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Abstract: This study introduces a cybernetic control and architectural framework for a robotic fish
avatar operated by a human. The behavior of the robot fish is influenced by the electromyographic
(EMGQG) signals of the human operator, triggered by stimuli from the surrounding objects and scenery.
An deep artificial neural network (ANN) with perceptrons classifies EMG signals, discerning
the type of muscular stimuli generated. The research unveils a fuzzy-based oscillation patterns
generator (OPG) designed to emulate functions akin to a neural central pattern generator, producing
coordinated fish undulations. The OPG generates swimming behavior as an oscillation function,
decoupled into coordinated step signals, right and left, for a dual electromagnetic oscillator in the fish
propulsion system. Furthermore, the research presents an underactuated biorobotic mechanism of
the subcarangiform type, comprising a two-solenoid electromagnetic oscillator, an antagonistic
musculoskeletal elastic system of tendons, and a multi-link caudal spine composed of helical
springs. The biomechanics dynamic model and control for swimming, as well as the ballasting
system for submersion and buoyancy, are deduced. Experimental results encompass EMG pattern
recognition, OPG, and coordinated fish locomotion, with additional topics illustrated through
numerical simulations.

Keywords: biorobotics; cybernetics; neural-network, robot-fish; EMG-signals; robotic avatar;
dynamic-control

1. Introduction

Avatar robotics involves remotely controlling a robot to interact with the physical environment
on behalf of a human operator, enabling them to virtually embody the robot and perform actions as if
physically present. This transformative technology extends human presence to remote or hazardous
locations, with applications spanning space exploration, disaster response, remote inspection,
telemedicine, and diverse domains. Leveraging progress in robotics, teleoperation systems, sensory
feedback interfaces, and communication networks, avatar robotics enhances human capabilities,
ensures safer operations, and broadens human presence and expertise in various fields.

Furthermore, cybernetic control functions as a regulatory system utilizing feedback mechanisms
to uphold stability and achieve desired outcomes. The incorporation of feedback loops is central to
cybernetic control systems, continuously monitoring a system’s behavior, comparing it to a reference
state, and generating corrective actions to address any deviations. This iterative feedback process
facilitates self-regulation and goal attainment within the system. The application domains of cybernetic
control span engineering, biology, and psychology, with the goal of enabling robots to interact with
humans in more intuitive ways. This involves adapting their actions and responses based on human
feedback and behavior, cultivating a more seamless and responsive human-robot interaction.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Cybernetic biorobotics, at its core, is an interdisciplinary frontier that harmonizes principles
from cybernetics, biology, and robotics. Its primary mission is the exploration and development of
robots or robotic systems intricately inspired by the marvels of biological organisms. This field is
driven by the ambition to conceive robots capable of mimicking and integrating the sophisticated
principles and behaviors observed in living entities. Researchers draw inspiration from the intricate
control systems of biological organisms and this creative synthesis results in the creation of robots
characterized by adaptive and intelligent behaviors, thus mirroring the intricacies found in the natural
world. Bioinspired robotics, a central focus within this discipline, involves distilling the fundamental
principles and behaviors intrinsic to biological entities and skillfully incorporating them into the design
and control of robotic systems. It has the potential to advance the development of robots endowed
with locomotion and manipulation capabilities akin to animals, as well as robots capable of adapting
to dynamic environments or interacting with humans in more natural and intuitive ways. Moreover,
research in cybernetic biorobotics can offer valuable insights into comprehending biological systems,
fostering advancements in disciplines like neuroscience and biomechanics. Furthermore, remote
cybernetic robots may rely on haptic systems as essential interfaces. A haptic system, characterized by
its ability to provide users with a sense of touch or tactile feedback through force, vibration, or other
mechanical means, comprises a haptic interface and a haptic rendering system. Collaboratively, these
components simulate touch sensations, enabling users to engage with virtual or remote environments
in a tactile manner.

This research introduces a control and sensing architecture that integrates a cybernetic scheme
based on the recognition of electromyographic control signals, governing a range of locomotive
behaviors in a robotic fish. Conceptually, the human operator receives feedback signals from the
sensors of the bio-robotic avatar, conveying information about its remote environment. The proposed
approach stands out due to its key features and contributions, which include:

1. The exposition of an innovative conceptual cybernetic fish avatar architecture.

2. The creation of an EMG data filtering algorithm, coupled with a method for extracting, classifying,
and recognizing muscular patterns using a deep ANN, serves as a cybernetic interface for the
governance of the fish avatar.

3. The development of a fuzzy-based oscillation patterns generator (OPG) designed to generate
periodic oscillation patterns around the fish’s caudal fin. These coordinated oscillations are
decoupled into right and left step functions, specifically crafted to input into a lateral pair of
electromagnetic coils, thereby producing undulating swimming motions of the robot fish.

4. The conception of a bioinspired robotic fish mechanism is characterized by the incorporation of
underactuated elements propelled by serial links featuring helical springs. This innovative design
is empowered by a dual solenoid electromagnetic oscillator and a four-bar linkage, reflecting a
novel approach to bioinspired robotics.

5. The derivation of closed-form control laws for both the undulation of the underactuated caudal

multilink dynamics and the ballasting system.

Section 2 provides a comprehensive discussion on the comparative analysis of the current state
of the art. Section 3 provides a detailed description of the proposed architecture cybernetic system
model. In Section 4 presents an approach for filtering electromyography (EMG) data and delves into an
in-depth discussion of a classifier based on deep ANN for the recognition of hand-motion EMG stimuli
patterns. Section 5 presents the development of a fuzzy-based oscillation patterns generator. Section 6
details the robot’s mechanism parts and its dynamic model. Section 7 focuses on the development of a
feedback control for the fish’s ballasting system. Finally, Section 8 provides the concluding remarks of
the research study.

2. Analysis of the state of the art

This section syntheses the relevant literature and provides insights into the current state of the art.
Further, it aims to examine and evaluate existing research and advancements in the field. This brief


https://doi.org/10.20944/preprints202401.0847.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2024 doi:10.20944/preprints202401.0847.v1

30f41

analysis identifies and compares different aspects, providing a comprehensive overview including
relevant research and advancements in the field about methodologies, and outcomes.

Multiple basic concepts of cybernetics [1] in the intersection of physics and control theory and
molecular systems were presented in [2] speed-gradient approach to modeling the dynamics of
physical systems is discussed. A novel research approach namely Ethorobotics proposes the use and
development of advanced bioinspired robotic replicas as a method for investigating animal behaviour
[3]. In the domain of telepresence and teleoperation, diverse systems and methodologies have been
devised to facilitate remote control of robots [4]. One such system is the multi-robot teleoperation
system based on a brain-computer interface, as documented by [6]. This system aims to enable
individuals with severe neuromuscular deficiencies to operate multiple robots solely through their
brain activity, thus offering telepresence via a thought-based interaction mode. A comprehensive
review addressing existing teleoperation methods and techniques for enhancing the control of mobile
robots has been presented by [12]. This review critically analyzes, categorizes, and summarizes
existing teleoperation methods for mobile robots while highlighting various enhancement techniques
that have been employed. It makes clear the relative advantages and disadvantages associated with
these methods and techniques. The field of telepresence and teleoperation robotics has witnessed
substantial attention and interest over the past decade [14], finding extensive applications in healthcare,
education, surveillance, disaster recovery, and corporate/government sectors. In the specific context
of underwater robots, gesture recognition-based teleoperation systems have been developed to enable
users to control the swimming behavior of these robots. Such systems foster direct interaction between
onlookers and the robotic fish, thereby enhancing the intuitive experience of human-robot interaction.
Furthermore, efforts have been made to enhance the consistency and quality of robotic fish tails through
improved fabrication processes, and target tracking algorithms have been developed to enhance the
tracking capabilities of these robots [11]. The work [10] developed teleoperation for remote control
of a robotic fish by hand gestures recognition. It allowed direct interaction between onlookers and
the biorobot. Another notable system is the assistive telepresence system employing augmented
reality in conjunction with a physical robot, as detailed in the work by [7]. This system leverages
an optimal non-iterative alignment solver to determine the optimally aligned pose of the 3D human
model with the robot, resulting in faster computations compared to baseline solvers and delivering
comparable or superior pose alignments. The review presented in [20] analyses the progress of robot
skin as multimodal sensing and machine perception for sensory feedback in feeling proximity, pressure,
temperature for collaborative robot applications considering immersive teleoperation and affective
interaction. The work [24] reported an advanced robotic avatar system designed for immersive
teleoperation, having some key functions such as human-like manipulation and communication
capabilities, immersive 3D visualization and transparent force-feedback telemanipulation. Suitable
human-robot collaboration in medical application has been reported [21], where force perception is
augmented to human operator during needle insertion on the soft tissue. Telepresence of mobile
robotic systems may incorporate remote video transmission to steer the robot by seeing through its
eyes remotely. The work [22] presented an overview including social application domains. Research
has been conducted on the utilization of neural circuits to contribute to limb locomotion [15] in the
presence of uncertainty. By optimizing data, it showed the combination of circuits necessary for efficient
locomotion. A review has also been conducted on central pattern generators (CPGs) employed for
locomotion control in robots [16]. This review encompasses neurobiological observations, numerical
models, and robotic applications of CPGs. The work [27] describes an extended mathematical model
of the CPG supported by two neurophysiological studies: identification of a two-layered CPG neural
circuitry and a specific neural model for generating different patterns. The CPG model is used as
the low-level controller of a robot to generate walking patterns. Inclusion of ANN as a layer of the
CPG, to produce rhythmic and non-rhythmic motion patterns. The work in [18] presented a review of
bionic robotic fish, tackling major concepts on kinematics and control, learning, hydrodynamic forces
and critical concepts on locomotion coordination. The research presented in [19] reviews the human
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manual control of devices in cybernetics using mathematical models and advances of theory and
applications, from linear time-invariant modeling of stationary conditions to methods and analysis of
adaptive and time-varying of cybernetics-human in control tasks. New foundations for cybernetics
will emerge and impact numerous domains involving humans in manual and neuromuscular systems
modeling control.

