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Abstract: This study introduces a cybernetic control and architectural framework for a robotic fish

avatar operated by a human. The behavior of the robot fish is influenced by the electromyographic

(EMG) signals of the human operator, triggered by stimuli from the surrounding objects and scenery.

An deep artificial neural network (ANN) with perceptrons classifies EMG signals, discerning

the type of muscular stimuli generated. The research unveils a fuzzy-based oscillation patterns

generator (OPG) designed to emulate functions akin to a neural central pattern generator, producing

coordinated fish undulations. The OPG generates swimming behavior as an oscillation function,

decoupled into coordinated step signals, right and left, for a dual electromagnetic oscillator in the fish

propulsion system. Furthermore, the research presents an underactuated biorobotic mechanism of

the subcarangiform type, comprising a two-solenoid electromagnetic oscillator, an antagonistic

musculoskeletal elastic system of tendons, and a multi-link caudal spine composed of helical

springs. The biomechanics dynamic model and control for swimming, as well as the ballasting

system for submersion and buoyancy, are deduced. Experimental results encompass EMG pattern

recognition, OPG, and coordinated fish locomotion, with additional topics illustrated through

numerical simulations.

Keywords: biorobotics; cybernetics; neural-network, robot-fish; EMG-signals; robotic avatar;

dynamic-control

1. Introduction

Avatar robotics involves remotely controlling a robot to interact with the physical environment

on behalf of a human operator, enabling them to virtually embody the robot and perform actions as if

physically present. This transformative technology extends human presence to remote or hazardous

locations, with applications spanning space exploration, disaster response, remote inspection,

telemedicine, and diverse domains. Leveraging progress in robotics, teleoperation systems, sensory

feedback interfaces, and communication networks, avatar robotics enhances human capabilities,

ensures safer operations, and broadens human presence and expertise in various fields.

Furthermore, cybernetic control functions as a regulatory system utilizing feedback mechanisms

to uphold stability and achieve desired outcomes. The incorporation of feedback loops is central to

cybernetic control systems, continuously monitoring a system’s behavior, comparing it to a reference

state, and generating corrective actions to address any deviations. This iterative feedback process

facilitates self-regulation and goal attainment within the system. The application domains of cybernetic

control span engineering, biology, and psychology, with the goal of enabling robots to interact with

humans in more intuitive ways. This involves adapting their actions and responses based on human

feedback and behavior, cultivating a more seamless and responsive human-robot interaction.
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Cybernetic biorobotics, at its core, is an interdisciplinary frontier that harmonizes principles

from cybernetics, biology, and robotics. Its primary mission is the exploration and development of

robots or robotic systems intricately inspired by the marvels of biological organisms. This field is

driven by the ambition to conceive robots capable of mimicking and integrating the sophisticated

principles and behaviors observed in living entities. Researchers draw inspiration from the intricate

control systems of biological organisms and this creative synthesis results in the creation of robots

characterized by adaptive and intelligent behaviors, thus mirroring the intricacies found in the natural

world. Bioinspired robotics, a central focus within this discipline, involves distilling the fundamental

principles and behaviors intrinsic to biological entities and skillfully incorporating them into the design

and control of robotic systems. It has the potential to advance the development of robots endowed

with locomotion and manipulation capabilities akin to animals, as well as robots capable of adapting

to dynamic environments or interacting with humans in more natural and intuitive ways. Moreover,

research in cybernetic biorobotics can offer valuable insights into comprehending biological systems,

fostering advancements in disciplines like neuroscience and biomechanics. Furthermore, remote

cybernetic robots may rely on haptic systems as essential interfaces. A haptic system, characterized by

its ability to provide users with a sense of touch or tactile feedback through force, vibration, or other

mechanical means, comprises a haptic interface and a haptic rendering system. Collaboratively, these

components simulate touch sensations, enabling users to engage with virtual or remote environments

in a tactile manner.

