. 

• The natural frequency of the undeformed vibration mode is independent of both nonlocal and 

material parameters. 

• For a generic linear vibration mode, the natural frequencies decrease as the nonlocal parameter 

increases, while they increase as the material parameter increases. 

• The decrease of the natural frequencies with increasing SWCNT radius is exponential as the 

material parameter increases, while it is linear as the nonlocal parameter increases. 

• The effect of nonlocal and material parameters on the natural frequencies is independent of 

SWCNT chirality and length. 

• As the number of longitudinal half‒waves increases, the natural frequencies linearly decrease 

with increasing the nonlocal parameter, while they exponentially increase with increasing the 

material parameter. 

• As the number of circumferential waves increases, the natural frequencies little increase with 

increasing the nonlocal parameter, while they strongly exponentially increase with increasing 

the material parameter. 
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Appendix 

The elements of matrix 𝐄 (38) are reported below. 𝐸ଵଵ = ൤𝑌ଵଵ𝜆௤ଶ + 2𝑌ଵଷ𝑅 𝜆௤𝑠 + ൬𝑌ଷଷ𝑅ଶ + 𝑋ଷଷ4𝑅ସ൰ 𝑠ଶ൨ 

(A.1) ∙ ቈ1 + 𝑙ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ − 𝜌ℎ𝜔ଶ ቈ1 + 𝜇ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ 

𝐸ଵଶ = − ൤𝑌ଵଷ𝜆௤ଶ + ൬𝑌ଵଶ + 𝑌ଷଷ𝑅 − 3𝑋ଷଷ4𝑅ଷ ൰ 𝜆௤𝑠 

(A.2) + ൬𝑌ଶଷ𝑅ଶ − 𝑋ଶଷ2𝑅ସ൰ 𝑠ଶ൨ ∙ ቈ1 + 𝑙ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ 

𝐸ଵଷ = − ൬𝑌ଵଶ𝑅 𝜆௤ + 𝑌ଶଷ𝑅ଶ 𝑠 − 𝑋ଵଷ2𝑅ଶ 𝜆௤ଶ𝑠 − 𝑋ଷଷ𝑅ଷ 𝜆௤𝑠ଶ 

(A.3) − 𝑋ଶଷ2𝑅ସ 𝑠ଷ൰ ∙ ቈ1 + 𝑙ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ 

𝐸ଶଵ = − ൤𝑌ଵଷ𝜆௤ଶ + ൬𝑌ଵଶ + 𝑌ଷଷ𝑅 − 3𝑋ଷଷ4𝑅ଷ ൰ 𝜆௤𝑠 

(A.4) + ൬𝑌ଶଷ𝑅ଶ − 𝑋ଶଷ2𝑅ସ൰ 𝑠ଶ൨ ∙ ቈ1 + 𝑙ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ 

𝐸ଶଶ = ൤൬𝑌ଷଷ + 9𝑋ଷଷ4𝑅ଶ ൰ 𝜆௤ଶ + ൬2𝑌ଶଷ𝑅 + 3𝑋ଶଷ𝑅ଷ ൰ 𝜆௤𝑠 + ൬𝑌ଶଶ𝑅ଶ + 𝑋ଶଶ𝑅ସ ൰ 𝑠ଶ൨ 

(A.5) ∙ ቈ1 + 𝑙ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ − 𝜌ℎ𝜔ଶ ቈ1 + 𝜇ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ 

𝐸ଶଷ = ൤𝑌ଶଷ𝑅 𝜆௤ + 𝑌ଶଶ𝑅ଶ 𝑠 + 3𝑋ଵଷ2𝑅 𝜆௤ଷ + ൬𝑋ଵଶ + 3𝑋ଷଷ𝑅ଶ ൰ 𝜆௤ଶ𝑠 

(A.6) + 7𝑋ଶଷ2𝑅ଷ 𝜆௤𝑠ଶ + 𝑋ଶଶ𝑅ସ 𝑠ଷ൨ ∙ ቈ1 + 𝑙ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ 
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𝐸ଷଵ = − ൬𝑌ଵଶ𝑅 𝜆௤ − 𝑌ଶଷ𝑅ଶ 𝑠 + 𝑋ଵଷ2𝑅ଶ 𝜆௤ଶ𝑠 − 𝑋ଷଷ𝑅ଷ 𝜆௤𝑠ଶ 

(A.7) + 𝑋ଶଷ2𝑅ସ 𝑠ଷ൨ ∙ ቈ1 + 𝑙ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ 

𝐸ଷଶ = ൤− 𝑌ଶଷ𝑅 𝜆௤ + 𝑌ଶଶ𝑅ଶ 𝑠 − 3𝑋ଵଷ2𝑅 𝜆௤ଷ + ൬𝑋ଵଶ + 3𝑋ଷଷ𝑅ଶ ൰ 𝜆௤ଶ𝑠 

(A.8) − 7𝑋ଶଷ2𝑅ଷ 𝜆௤𝑠ଶ + 𝑋ଶଶ𝑅ସ 𝑠ଷ൨ ∙ ቈ1 + 𝑙ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ 

𝐸ଷଷ = ൤𝑌ଶଶ𝑅ଶ + 𝑋ଵଵ𝜆௤ସ − 4𝑋ଵଷ𝑅 𝜆௤ଷ𝑠 + ൬4𝑋ଷଷ + 2𝑋ଵଶ𝑅ଶ ൰ 𝜆௤ଶ𝑠ଶ − 4𝑋ଶଷ𝑅ଷ 𝜆௤𝑠ଷ 

(A.9) + 𝑋ଶଶ𝑅ସ 𝑠ସ൨ ∙ ቈ1 + 𝑙ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ − 𝜌ℎ𝜔ଶ ቈ1 + 𝜇ଶ ቆ𝜆௤ଶ + 𝑠ଶ𝑅ଶቇ቉ 
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