Building upon the preceding analysis regarding relevant literature, the subsequent table (Table 1)
encapsulates the primary distinctions articulated in this study in relation to the most pertinent literature

identified.
Table 1. Pertinent related work comprehensive comparatives.
Research topic References Distinctive aspect of this study
Remote mobile robots [5,6] Swimming response from
HRI teleoperation [10,11] biological EMG stimuli.
Teleoperation & telepresence HRI reviews, [4,12] Haptic perception robot to human.
techniques and applications [13,14] Cybernetic control human to robot.
Telepresence by avatar [7-9] Haptic and 2D visual data avatar
and immersion systems [24] and neuromuscular control response.
Central pattern generator (CPG), [15,16] Neural-Fuzzy caudal swim
neural and locomotion studies [17,27] undulation pattern generator.
Human-robot collaboration [20-22] Reactive swimming by remote human
haptics and teleoperation [23] stimuli and haptic robot’s feedback.
Cybernetic control [1-3] Underactuated biomechanical model and
propulsive
and bionic systems [18,19] electromagnetic oscillator.

As delineated in Table 1, the present study introduces distinctive elements that set it apart
from the recognized relevant literature. However, it is noteworthy to acknowledge that various
multidisciplinary domains may exhibit commonalities. Across these diverse topics, shared elements
encompass robotic avatars, teleoperation, telepresence, immersive human-robot interfaces, as well
as haptic or cybernetic systems in different application domains. In this research, the fundamental
principle of a robotic avatar entails controlling its swimming response to biological stimuli from the
human operator. The human controller is able to gain insight into the surrounding world of the robotic
fish avatar through a haptic interface. This interface allows the human operator to yield biological
electromyography stimuli as the result of their visual and skin impressions (e.g. pressure, temperature,
heading vibrations). The biorobotic fish generates its swimming locomotive behavior that is governed
by EMG stimuli yielded in real-time in the human. Through a neuro-fuzzy controller, the neuronal
part (cybernetic observer) classifies the type of human EMG reaction, and the fuzzy part determines
the swimming behavior.

3. Conceptual System Architecture

This section encompasses a comprehensive framework that highlight the integration of various
components to propose a cohesive cybernetic robotic model. In addition, this section outlines the key
concepts and elucidates their interactions within the system.

Figure 1 presents an overview of the key components constituting the proposed system
architecture. This manuscript thoroughly explores the modeling of four integral elements: i) the
cybernetic human controller, employing ANN classification of EMG signals; ii) a fuzzy-based
locomotion pattern generator; ii7) an underactuated bioinspired robot fish; and iv) the robot’s sensory
system, contributing feedback for the haptic system. While we will discuss the relevance and impact
of the latter item within the architecture, it is important to note that the detailed exploration of topics
related to haptic development and wearable technological devices goes beyond the scope of this paper
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and will be addressed in future work. Nevertheless, we deduce the observable variables that serve as
crucial inputs for the haptic system.
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Figure 1. Cybernetic robotic avatar system architecture.

Essentially, there are six haptic feedback sensory inputs of interest for the human, representing the
observable state of the avatar robot: Eulerian variables, including angular and linear displacements and
their higher-order derivatives; biomechanical caudal motion; hydraulic pressure; scenario temperature;
and passive vision. Figure 2-left provides an illustration of the geometric distribution of the sensing
devices.

The instrumented robot is an embodiment of the human submerged in water, featuring
an undulatory swimming mechanical body imbued with muscles possessing underactuated
characteristics. These features empowers the bio-robotic avatar to execute movements and swim
its aquatic surroundings.

Encoders,

) IMUs
Visual sensors

= filling hole

Ballasting
device

Linear springs

pressure sensors (dual antagonistic)

IMU: 3-axis inclinometers, gyroscopes and accelerometers

Figure 2. Robot’s underactuated mechanisms and sensory system onboard.

The observation models aim to provide insights into how these sensory perceptions are conveyed
to the haptic helmet with haptic devices, including wheel reaction mechanism. A comprehensive
schema emerges wherein the haptic nexus, bolstered by pivotal human’s biosensorial components
including gravireceptors, Ruffini corpuscles, Paccinian receptors, and retinal photoreceptors, converges
to interface with the sensory substrate of the human operator. Such a convergence engenders a
cascading sequence wherein biological input stimuli coalesce to yield discernible encephalographic
activity, the primary layer of subsequent electromyographic outputs. These consequential EMG
outputs, undergo processing a swim oscillatory pattern generator, thereby embodiment control of
biomechanical cybernetic governance.

In accordance with Figure 1, it is noteworthy that among the various haptic input variables
such as temperature, pressure, and the visual camera images represent direct sensory measurements
transmitted from the robotic fish to the components of the haptic interface. Conversely, the robotic
avatar takes on the role of a thermosensory adept, in order for the human to assess the ambient
thermal landscape. Thus, from this discernment, a surrogate thermal approach is projected onto the
tactile realm of the human operator, through modulation of thermally responsive plates enmeshed
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within the haptic interface. Therefore, a crafted replica of the temperature patterns detected by the
robotic aquatic entity is seamlessly integrated into the human sensory experience. This intertwining
of thermal emulation is reached by the network of Ruffini corpuscles, intricately nestled within the
human skin, thereby enhancing the experiential authenticity of this multisensory convergence. As
for interaction through the haptic functions, the Paccinian corpuscles function as discerning receptors,
proficiently registering subtle haptic pressures. It finds its origin in the dynamic tactile signals inherent
to the aquatic habitat, intricately associated with the underwater depth traversed by the robotic avatar.
Integral to the comprehensive sensory scheme, the optical sensors housed within the robotic entity
acquires visual data. This visual data is subsequently channeled to the human’s cognition, through the
haptic interface’s perceptual canvas. Within this, the human sensory apparatus assumes the role of an
engaged receptor, duly transducing these visual envoys through the lattice of retinal photoreceptors.

Embedded within the robotic fish’s body, several Inertial Measurement Units (IMU) plays a pivotal
role in quantifying Eulerian inclinations intrinsic to the aquatic environment. These intricate angular
displacements are subsequently channeled to the human operator, thereby initiating an engagement of
the reaction wheel mechanism. As a consequential outcome of this interplay, a synchronized emulation
of tilting motion is induced, mirroring the nuanced cranial adjustments executed by the human
operator. Any alignment of movements assumes perceptible form, relayed through the humans’s
network of gravireceptors nestled within the internal auditory apparatus. The Euler angular and
linear speeds are not directly measured; instead, they must be integrated using various sensor fusion
approaches to enhance the avatar’s fault tolerance in reading its environment. For example, the
angular observations of the robot fish are obtained through numerical integro-differential equations,
which are solved online as measurements are acquired. Let’s introduce the following notation for
inclinometers («;) and accelerometers (a,), with the singular direct sensor measurement &, derived
from the gyroscopes. The observation for the fish’s roll velocity combining the three inertial sensors is

~ da, . 1
Wy = a + g + i /ta,xdt, (1a)
while the pitch velocity is modelled by
_dg | 4 1
and the yaw velocity is obtained by
- dv, . 1
wy= G Tt /t a,dt. (10)

Within this context, the tangential accelerations experienced by the robot body are denoted as a, g,
[m/s?]. Additionally, the angular velocities measured by the gyroscopes are represented by &, 3, 7
[rad/s?]. Correspondingly, the inclinometers provide angle measurements denoted as «, 8, y [rad].
These measurements collectively contribute to the comprehensive observability and characterization
of the robot’s dynamic behavior and spatial orientation.