This research introduces a control and sensing architecture that integrates a cybernetic scheme

based on the recognition of electromyographic control signals, governing a range of locomotive

behaviors in a robotic fish. Conceptually, the human operator receives feedback signals from the

sensors of the bio-robotic avatar, conveying information about its remote environment. The proposed

approach stands out due to its key features and contributions, which include:

1. The exposition of an innovative conceptual cybernetic fish avatar architecture.
2. The creation of an EMG data filtering algorithm, coupled with a method for extracting, classifying,

and recognizing muscular patterns using a deep ANN, serves as a cybernetic interface for the

governance of the fish avatar.
3. The development of a fuzzy-based oscillation patterns generator (OPG) designed to generate

periodic oscillation patterns around the fish’s caudal fin. These coordinated oscillations are

decoupled into right and left step functions, specifically crafted to input into a lateral pair of

electromagnetic coils, thereby producing undulating swimming motions of the robot fish.
4. The conception of a bioinspired robotic fish mechanism is characterized by the incorporation of

underactuated elements propelled by serial links featuring helical springs. This innovative design

is empowered by a dual solenoid electromagnetic oscillator and a four-bar linkage, reflecting a

novel approach to bioinspired robotics.
5. The derivation of closed-form control laws for both the undulation of the underactuated caudal

multilink dynamics and the ballasting system.

Section 2 provides a comprehensive discussion on the comparative analysis of the current state

of the art. Section 3 provides a detailed description of the proposed architecture cybernetic system

model. In Section 4 presents an approach for filtering electromyography (EMG) data and delves into an

in-depth discussion of a classifier based on deep ANN for the recognition of hand-motion EMG stimuli

patterns. Section 5 presents the development of a fuzzy-based oscillation patterns generator. Section 6

details the robot’s mechanism parts and its dynamic model. Section 7 focuses on the development of a

feedback control for the fish’s ballasting system. Finally, Section 8 provides the concluding remarks of

the research study.

2. Analysis of the state of the art

This section syntheses the relevant literature and provides insights into the current state of the art.

Further, it aims to examine and evaluate existing research and advancements in the field. This brief
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analysis identifies and compares different aspects, providing a comprehensive overview including

relevant research and advancements in the field about methodologies, and outcomes.

Multiple basic concepts of cybernetics [1] in the intersection of physics and control theory and

molecular systems were presented in [2] speed-gradient approach to modeling the dynamics of

physical systems is discussed. A novel research approach namely Ethorobotics proposes the use and

development of advanced bioinspired robotic replicas as a method for investigating animal behaviour

[3]. In the domain of telepresence and teleoperation, diverse systems and methodologies have been

devised to facilitate remote control of robots [4]. One such system is the multi-robot teleoperation

system based on a brain-computer interface, as documented by [6]. This system aims to enable

individuals with severe neuromuscular deficiencies to operate multiple robots solely through their

brain activity, thus offering telepresence via a thought-based interaction mode. A comprehensive

review addressing existing teleoperation methods and techniques for enhancing the control of mobile

robots has been presented by [12]. This review critically analyzes, categorizes, and summarizes

existing teleoperation methods for mobile robots while highlighting various enhancement techniques

that have been employed. It makes clear the relative advantages and disadvantages associated with

these methods and techniques. The field of telepresence and teleoperation robotics has witnessed

substantial attention and interest over the past decade [14], finding extensive applications in healthcare,

education, surveillance, disaster recovery, and corporate/government sectors. In the specific context

of underwater robots, gesture recognition-based teleoperation systems have been developed to enable

users to control the swimming behavior of these robots. Such systems foster direct interaction between

onlookers and the robotic fish, thereby enhancing the intuitive experience of human-robot interaction.

Furthermore, efforts have been made to enhance the consistency and quality of robotic fish tails through

improved fabrication processes, and target tracking algorithms have been developed to enhance the

tracking capabilities of these robots [11]. The work [10] developed teleoperation for remote control

of a robotic fish by hand gestures recognition. It allowed direct interaction between onlookers and

the biorobot. Another notable system is the assistive telepresence system employing augmented

reality in conjunction with a physical robot, as detailed in the work by [7]. This system leverages

an optimal non-iterative alignment solver to determine the optimally aligned pose of the 3D human

model with the robot, resulting in faster computations compared to baseline solvers and delivering

comparable or superior pose alignments. The review presented in [20] analyses the progress of robot

skin as multimodal sensing and machine perception for sensory feedback in feeling proximity, pressure,

temperature for collaborative robot applications considering immersive teleoperation and affective

interaction. The work [24] reported an advanced robotic avatar system designed for immersive

teleoperation, having some key functions such as human-like manipulation and communication

capabilities, immersive 3D visualization and transparent force-feedback telemanipulation. Suitable

human-robot collaboration in medical application has been reported [21], where force perception is

augmented to human operator during needle insertion on the soft tissue. Telepresence of mobile

robotic systems may incorporate remote video transmission to steer the robot by seeing through its