Furthermore, the oscillations of the caudal tail are reflections of the dynamics of the underactuated
spine. These dynamics are captured by quantifying encoder pulses, denoted as #;, which provide
precise angular positions for each vertebra. Given that real-time angular measurements of the vertebrae
are desired, higher-order data is prioritized. Consequently, derivatives are computed by initiating
from the Taylor series to approximate the angle of each vertebral element with respect to time, denoted
ast.

(0) (1) ) (Pi(Z)

g~ Tty — 1)+ e (ty — 1) + o (b —t1)% + ... (2a)
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thus, rearranging Math notation and trunking up to the first-derivative,
9= gi+9{ (12— 1), (2b)
dropping 4)1.(1) off as a state variable, the first-order derivative (¢(!)(t) = ¢(t)) is given by
by = 20 9)

th—t’

and assuming that a vertebra’s angular measurement model and in terms of the encoder’s pulses
with resolution R, then it is stated that by substituting the pulses encoder model into the angular speed
function for the first vertebra,

b () () () ().

as for the second vertebra,

;oo 2 (1 —n
P=hTR <t2f1) (30)
¢3=¢1+¢2+2§<Z§:711> (3¢)
and )
¢4:¢1+¢2+¢3+;<z§—21) (3d)

The preliminary sensing models serve as a comprehensive representation, strategically integrated
into the control models as crucial feedback terms. A detailed exploration of this integration is elucidated
in sections 6 and 7.

4. Deep ANN-based EMG Data Classification

This section details the experimental acquisition of EMG data, its spatial filtering, and pattern
extraction achieved through the statistical combination of linear envelopes. Additionally, an adaptive
method for class separation and data dispersion reduction is described. The section also covers the
structure of a deep neural network, presenting its classification output results from mapping input
EMG stimuli.

The related work reported a system for automatic pattern generation for neurosimulation in [25],
where a neurointerface was used as a neuro-protocol for outputting fingers deflection and nerves
stimulation. In the present research, numerous experiments were carried out to pinpoint the optimal
electrode placement and achieve precise electromyographic readings for each predefined movement in
the experiment. The positions of the electrodes were systematically adjusted, and the results from each
trial were compared. Upon data analysis, it was discerned that the most effective electrode placement
is on the Ulnar nerve, situated amidst the muscles Flexor Digitorium Superficialis, Flexor Digitorium
Profundus, and Flexor Carpi Ulnaris. A series of more than ten experiments was executed for each
planned stimulus or action involving hands, allowing a 2s interval between each action, including the
opening and closing of hands, as well as the extension and flexion of the thumb, index, middle, ring
and little fingers. The data was measured by a g. MOBIlab+ device with two-channel electrodes and
quantified in microvolts per second [uv/s], as depicted in Figure 3.

The data acquired from the electromyogram often exhibit substantial noise attributed to both the
inherent nature of the signal and external vibrational factors. To refine the data quality by mitigating
this noise, a filtering process is essential.
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Figure 3. Experimental raw EMG data (from left to right): a) Left and right hand, left and right thumb.
b Left and right indeXx, left and right middle. ¢) Left and right ring, left and right little.

In this context, a second-order Notch filter was utilized. This filter is tailored to target specific
frequencies linked to noise, proving particularly effective in eliminating electrical interferences and
other forms of stationary noise [26]. A Notch filter is a band-rejection filter to greatly reduce interference
caused by a specific frequency component or a narrow band signal. Hence, in the Laplace space, the
second-order filter is represented by the analog Laplace domain transfer function:

B $2 + w?
824 258w, + w?’

H(s) 4)
where wy signifies the cut angular frequency targeted for elimination, and 2§ signifies the damping
factor or filter quality, determining the bandwidth. Consequently, solving to obtain its solution in the
physical variable space. The bilinear transformation relates the variable s from the Laplace domain to
the variable zj in the Z domain, considering T as the sampling period, and is defined as follows,

. 1 Zj — 1
= — , 5
’ (T> (Zk + 1) ©
upon substituting the previous expression into the transfer function of the analog Notch filter and

algebraically simplifying, the following transfer function in the Z domain is obtained, redefining the
notation as vy = zj just to meet equivalence with the physical variable,

1 2cos(wpt)v; T+ v;?
1 —2¢ cos(wot)v; t + Ev; %

b(Ut)

(6)

The 2"-order Notch filter #(v) was employed on raw EMG data to alleviate noise resulting from
electrical impedance and vibrational electrode interference, with parameters set at wy = 256Hz and
¢ = 0.1 and results depicted in Figure 4.
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Figure 4. Notch filtered EMG showing one period. a) right thumb. b) right index. ¢) right middle.

Following this, leveraging the outcomes of the Notch filter, the data undergoes processing through
three distinct filters or linear envelopes. This serves as a secondary spatial filter and functions as a
pattern extraction mechanism. These include a filter for average variability, one for linear variability,
and another for average dispersion. Each filter serves a specific purpose, enabling the analysis of
different aspects of the signal. Consider n as the number of measurements constituting a single
experimental stimulus, and let N represent the entire sampled data space obtained from multiple
measurements related to the same stimulus. Furthermore, denote 9; as the i EMG measurement of an
upper limb, measured in microvolts (#V). From such statements, the following Propositions 1, 2 and 3
are introduced as new data patterns.

Proposition 1 (Filter ). The -y pattern refers to a statistical linear envelope described by the difference of a
local mean 9y in a window of samples and the statistical mean 0; of all samples population an experiment.

0; — )

Y(ox) =

Proposition 2 (Filter A). The A(vy) pattern refers to an statistical linear envelope denoted by the difference of a
local mean Oy in a window of samples and the statistical mean 0; of the whole population of experiments of same

type,
8)

Proposition 3 (filter (). The Q) pattern refers to an statistical linear envelope denoted by the difference of
statistical means between population of one experiment 0; and the whole population of numerous experiments of
the same type:

©)

Hence, let the vector & € R3 such that §; = (O, vr, Ax) | and represent filtered data points
in the QyA-space. This work considered to include a brief data preprocessing as a method to
improve multi-class separability and data scattering reduction in pattern extraction. Three distinctive
patterns—y, A, Q—captivatingly converge in Figure 5. This illustration exclusively features patterns
associated with sequences of muscular stimuli from both the right and left hands. For supplementary
stimulus plots, refer to the appendix in Appendix A at the end of this manuscript.
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Figure 5. Hands pattern space components: filters y,A and Q.
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From numerous laboratory experiments, over 75% of the sampled raw data fall within the range
of one standard deviation. Consider the vector & € R? such that the standard deviations vector
¢ = (0q,0,,0,) " encompasses the three spatial components by its norm.

2
11N O oy
o= g |- |m]]|- (10)
k=1 A j79)

Building upon the preceding statement, we can formulate an adaptive discrimination criterion as
elucidated in Definition 1.

Definition 1 (Discrimination condition). Consider the scalar value 6; as preprocessed EMG data located
within a radius of magnitude x; times the standard deviation ||c ||:
o, K4llo]|l < 5
; :{ v allel < 3] a
0, wallel > o]l

where 0 = (0,0,0) " represents discriminated data.

Hence, considering the recent Definition 1, and in the current scenario with x; = 1.0, which serves
as a tuning discrimination factor. Therefore, the norm I;, represents the distance between the frame
origin and any class in the () yA-space. This distance is adaptively calculated based on the statistics of
each EMG class.

Iy = (ka00)? + (k0,2 + (k1) (12)

where, the coefficients kg, x,, k) are smooth adjustment parameters to set separability along axes.
Hence, relocating each class center to a new position is stated by Proposition 4.