eyes remotely. The work [22] presented an overview including social application domains. Research

has been conducted on the utilization of neural circuits to contribute to limb locomotion [15] in the

presence of uncertainty. By optimizing data, it showed the combination of circuits necessary for efficient

locomotion. A review has also been conducted on central pattern generators (CPGs) employed for

locomotion control in robots [16]. This review encompasses neurobiological observations, numerical

models, and robotic applications of CPGs. The work [27] describes an extended mathematical model

of the CPG supported by two neurophysiological studies: identification of a two-layered CPG neural

circuitry and a specific neural model for generating different patterns. The CPG model is used as

the low-level controller of a robot to generate walking patterns. Inclusion of ANN as a layer of the

CPG, to produce rhythmic and non-rhythmic motion patterns. The work in [18] presented a review of

bionic robotic fish, tackling major concepts on kinematics and control, learning, hydrodynamic forces

and critical concepts on locomotion coordination. The research presented in [19] reviews the human
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manual control of devices in cybernetics using mathematical models and advances of theory and

applications, from linear time-invariant modeling of stationary conditions to methods and analysis of

adaptive and time-varying of cybernetics-human in control tasks. New foundations for cybernetics

will emerge and impact numerous domains involving humans in manual and neuromuscular systems

modeling control.

Building upon the preceding analysis regarding relevant literature, the subsequent table (Table 1)

encapsulates the primary distinctions articulated in this study in relation to the most pertinent literature

identified.

Table 1. Pertinent related work comprehensive comparatives.

Research topic References Distinctive aspect of this study

Remote mobile robots [5,6] Swimming response from
HRI teleoperation [10,11] biological EMG stimuli.

Teleoperation & telepresence HRI reviews, [4,12] Haptic perception robot to human.
techniques and applications [13,14] Cybernetic control human to robot.

Telepresence by avatar [7–9] Haptic and 2D visual data avatar
and immersion systems [24] and neuromuscular control response.

Central pattern generator (CPG), [15,16] Neural-Fuzzy caudal swim
neural and locomotion studies [17,27] undulation pattern generator.

Human-robot collaboration [20–22] Reactive swimming by remote human
haptics and teleoperation [23] stimuli and haptic robot’s feedback.

Cybernetic control [1–3] Underactuated biomechanical model and
propulsive

and bionic systems [18,19] electromagnetic oscillator.

As delineated in Table 1, the present study introduces distinctive elements that set it apart

from the recognized relevant literature. However, it is noteworthy to acknowledge that various

multidisciplinary domains may exhibit commonalities. Across these diverse topics, shared elements

encompass robotic avatars, teleoperation, telepresence, immersive human-robot interfaces, as well

as haptic or cybernetic systems in different application domains. In this research, the fundamental

principle of a robotic avatar entails controlling its swimming response to biological stimuli from the

human operator. The human controller is able to gain insight into the surrounding world of the robotic

fish avatar through a haptic interface. This interface allows the human operator to yield biological

electromyography stimuli as the result of their visual and skin impressions (e.g. pressure, temperature,

heading vibrations). The biorobotic fish generates its swimming locomotive behavior that is governed

by EMG stimuli yielded in real-time in the human. Through a neuro-fuzzy controller, the neuronal

part (cybernetic observer) classifies the type of human EMG reaction, and the fuzzy part determines

the swimming behavior.

3. Conceptual System Architecture

This section encompasses a comprehensive framework that highlight the integration of various

components to propose a cohesive cybernetic robotic model. In addition, this section outlines the key

concepts and elucidates their interactions within the system.

Figure 1 presents an overview of the key components constituting the proposed system

architecture. This manuscript thoroughly explores the modeling of four integral elements: i) the

cybernetic human controller, employing ANN classification of EMG signals; ii) a fuzzy-based

locomotion pattern generator; iii) an underactuated bioinspired robot fish; and iv) the robot’s sensory

system, contributing feedback for the haptic system. While we will discuss the relevance and impact

of the latter item within the architecture, it is important to note that the detailed exploration of topics

related to haptic development and wearable technological devices goes beyond the scope of this paper
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and will be addressed in future work. Nevertheless, we deduce the observable variables that serve as

crucial inputs for the haptic system.

Figure 1. Cybernetic robotic avatar system architecture.