Proposition 4 (Class separability factor). New class position Va% ) in the QyA-space, is established by the
statistically adaptive linear relationship:

nh = Ha + Caly (13a)

Mo =ty + Tyl (13b)
and

oy = pa+ Caln. (13¢)

where () are coarse in-space separability factors. The mean values pqy,, are the actual class positions obtained
from the linear envelopes Q) (vy), y(vy) and A(vy).

Thus, by following the step-by-step method outlined earlier, Figure 6 showcases the extracted
features of the EMG data, representing diverse experimental muscular stimuli. These results hold
notable significance in the research, as they successfully achieve the desired class separability and data
scattering, serving as crucial inputs for the multilayer ANN.
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Figure 6. EMG stimuli pattern space (7, A, Q). (a) Left hand classes. (b) Right hand classes.

Henceforth, the focus lies in identifying and interpreting the EMG patterns projected in the
YAQ-space, as illustrated in Figure 6. The subsequent part of the section delve into the architecture
and structure of the deep ANN employed as a classifier, providing a detailed account of the training
process. Additionally, the section highlights the performance metrics and results achieved by the
classifier, offering insights into its effectiveness. Despite the challenges posed by nonlinearity,
multidimensionality, and extensive datasets, various neural network structures were configured
and experimented with. These configurations involved exploring different combinations of hidden
layers, neurons, and the number of outputs in the ANN. To achieve the highest success rate in accurate
data classification through experimentation, the final ANN was designed with perceptron units, as
depited in Figure 7. It featured three inputs corresponding to the three EMG patterns v, A, () and
included 12 hidden layers, each with 20 neurons. The supervised training process, conducted on
a standard-capability computer, took approximately 20-30 minutes, resulting in nearly 1% error in
pattern classification.
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Figure 7. Multi-layered ANN for EMG patterns recognition.

However, in the initial stages of the classification computations, with some mistuned adaptive
parameters, the classification error was notably higher, even with much deeper ANN structures, such
as 100 hidden layers with 99 neurons per layer. To facilitate the implementation, this work utilized
the C/C++ library Fast Artificial Neural Networks (FANN), generating extremely fast binary code
once the ANN was trained. In the training process of this research, about 50 datasets from separate
experiments for each type of muscular stimulus were collectively stored, each comprising several
thousand muscular repetitions. A distinct classification label was assigned a priori for each class type
within the patterns space. To demonstrate the reliability of the approach, 16 different stimuli per
ANN were established for classification and recognition, resulting in the ANN having 4 combinatory
outputs, each with two possible states. Figure 8 depicts mixed sequences encompassing all types of
EMG stimuli, with the ANN achieving a 100% correct classification rate.
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Figure 8. Sequence of mixed EMG stimuli overtime and ANN’s decimal output with 100% classification
success. a) right limb. b) left limb.

Moreover, Table 2 delineates the mapping relationship between the ANN's input, represented by
the EMG stimuli, and the ANN’s output linked to a swimming behavior for controlling the robotic
avatar.
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Table 2. ANN results of mapping EMG to robotic avatar swimming behaviors.

ANN’s EMG inputs y3 y2 yl y0 Swimming-style!
quiet 0 O 0 Sink
right hand 0 0 O 1 Buoyant
right thumb 0 O 1 0 Gliding
right index 0 © 1 1 Slow thrusting
right middle 0 1 0 O Medium thrusting
right ring 0o 1 o0 1 Fast thrusting
right little 0 1 1 0 Slow right maneuvering
left hand 0 1 1 1 Medium right maneuvering
left thumb 1 0 0 O Fast right maneuvering
left index 1 0 o0 1 Slow left maneuvering
left middle 1 0 1 0  Medium left maneuvering
left ring 1 0 1 1 Fast left maneuvering
left little 1 1 0 0 Speed up Right-turn
both index 1 1 0 1 Speed up Left-turn
right thumb-little 1 1 1 0 Slow down Right-turn

left thumb-little 1 1 1 1 Slow down Left-turn

! The variables 1 23 represent combinatory outputs, while subsequently yc corresponds to the decimal value.

5. Fuzzy-based Oscillation patterns generator

This section delineates the methodology utilized to produce electric oscillatory signals, essential
for stimulating the inputs of electromagnetic devices (solenoids) embedded within the mechanized
oscillator of the bio-robotic fish. The outlined approach for generating periodic electric signals
encompasses three key components: a) the implementation of a fuzzy controller; b) the incorporation
of a set of periodic functions dictating angular oscillations to achieve desired behaviors in the caudal
undulation of the fish; and c) the integration of a transformation model capable of adapting caudal
oscillation patterns into step signals, facilitating the operation of the dual-coil electromagnetic oscillator.

Another study [28] reported a different approach, a neuro-fuzzy-topological biodynamical
controller for muscular-like joint actuators. In the present research, an innovative strategy suggested
for the fuzzy controller involves the combination of three distinct input fuzzy sets: the artificial
neural network outputs transformed into Crisp sets, and the linear and angular velocities of the robot
derived from sensor measurements. Simultaneously, the fuzzy outputs correspond to magnitudes
representing the periods of time utilized to regulate the frequency and periodicity of the caudal
oscillations. This comprehensive integration enables the fuzzy controller to effectively process both
neural network-derived information and real-time sensor data, dynamically adjusting the temporal
parameters that govern the fish’s undulatory motions.

The depiction of the outputs from the EMG pattern recognition neural network is outlined in
Table 2. Each binary output in the table is linked to its respective crisp-type input fuzzy sets when
represented in the decimal numerical base y¢, as illustrated in Figure 9a. Moreover, Definition 2 details
the parametric nature of the input sets.
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Figure 9. Swimming behavior fuzzy sets. a) Crisp input (ANN’s output). b) Input of robot’s thrust
velocity observation. c) Input of robot’s angular speed observation.

Definition 2 (Input fuzzy sets). The output of the artificial neural network (ANN) corresponds to the fuzzy
input, denoted as yc, and only when it falls within the crisp set C = [0,1, . ..,15], the membership in the crisp

set is referred to as py (yc).
O/ Yc g C

14a
1, yce C. ( ‘

my(yc) = {

In relation to the sensor observations of the bio-robot, the thrusting velocity v [cm/s] and angular velocity w
[rad/s] exhibit S-shaped sets modeled by Sigmoid membership functions. This modeling approach is applied
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consistently to both types of input variables, capturing their extreme-sided characteristics. Let s (v) define the
sets labeled as “stop’and 'fast’in relation to the thrusting velocity v are elucidated by,

1
Hsf(0) = T oxoma (14b)

Likewise, for the sets designated as ‘left-fast’(Ir) and ‘right-fast’(r f) concerning the angular velocity w, the

S-shaped sets are modeled as,
1

= 1+eiv$h (14C)

.ulf,rf(w)

In addition, the rest of the sets in-between are any of the k™ Gauss membership functions (‘slow’, ‘normal’and
‘agile’), for the robot’s thrusting velocity with parametric mean-valued o and standard deviation o,

0—0

2
(o) =e \ %

and for its angular velocity (‘left-slow’, ‘no turn’and ‘right-slow’), with parametric mean-valued c and standard
deviation oy,

, (14d)

_ <w—v>2>
pe(w) =e (% , (14¢)

Therefore, the reasoning rules articulated in the inference engine have been devised by applying
inputs derived from Table 2, specifically tailored to generate desired outputs that align with the
oscillation periods T [s] of the fish’s undulation frequency (see Figure 10).

Definition 3 (v, w = any). For any linguistic value v, representing sensor observations of the fish’s thrusting
velocity,

v = any = stop or slow or normal or agile or fast .
Likewise, for any linguistic value w, representing sensor observations of the fish’s angular velocity,
w = any = left-fast or left-slow or no turn or right-slow or right-fast .

Therefore, the following inference rules describe the essential robot fish swimming behavior.

—_

if yc=sink and v = any or w = any then Ty, ; =too_slow
if yc=buoyant and v = any or w = any then Ty, | =too_slow
3. if yc=gliding and v =any and w = any then Ty =slow, T, =too_slow

N

4. if yc=slow_thrust and v =any and w = any then Ty =slow, T, ; =too_slow
5. if yc=medium_thrust and v =any and w =any then Ty =normal, T, ; =too_slow
6. if yc= fast_thrust and v =any and w = any then Ty =agile, T, ; =too_slow

7. it yc=slow-right_maneuvering and v =any and w =any then Ty, =too_slow, T, =normal
if yc= medium-right_maneuvering and v = any and w =any then Ty =slow, T, =agile, T) =too_slow
9. if yc=fast-right_maneuvering and v =any and w =any then Ty =normal, T, =fast, T =too_slow

*®

10. if yc=slow-left_maneuvering and v =any and w =any then Ty, =too_slow, T) = normal
11. if yc=medium-left_maneuvering and v =any and w =any then Ty =slow, T, =too_slow, T) =agile
12. if yc= fast-left_maneuvering and v =any and w =any then Ty =normal, T, =too_slow, T; =fast

13. if yc=speed-up_right-turn and v =any and w =any then Ty, =too_slow, T, =fast
14. if yc=speed-up_left-turn and v =any and w =any then Ty, =too_slow, T =fast
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15. if yc=slow-down_right-turn and v =any and w =any then Ty, =too_slow, T, = slow
16. if y=slow-down_left-turn and v =any and w =any then Ty, =too_slow, T) =slow

Hence, the output fuzzy sets delineate the tail undulation speeds of the robot fish across the
caudal oscillation period T [s], as illustrated in Figure 10. Notably, three identical output sets with
distinct concurrent values correspond to the periods of three distinct periodic functions forward: (f),
right (r) and left (1); as subsequently defined by equations (22a), (22b), and (22c).
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06k / % ) ’ too slow .
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a)

Figure 10. Three identical output fuzzy sets depicting the oscillation period of the caudal tail’s
undulation.

The inference engine’s rules dictate the application of fuzzy operators to assess the terms involved
in fuzzy decision-making. As for the thrusting velocity fuzzy sets, where v = any was previously
established, and by applying Definition 3 the fuzzy operator is described by

max

Ho & = Iyrzng (Vstopr Mslowr Wnormals Hagilers Vfust) .
Likewise, the angular velocity fuzzy sets, where previously w = any was stated, by applying the
second part of Definition 3, the following fuzzy operator is described by

max

Ho ™ = Pr‘l:gz (.uleft—fusti Hieft—slows Hnoturn, Hright—slows Vright—fust) .

Therefore, according to premise (v = any or w = any), the following fuzzy operator applies,

max max max

How = Hl{ggﬁw (Mo He™)
Essentially, the fuzzification process applies strictly similar for the rest of the inference rules, according
to the following Proposition,

Proposition 5 (Combined rules y}). The general fuzzy membership expression for the it" inference rule that
combines multiple inference propositions is

pi = omin G (ve) = 1 (0,0)) (15)
In any Crisp set, each y; attains a distinct value of 1, irrespective of the corresponding inference rule indexed
by i. This value aligns with the i*" entry in the neural network outputs outlined in Table 2. Additionally, k

represents a specific fuzzy set associated with the same input.

Executing the previously mentioned proposition, Remark 5 provides a demonstration of its
application.


https://doi.org/10.20944/preprints202401.0847.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2024 doi:10.20944/preprints202401.0847.v1

19 of 41

Remark (Proposition 5 example). Let us consider rule i = 1, where yc, = 'sink” and either (v = 10.0 cm/s
or w = 0.0 rad/s). Thus, articulated in the context of the resulting fuzzy operator,

i = i, (o(ve) maxpon(11)) = min | (1) =1,
Here, 11,(10.0) = 1 and p,(0.0) = 1. Based on the earlier proposition, the resulting u; = 1, and given that
rule 1 indicates an output period T = "too-slow’, its inverse outcome T(u7) = 6.0 seconds. This outcome
is entirely accurate, because the fish’s swim undulation will slow down up to 6s which is the slowest period
oscillation.

Moving forward, during the defuzzification process, the primary objective is to attain an inverse
solution. The three output categories for periods T include ‘forward’, ‘right’, and ‘left’, all sharing
identical output fuzzy sets of T (Figure 10). Nevertheless, the output fuzzy sets consist of two categories
of distributions: Gauss and sigmoid distribution sets, as outlined in Definition 4. Regarding the Gauss
distributions, their functional form is specified by:

Definition 4 (Output fuzzy sets). The membership functions for both extreme-sided output sets are defined as
fast'with ¢ and “too slow with pys, such that

1

wrs(T) = TFetTire (16)

Here, T [s] denotes the period of time for oscillatory functions, with the slope direction determined by its sign.
The parameter c represents an offset, and k is the numerical index of a specific set.

Furthermore, the membership functions for three intermediate output sets are defined as ‘agile’with p,,
‘normal’with py,, and ‘slow’with s, such that:

()
(o,
pans(T) =e \ T /, (17)

Here, Ty, represents the mean value, and o, denotes the standard deviation of set k, with k serving as the numeric
index of a specific set.

In accordance with Definition 4, any p; possesses a normalized membership outcome within
the interval y € [0,...,1]. The inverse sigmoid membership function, denoted as T, € RV py, is
determined by the general inverse expression:

Tww=¢m(1i%). (18)
Hk

Similarly, the inverse Gaussian membership function, where T, € RV yy, is defined by the inverse

function:
T(ux) = px — v/ =207 In(py). (19)

Hence, exclusively for the j* category among the output fuzzy sets affected by the fuzzy inference
rule essential for estimating the value of T, the Centroid method is employed for deffuzification
through the following expression:

Trrp=—~ (20)
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or more specifically,

WET () + uaT () + un T () + psT(pg) + pfs (pfs)
R I A T 8

Tf 1 - 7 (2 1 )

For terms T(ps) and T(pts), the inverse membership function (18) is applicable, whereas for the
remaining sets in the j* category, the inverse membership (19) is applied.

The work [29] reported a CPG model to control a robot fish’s motion in swimming and crawling,
and let perform different motions influenced by sensory input from light, water, and touch sensors.
Oscillators and Central Pattern Generators (CPGs) are closely related concepts. Oscillators are
mathematical or physical systems exhibiting periodic behavior and are characterized by the oscillation
around a stable equilibrium point (limit cycle). In the context of CPGs, these are neural networks
that utilize oscillators that create positive and negative feedback loops, allowing for self-sustaining
oscillations and the generation of rhythmic patterns, particularly implemented in numerous robotic
systems [30]. CPGs are neural networks found in the central nervous system of animals (e.g. fish
swimming [31]), that generate rhythmic patterns of motor activity and are responsible for generating
and coordinating optimized [32] repetitive movements.

The present research proposes a different approach from the basic CPG model, and as a difference
from other wire-driven robot fish’s motion approaches [33], this study introduces three fundamental
undulation functions: forward, right-turning, and left-turning. These functions are derived from
empirical measurements of the robot’s caudal fin oscillation angles. However, a distinctive behavioral
undulation swim is achieved by blending these three oscillation functions, each incorporating
corresponding estimation magnitudes derived from the fuzzy controller outputs. The formulation
of each function involves fitting empirical data through Fourier series. As a difference from other
approaches on CPG parameters adjustment[34], the preceding fuzzy outputs obtained from (21) to
estimate the time periods T¢, Ty, T) play a pivotal role in parameterizing the time periods for the
periodic oscillation functions, as outlined in Proposition 6.

Proposition 6 (Oscillation patterns function). Three fundamental caudal oscillation patterns, designed to
generate swimming undulations, are introduced, each characterized by 11 pre-defined numerical coefficients.
These patterns are described by amplitude functions, denoted as (¢, T), where ¢ represents oscillation angles,
and the time period T is an adjustable parameter.

The undulation pattern for forward motion is provided by the following function

2 2 2
Pr(¢, Ty) = 0.0997 4 0.3327 cos [ = | —0.1297sin | 9= | — 0.5760cos ( 29— | +
Ty Ty Ty
2 2 2 2
0.3701sin (297 | —0.1431 cos | 3¢=2 | +0.1055sin | 3¢=" | — 0.0870cos [ 4p=" | +  (22a)
Ty Ty Ty Ty
2 2 2
0.06323 sin <4¢"> — 0.0664 cos (54;”) — 0.0664sin <5¢"> .
T T T
f f f
Likewise, the undulation pattern for right-turn motion is given by the function,
21 ) 27 27
Py (¢, Tr) = 0.3324 4+ 0.1915 cos ([)? + 0.0622 sin (pT + 0.4019 cos 2¢T +
1
2 2 2 2
0.2920 sin (24>;) — 0.264cos (34’;) — 0.3634sin (34’;) — 0.0459 cos (44>;) (22b)

2 2
—0.1413sin (4¢;> +0.0665 sin (5q>,17f> .
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Finally, the undulation pattern for left-sided turning motion is established by expression:

2 2 2
(¢, T;) = —0.1994 + 0.125 cos (4)77) — 0.0622sin (¢>T7T) +0.3354 cos (24>;) -
! I !