Essentially, there are six haptic feedback sensory inputs of interest for the human, representing the

observable state of the avatar robot: Eulerian variables, including angular and linear displacements and

their higher-order derivatives; biomechanical caudal motion; hydraulic pressure; scenario temperature;

and passive vision. Figure 2-left provides an illustration of the geometric distribution of the sensing

devices.

The instrumented robot is an embodiment of the human submerged in water, featuring

an undulatory swimming mechanical body imbued with muscles possessing underactuated

characteristics. These features empowers the bio-robotic avatar to execute movements and swim

its aquatic surroundings.

Figure 2. Robot’s underactuated mechanisms and sensory system onboard.

The observation models aim to provide insights into how these sensory perceptions are conveyed

to the haptic helmet with haptic devices, including wheel reaction mechanism. A comprehensive

schema emerges wherein the haptic nexus, bolstered by pivotal human’s biosensorial components

including gravireceptors, Ruffini corpuscles, Paccinian receptors, and retinal photoreceptors, converges

to interface with the sensory substrate of the human operator. Such a convergence engenders a

cascading sequence wherein biological input stimuli coalesce to yield discernible encephalographic

activity, the primary layer of subsequent electromyographic outputs. These consequential EMG

outputs, undergo processing a swim oscillatory pattern generator, thereby embodiment control of

biomechanical cybernetic governance.

In accordance with Figure 1, it is noteworthy that among the various haptic input variables

such as temperature, pressure, and the visual camera images represent direct sensory measurements

transmitted from the robotic fish to the components of the haptic interface. Conversely, the robotic

avatar takes on the role of a thermosensory adept, in order for the human to assess the ambient

thermal landscape. Thus, from this discernment, a surrogate thermal approach is projected onto the

tactile realm of the human operator, through modulation of thermally responsive plates enmeshed
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within the haptic interface. Therefore, a crafted replica of the temperature patterns detected by the

robotic aquatic entity is seamlessly integrated into the human sensory experience. This intertwining

of thermal emulation is reached by the network of Ruffini corpuscles, intricately nestled within the

human skin, thereby enhancing the experiential authenticity of this multisensory convergence. As

for interaction through the haptic functions, the Paccinian corpuscles function as discerning receptors,

proficiently registering subtle haptic pressures. It finds its origin in the dynamic tactile signals inherent

to the aquatic habitat, intricately associated with the underwater depth traversed by the robotic avatar.

Integral to the comprehensive sensory scheme, the optical sensors housed within the robotic entity

acquires visual data. This visual data is subsequently channeled to the human’s cognition, through the

haptic interface’s perceptual canvas. Within this, the human sensory apparatus assumes the role of an

engaged receptor, duly transducing these visual envoys through the lattice of retinal photoreceptors.

Embedded within the robotic fish’s body, several Inertial Measurement Units (IMU) plays a pivotal

role in quantifying Eulerian inclinations intrinsic to the aquatic environment. These intricate angular

displacements are subsequently channeled to the human operator, thereby initiating an engagement of

the reaction wheel mechanism. As a consequential outcome of this interplay, a synchronized emulation

of tilting motion is induced, mirroring the nuanced cranial adjustments executed by the human

operator. Any alignment of movements assumes perceptible form, relayed through the humans’s

network of gravireceptors nestled within the internal auditory apparatus. The Euler angular and

linear speeds are not directly measured; instead, they must be integrated using various sensor fusion

approaches to enhance the avatar’s fault tolerance in reading its environment. For example, the

angular observations of the robot fish are obtained through numerical integro-differential equations,

which are solved online as measurements are acquired. Let’s introduce the following notation for

inclinometers (αi) and accelerometers (aa), with the singular direct sensor measurement α̇g derived

from the gyroscopes. The observation for the fish’s roll velocity combining the three inertial sensors is

ωα =
dαι

dt
+ α̇g +

1

dα

∫

t
aαdt, (1a)

while the pitch velocity is modelled by

ωβ =
dβι

dt
+ β̇g +

1

dβ

∫

t
aβdt, (1b)

and the yaw velocity is obtained by

ωγ =
dγι

dt
+ γ̇g +

1

dγ

∫

t
aγdt. (1c)

Within this context, the tangential accelerations experienced by the robot body are denoted as aα,β,γ

[m/s2]. Additionally, the angular velocities measured by the gyroscopes are represented by α̇, β̇, γ̇

[rad/s2]. Correspondingly, the inclinometers provide angle measurements denoted as α, β, γ [rad].

These measurements collectively contribute to the comprehensive observability and characterization

of the robot’s dynamic behavior and spatial orientation.