0.292sin (24)2;) — 0.3305 cos (34)2;) +0.3634 sin (34)?) —0.1124 cos (44??) + (22¢)
l l l 1

2 2 2
0.1413sin (44»,17) — 0.0664 cos(54>Tn) +0.2659 sin(5can).
1 1 1

The approaches to forward, right-turn, and left-turn based on the findings of Proposition 6 are
illustrated in Figure 11. Additionally, a novel combined oscillation pattern emerges by blending these
three patterns (23), each assigned distinct numerical weights through the neuro-fuzzy controller.

Y(p, Tr, Tr, Tr) = (P, Tr) + ¢ (9, Tr) + 91 (¢, Th). (23)

The proposed robotic mechanism features a multilink-based propulsive spine, driven by an
electromagnetic oscillator composed of a pair of antagonistic solenoids that necessitate a synchronized
sequence of electric pulses (see Figure 12b). The amplitudes generated by ¢(¢, T, Ty, T;) in Equation
23 essentially represent the desired undulation pattern for the robotic fish’s caudal fin. However, these
oscillations are not directly suitable for the inputs of the coils. To address this, our work introduces a
decomposition of 1 into two step signals centered around a stable equilibrium point (limit cycle), one
for the right coil (positive with respect to the limit cycle) and another for the left coil (negative with
respect to the limit cycle). The coil’s step function, either for the right-sided or left-sided coil is given
by s, , taken the equilibrium point as their limit value ¢,

(o, y<¢
Sr,l{ll l[J>€ (24)

In contrast to the work presented in [35] focusing on the swimming modes and gait transition of
a robotic fish, the current study, as depicted in Figure 11, introduces a distinctive context. The three
oscillatory functions, ¢, , are displayed both overlapped and separated, highlighting their unique
decoupled step signals. Assuming ¢ = 0 for all ¢ in each case, in Figure 11a, ¢, = ¢y = 0, with T, ; > 6;
in Figure 11b, Y=~ 0, with Tf,l > 6; and in Figure 11c, Yr=19 = 0, with Tf,r > 6. For a more
comprehensive understanding, Figure 12b presents the electromechanical components of the caudal
motion oscillator.

doi:10.20944/preprints202401.0847.v1
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Figure 11. The three oscillation functions paired with dual coil step patterns: a) Forward undulations.
b) Right-turn undulations. ¢) Left-turn undulations.
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6. Robot Fish Biomechanical Model

This section introduces the design of the robotic fish mechanism and explores the model of the
underactuated physical system to illustrate the fish undulation motions. The conceptualization of the
proposed system is inspired by an underactuated structure featuring a links-based caudal spine with
passive joints, utilizing helical springs to facilitate undulatory locomotion (see Figure 12a). The robotic
fish structure introduces a mechanical oscillator comprising a pair of solenoids activated through
coordinated sequences of step signals, as described by (24). Essentially, the electromagnetic coils
generate antagonistic attraction/repulsion linear motions, translating into rhythmic oscillations within
a mechanized four-bar linkage (depicted in Figure 12b). This linkage takes on the form of a trapezoid,
composed of two parallel rigid links and two lateral linear springs functioning as antagonistic artificial
muscles. Moreover, beneath the electromagnetic oscillator, there is a ballasting device for either
submersion or buoyancy (Figure 12c). The robot’s fixed reference system consists of the X axis, which
intersects the lateral sides, and the Y axis aligned with the robot’s longitudinal axis.
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Figure 12. Model of the robot fish mechanism, illustrating: a) Top view of the musculoskeletal system.

b) Top view of the robot’s head with antagonistic muscles-based electromagnetic oscillator. c) Side
view of the ballast system device positioned beneath the robot’s head.

In Figure 12a, the electromagnetic oscillator of the robotic avatar responds to opposing coordinated
sequences of step signals. The right-sided (R) and left-sided (L) solenoids counteract each other’s
oscillations, generating angular moments in the trapezoid linkage (first vertebra). Both solenoids are
identical, each comprising a coil and a cylindrical neodymium magnet nucleus. The trapezoid linkage,
depicted in Figure 12b, experiences magnetic forces =& f,s,, at the two neodymium magnet attachments
situated at a radius of r,s, resulting in two torques, T,s and T, with respect to their respective rotation
centers. As input forces =+ f,s,, come into play, the linear muscle in its elongated state stores energy.
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Upon restitution contraction, this stored energy propels the rotation of the link r;, which constitutes
the first vertebra of the fish.

Furthermore, the caudal musculoskeletal structure, comprising four links (¢1, £2, £3, £4) and three
passive joints (01, 02, 03), facilitates a sequential rotary motion transmitted from link 1 to link 4. This
transmission is accompanied by an incremental storage of energy in each helical spring that is serially
connected. Consequently, the last link (link 4) undulates with significantly greater mechanical
advantage. In summary, a single electrical pulse in any coil is sufficient to induce a pronounced
undulation in the swimming motion of the robot’s skeleton.

As for the ballasting control device situated beneath the floor of the electromechanical oscillator,
activation occurs only when either of two possible outputs from the artificial neural network (ANN) is
detected: when y¢ equals 'sink’ or ‘buoyancy.” However, the fuzzy nature of these inputs results in a
gradual slowing down of the fish’s undulation to its minimum speed. Additionally, both actions are
independently regulated by a dedicated feedback controller overseeing the ballasting device.

Now, assuming knowledge of the input train of electrical step signals s, ; applied to the coils, let us
derive the dynamic model of the biorobot, starting from the electromagnetic oscillator and extending
to the motion transmitted to the last caudal link. Thus, as illustrated in Figure 12ab, the force f [N]
of the solenoid’s magnetic field oscillator is established on either side (right, denoted as R, or left,
denoted as L),

B2A
21,

f= (25)
in this context, A [m?] represents the area of the solenoid’s pole. The symbol y, denotes the magnetic
permeability of air, expressed as 1, = 47 x 1077 H/m (henries per meter). Hence, the magnetic field
B (measured in Teslas) at one extreme of a solenoid is approximated by:

_ MoiN

B T

(26)

where i represents the coil current [A], N is the number of wire turns in a coil, and / denotes the coil
length [m]. Furthermore, a coil’s current is described by the following linear differential equation as a
function of time ¢ (in seconds), taking into account a potential difference v (in volts):

1 T
i:—/vw+@ 27)
L Jo

here, L represents the coil’s inductance (measured in henries, H) with an initial current condition
denoted as ip. Additionally, the coil’s induction model is formulated by:

_ yoNZA

k I

(28)

In essence, this study states that both lateral solenoids exhibit linear motion characterized by an
oscillator force f,s. This force is expressed as:

i2 Al

f 0s — m (29)

and due to the linear impacts of solenoids at both sides R and L (refer to Fig. 12a), the first bar of the
oscillator mechanism generates a torque, expressed as:

Tos = (fos)(ros)/ (30)

it is theorized that the restitution/elongation force along the muscle is denoted as f;; (R or L), with
this force being transmitted from the electromechanical oscillator to the antagonistic muscle in the
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opposite direction (refer to Fig. 12b). This implies that the force generated from the linear motion
solenoid in the oscillator’s right-sided coil, denoted as f,s,, is applied at point R and subsequently
reflected towards point L with an opposite direction, represented as — f,s, . Similarly, conversely from
the oscillator’s left-sided solenoid, the force fys, is applied at point L and transmitted to point R as
— fos, - For fos; appliedinL,

me _ _fosL .

~ cos(ag)’

— —fosg
fm = Sinar)’ G1)
Hence, the angles ag | assume significance as the forces acting along the muscles f;, differ, resulting in
distinct instant elongations x,, (f). Consequently, the four-bar trapezoid-shaped oscillator mechanism
manifests diverse inner angles, namely 0; », B, and 71, as illustrated in Fig. 12b.

Thus, prior to deriving an analytical solution for «, it is imperative to formulate a theoretical model
for the muscle. In this study, a Hill’s model is adopted, as depicted in Figure 12a (on the right side).
The model incorporates a serial element SE (overdamped), a contractile element CE (critically damped),
and a parallel element PE (critically damped), each representing distinct spring-mass-damper systems.

The generalized model for the antagonistic muscle is conceptualized in terms of the restitution
force, and it is expressed as:

fm = fse — (fce + frE), (32)

Therefore, by postulating an equivalent restitution/elongation mass 1, associated with instantaneous
weight-force loads w (such as due to hydrodynamic flows), the preceding model is replaced with
Newton’s second law of motion,

fm = my¥sp — my¥cp — MmyXpE. (33)

Furthermore, through the independent solution of each element within the system in terms of
elongations, the SE model can be expressed as:

xsp(t) = speMt + spel2t, (34)

Here, s1 5 represent arbitrary constants representing damping amplitude. The terms A; , denote the
root factors,
2/(sEV2 _ gksE
( My ) 4 My
My 2
Here, the factors A ; are expressed in relation to the damping coefficient csg (in kg/s) and the elasticity
coefficient kg (in kg/s?).
Similarly, for the contractile element CE, its elongation is determined by:

(35)

_CSCE
XCE(f) = (Cl + Czt)e mw t, (36)

With amplitude factors ¢; ; and damping coefficient ccr, a similar expression is obtained for the parallel
element PE:

xpe(t) = (p1+ Pzt)efﬁtr (37)

with amplitude factors p; , and damping coefficient cpg, the next step involves substituting these
functional forms into the general muscle model,

d? d? d?
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such that the complete muscle’s force model f;, formulated by
2 2 2
Sl)\ SopA C —c —c —c
fu(t) ==LeMf  Z=2eMf 4 o) CEeimn’ — cyccpem’ — cpccpem’+
mw My My
3
nSE tew! + pyLEemn’ — pycppemnt — pycppem!+ (39)
w

2 —C
Pz(%)te%t-
Subsequently, simplifying the preceding expression leads to the formulation presented in Proposition
7.

Proposition 7 (Muscles force model). The solution to the muscle force model, based on a Hill’s approach, is
derived as a time-dependent function fy, (t) encompassing its three constituent elements (serial, contractile, and
parallel). This formulation is expressed as:

fm(t) =

My w

—°PE
<p1 pat CPE —2P2> cppe e !
m

w

s1AZeM! +s Azetat c1 + oot —°CE
Lidsl 272 + ( ! 2 CCE 2C2> ccpe ™w t+
(40)

Thus, without loss of generality, considering a muscle model characterized by elongation x,, and
a force-based model f;;, we proceed to derive the passive angles of the oscillator and the output forces
fx and fy for ¢;.

Under initial conditions, the trapezoid oscillator bars are assumed to have 6y = 0°, aligning the
four-bar mechanism with the X axis. As the bars rotate by an angle 6; due to solenoid impacts at
points R or L, the input bar of the oscillator with a radius of 7,s undergoes an arc displacement s;.
Simultaneously, the output bar of shorter radius r; experiences a displacement rate of s, such that:

5 = (f) . (41)

the arc displacement at points R or L is given by s1 = ros00s. Consequently, the rotation angle of the
input oscillator is expressed as:
s
Oos = . (42)
Tos
Therefore, by formulating this relationship in the context of forces and subsequently substituting the

newly introduced functions, the resulting expression is

= - / e (43)

Here, i denotes the linear acceleration of either point R or L along the robot’s Y axis. By replacing the
solenoid’s mass-force formulation,

Bos mros/ fosd Zmros (44)

Hence, the functional expression for s; takes the form

s fos t2
= . 45
%2 2mr2, (45)
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Without loss of generality, the inner angle 6, of the oscillator mechanism (refer to Figure 12b) is derived
as:

91 = g + 905- (46)

Initially, when the oscillator bars are aligned with respect to the X axis, an angular displacement
denoted by 6; occurs as a result of the transfer of motion from the solenoid’s tangential linear motion
to the input bar. Similarly, in the output bar, the corresponding angular displacement is represented by
02,

6 =T+ (04 Ag), (47)

here, Ay signifies a minute variation resulting from motion perturbation along the various links of
the caudal spine. The selection of the & operator depends on the robot’s side, whether it is denoted
as R or L. As part of the analysis strategy, the four-bar oscillator was geometrically simplified to half
a trapezoid for the purpose of streamlining deductions (refer to Figure 12b). Within this reduced
mechanism, two triangles emerge. One triangle is defined by the parameters r,s, ¢, d, while the other
is characterized by x,,(t), ¢, 7s, where ¢ serves as the hypotenuse and the sides d, 7,5, and 75 remain
constant. Consequently, the instantaneous length of the hypotenuse is deduced as follows:

02 =12 +d? — 2drys cos(6;), (48)
Upon determining the value of ¢, the inner angle 1 can be derived as follows:

Fos2=d2 402 —2¢d cos( ) >

Therefore, by isolating 71,

_ Tos — 02 — d?
Y1 = arccos (—ngd (50)
Until this point, given the knowledge of v; and 65, it is feasible to determine the inner complementary

angle 7, through the following process:

Y2 =0 — 71, (61)

Subsequently, the angle formed by the artificial muscle and the output bar can be established according
to the following principle:
sin(y2)  sin(p)

pr— 2
X I 52)
thus, the inner angle S is
B = arcsin (f sin('yz)> , (53)
Xm
or alternatively, an approximation of the muscle length is
o = ¢50072), (54)
sin B

this is the mechanism through which the input bar transmits a force f,,, as defined in expression (31),
from the tangent f,s to the output bar, achieving a mechanical advantage denoted as f;;,,

fmy = (ros>fm1- (55)

s

Hence, in accordance with the earlier stipulation in expression (31), Definition 5 delineates the
instantaneous angles « R,L-
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Definition 5 (Angles ag ;). The instantaneous angle a, expressed as a function of the inner angles of the
oscillator, is introduced by:

aRr,L = PrRL— 01y, - (56)

It is noteworthy that, owing to the inertial system of the robot, the longitudinal force output
component f, aligns with the input force fys in direction. Consequently, for a right-sided force, we
have agr = Br — 01,, where:

_ (Tos sin(ag)
and
r
fo = (r) fosg: (57b)
S
Likewise, for the left-sided a; = B — 0y,
_ (Tos sin(ay) (582)
fu = Ts Josg cos(ay) a
as well as
T
fu = (:S) fos.- (58b)
S

In this scenario, an inverse solution is only applicable for fy, , with no necessity for determining
fyr- Consequently, the mechanical advantage transferred between the input and output bars can be
expressed by a simplified coefficient.

. Tos
= —. 59
K Py (59)

Furthermore, through the utilization of the following trigonometric identity,

sin(p — 6)

cos(B—0,) = tan(B — 61) (60)

can substitute and streamline the ensuing system of nonlinear equations by solving them
simultaneously. Additionally, let 6; be defined as:

2
7T Ts f ospt
O, =5t ——5—. 61
ke = 3 2mr3, (61)
Hence, the simultaneous nonlinear system is explicitly presented solely for the force components along
the X axis:

far = Kfosy tan(ﬁR - GlR) (62a)

and
fry = Kfosg tan(BL — 01,). (62b)

Therefore, for the numerical solution of the system, a multidimensional Newton-Raphson approach is
employed as outlined in the provided solution:

s A
_ foWIIj _foF{
BRis1 = PR, — Ofsg 0fsp  Ofag Ofyy

9Br 9BL 9BL 9Br

(63a)
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and of of
f XL ag }; f XR a;;(;
Bri, =P — Ofig Ofc, _ Ofsg Ofx, (63b)
9fr 9pL  9BL IPr
Thus, by defining all derivative terms to finalize the system,
9fxx ( —O1z )
=K ——, 64a
aﬁR fosR COSZ(‘BR - 91R) ( )
9fg
=0, 64b
91 (©40)
fx
=0, 64c
9x (649
Ofx, ( —01, )
=K — | . 64d
a,BL fOSL COSZ(‘BL o glL) ( )
Therefore, by subsequently organizing and algebraically simplifying,
fx T tan(Br — 01, ) cos?(Br — 01,)
_ R aﬁL o R—% R— %
:BRt+1 - :BRt afo fx; ,BRt + RQlR R (65a)
9Br 9PL
and
% tan(py, — 61, cos? (B — 01, )
XL an 1,) cos”(Br, — 01
B, = Br, — of a'ljrf =P, + Le - (65b)
R %Jxp 1L
9pr 9pL

The objective is to achieve numerical proximity, aiming for 8;,; ~ B;. Consequently, through this
inverse solution, the lateral force components of the first spinal link, denoted by f, are intended to
be estimated because they are perpendicular to the links and produce the angular moments at each

passive joint.
2
T rsfosLt
fx fos, tan | PR,y — 7+ 2mr2,
£y = fR =x- et | (66)
x T sJosg
L fUSR tan ﬁLH»l -2 27717’%5

Thus, given that the torque of the trapezoid’s second bar is 7; = fs7s (see Figure 12b), we establish
a torque-angular moment equivalence, denoted as 7; = M;. Leveraging this equivalence and the prior
understanding of the torque T; acting on the second bar of the trapezoid, mechanically connected to
the first link /1, we affirm their shared angular moment. Consequently, the general expression for the
tangential force f applied at the end of each link /j is:

fe= T (67)

Yet, considering the angular moment M for each helical-spring joint, supporting the mass of the
successive links, let’s introduce equivalent inertial moments, starting with I, = I} + I, + I3 + I4.
Subsequently, we define I, = I + I3 + Iy, I; = I3 + I4, and finally, I;. Thus, in the continuum of
the caudal spine, the transmission of energy to each link is contingent upon the preceding joints, as
established by:

Mi= L6, M =IL6, Ms=IL06; M, = L6y 69)

Each helical spring, connecting pairs of vertebrae, undergoes an input force f = —kx, directly
proportional to the angular spring deformation indicated by elongation x. Here, k [kg m?/s?] represents
the stiffness coefficient. External forces result in an angular moment, given by T = —kf, where torque

doi:10.20944/preprints202401.0847.v1
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serves as an equivalent variable to angular momentum, such that Ix = —kf. Consequently, when
expressing the formula as a linear second-order differential equation, we have:

.k ..
0+ TG =0, (69)

Here, §;, represents undulatory accelerations arising from external loads or residual motions along
the successive caudal links, which are detectable through encoders and IMUs. Assuming an angular
frequency w? = k/I, a period p = 271v/I/k, and moments of inertia expressed as I, = rZmy, the
general equation is formulated as follows:

My = I, b, (70)
where 0y is replaced by the helical spring expression (69) to derive

ki

My = I, (éLk — 1) ) (71)
93

By algebraically extending, omitting terms, and rearranging for all links in the caudal spine, we arrive
at the following matrix-form equation:

M, I, 0 0 O 01, k164

My| _ |0 Iy O 0| |0, | [kt 72)
M3 0 0 L, O 0L, k305 | -

My 0 0 0 I, 0, ka4

Hence, in accordance to expression (67), the tangential forces exerted on all the caudal links of the
robotic fish are delineated by the following expression:

mal k
fn 0 IO 0 0 oL, o 1? 0 o1
fo| _ 0 7 0 0] O, | _ 0 7 0 6, 73)
fis 0 0 1 oo O, 0 0 # 0 (6
fia 0o o0 o ) \u 0 0 7 \%
Alternatively, the last expression can be denoted as the following control law:
" M(6;, — 6
f=Mo, Qo = M=) g (74)

th — 1

Where f = (fi1, fio, fi3, fia) |, M represents masses dispersion, and § = (61,061,060, 60 4)T denotes the
vector of angular accelerations for the caudal vertebrae, including external loads. Additionally, Q
stands for the matrix of stiffness coefficients. Therefore, the inverse dynamics control law, presented in
a recursive form, is: )

fh —h

éLrH = éL; + (f + Qet) . (75)

Finally, for feedback control, both equations are simultaneously employed within a computational
recursive scheme, and angular observations are frequently derived from sensors on both joints:
encoders and IMUs.

7. Ballasting Control System

This section delineates the integration of the ballasting control system, crafted to complement the
primary structure of the biorobot. It introduces the ballasting model-based control system, selectively
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activated in response to the artificial neural network’s (ANN) output, particularly triggered when the
ANN signals “sink” or ‘buoyancy.” Figure 13a visually depicts the biorobot’s ballasting system, while
Figure 13b presents a diagram illustrating the fundamental components of the hydraulic piston, crucial
for control modeling.

Plunger
b)

Figure 13. Ballasting system of the robot fish. a) Detailed 3D model of the robot fish with the ballast
device positioned beneath its floor. b) Components of the basic ballasting device designed for modeling
and control purposes.

The core operational functions of the ballasting device involve either filling its container chamber
with water to achieve submergence or expelling water from the container to attain buoyancy. Both
actions entail the application of a linear force for manipulating a plunger or hydraulic cylindrical
piston, thereby controlling water flow through either suction or exertion. Consequently, the volume of
the liquid mass fluctuates over time, contingent upon a control reference or desired level marked as H,
along with quantifying a filling rate u(#) and measuring the actual liquid level h(t).

Hence, we can characterize the filling rate u(t) as the change in volume V with respect to time,

expressed as
dv(t)

S =), (76)
and assuming a cylindrical plunger-chamber with radius r and area A = 7172, the volume is expressed
as

V(t) = Ah(t), (77)

Here, h(t) represents the actual position of the plunger due to the incoming hydraulic mass volume.
Consequently, the filling rate can also be expressed as

u(t) = k(H — h(t)). (78)

Consider k as an adjustment coefficient, and let H be the reference or desired filling level. The
instantaneous longitudinal filling level is denoted as h(t). By substituting the previous expressions
into the initial equation (76), we derive the following first-order linear differential equation:

dh(t)

Adt

= k(H — h(#)). (79)

To solve the aforementioned equation, we employ the integrating factor method, such that

h(t) + %h(t) = %H. (80)
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In this instance, the integrating factor is determined as follows:

ey

u(t) = el 5 = (81)
Thus, by applying the integrating factor, we effectively reduce the order of derivatives in the subsequent

steps,
i(e) + e K = ek, (82)

Through algebraic simplification of the left side of the aforementioned expression, the following result
is determined

!/
(h(t)e%) - %He% (83)
Following this, by integrating both sides of the equation with respect to time,
/ (h(t)e%), dt = /EHe%dt (84)
t t A ’

where the expression on the left side undergoes a transformation into
h(t)ea = —H [ eAdt, (85)
and the right side of the equation, once solved, transforms into
h(t)ed = Hek +c. (86)
Now, to obtain the solution for k(t), it is isolated by rearranging the term e
h(t) = H+ce 4 (87)

For initial conditions where h(ty) = 0 indicates the plunger is completely inside the contained chamber
at the initial time typ = 0 s, the integration constant c is determined as

0=H+ce (88)
Therefore, the value of ¢ takes on c = —H, and substituting it into the previous obtained solution,
h(t) = H(1—e #). (89)

In addition, considering that the required force of the piston f, is hence given by:

fo= ()5 + it pa, 90

where f;. is the friction force of the piston in the cylindrical piston, and p, A refers to the water pressure
at that depth over the piston’s entry area. The instantaneous mass considers the piston’s mass m, and
the liquid mass of the incoming water m,:

m(t) = me + mg, (91)

where the water density is J, = "%‘ and V, = nrzh(t), thus completing the mass model:

okt

m(t) = me + 6P H(1 — e 4). (92)
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Therefore, the force required to pull/push the plunge device is stated by the control law given as
d
fe= (mg—l—éamsz(l —e*%)> d—?—l—fk—i—paA. (93)

8. Conclusion and future work

In summary, this study introduces a cybernetic control approach integrating electromyography,
haptic feedback, and an underactuated bio-robotic avatar fish. Human operators control the avatar
fish using their muscular stimuli, eliminating the need for handheld apparatus. The incorporation of
fuzzy control, combining EMG stimuli with motion sensor observations, has proven highly versatile in
influencing the decision-making process governing the fish’s swimming behavior.

The implementation of a deep neural network achieved remarkable accuracy, surpassing 98%, in
recognizing sixteen distinct electromyographic gestures. This underscores the system’s robustness,
effectively translating human intentions into precise control commands for the underactuated robotic
fish.

This manuscript reports results from experimental EMG data classification and recognition using
a multilayered artificial neural network. The oscillation pattern generator provided real signals
to an experimental prototype of the underactuated robotic fish with its electromagnetic oscillator.
Additionally, the fuzzy controller and the fish’s dynamical control model were validated through
computer simulations.

While the introduction of haptic feedback and interface is conceptual in the proposed architecture,
it represents a promising avenue for future research, aiming to enhance remote operation with
immersive experiences. The advancements showcased in this work hold significant potential for
future applications in underwater exploration through immersive cybernetic control.
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Appendix A. EMG stimuli patterns
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Figure A1. Thumbs pattern space components: filters y,A and Q.
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Figure A2. Indexes pattern space components: filters ,A and Q.
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Figure A3. Middle fingers pattern space components: filters ,A and Q.
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Figure A4. Ring fingers pattern space components: filters ,A and ().
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Figure A5. Little fingers pattern space components: filters ,A and Q.
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