Furthermore, the oscillations of the caudal tail are reflections of the dynamics of the underactuated

spine. These dynamics are captured by quantifying encoder pulses, denoted as ηt, which provide

precise angular positions for each vertebra. Given that real-time angular measurements of the vertebrae

are desired, higher-order data is prioritized. Consequently, derivatives are computed by initiating

from the Taylor series to approximate the angle of each vertebral element with respect to time, denoted

as t.

φi ≈
φ
(0)
i

0!
(t2 − t1)

0 +
φ
(1)
i

1!
(t2 − t1)

1 +
φ
(2)
i

2!
(t2 − t1)

2 + . . . (2a)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2024                   doi:10.20944/preprints202401.0847.v1

https://doi.org/10.20944/preprints202401.0847.v1


7 of 41

thus, rearranging Math notation and trunking up to the first-derivative,

φi ≊ φi + φ
(1)
i (t2 − t1), (2b)

dropping φ
(1)
i off as a state variable, the first-order derivative (φ(1)(t) ≡ φ̇(t)) is given by

φ̇(t) =
φ2 − φ1

t2 − t1
, (2c)

and assuming that a vertebra’s angular measurement model and in terms of the encoder’s pulses η

with resolution R, then it is stated that by substituting the pulses encoder model into the angular speed

function for the first vertebra,

φ̇1 =

(

2π

R(t2 − t1)
η2

)

−
(

2π

R(t2 − t1)
η1

)

=

(

2π

R

)(

η2 − η1

t2 − t1

)

, (3a)

as for the second vertebra,

φ̇2 = φ̇1 +
2π

R

(

η2 − η1

t2 − t1

)

(3b)

φ̇3 = φ̇1 + φ̇2 +
2π

R

(

η2 − η1

t2 − t1

)

(3c)

and

φ̇4 = φ̇1 + φ̇2 + φ̇3 +
2π

R

(

η2 − η1

t2 − t1

)

(3d)

The preliminary sensing models serve as a comprehensive representation, strategically integrated

into the control models as crucial feedback terms. A detailed exploration of this integration is elucidated

in sections 6 and 7.

4. Deep ANN-based EMG Data Classification

This section details the experimental acquisition of EMG data, its spatial filtering, and pattern

extraction achieved through the statistical combination of linear envelopes. Additionally, an adaptive

method for class separation and data dispersion reduction is described. The section also covers the

structure of a deep neural network, presenting its classification output results from mapping input

EMG stimuli.

The related work reported a system for automatic pattern generation for neurosimulation in [25],

where a neurointerface was used as a neuro-protocol for outputting fingers deflection and nerves

stimulation. In the present research, numerous experiments were carried out to pinpoint the optimal

electrode placement and achieve precise electromyographic readings for each predefined movement in

the experiment. The positions of the electrodes were systematically adjusted, and the results from each

trial were compared. Upon data analysis, it was discerned that the most effective electrode placement

is on the Ulnar nerve, situated amidst the muscles Flexor Digitorium Superficialis, Flexor Digitorium

Profundus, and Flexor Carpi Ulnaris. A series of more than ten experiments was executed for each

planned stimulus or action involving hands, allowing a 2s interval between each action, including the

opening and closing of hands, as well as the extension and flexion of the thumb, index, middle, ring

and little fingers. The data was measured by a g.MOBIlab+ device with two-channel electrodes and

quantified in microvolts per second [µv/s], as depicted in Figure 3.

The data acquired from the electromyogram often exhibit substantial noise attributed to both the

inherent nature of the signal and external vibrational factors. To refine the data quality by mitigating

this noise, a filtering process is essential.
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a)

b)

c)

Figure 3. Experimental raw EMG data (from left to right): a) Left and right hand, left and right thumb.

b Left and right index, left and right middle. c) Left and right ring, left and right little.

In this context, a second-order Notch filter was utilized. This filter is tailored to target specific

frequencies linked to noise, proving particularly effective in eliminating electrical interferences and

other forms of stationary noise [26]. A Notch filter is a band-rejection filter to greatly reduce interference

caused by a specific frequency component or a narrow band signal. Hence, in the Laplace space, the

second-order filter is represented by the analog Laplace domain transfer function:

H(s) =
s2 + ω2

o

s2 + 2sξωo + ω2
o

, (4)

where ω0 signifies the cut angular frequency targeted for elimination, and 2ξ signifies the damping

factor or filter quality, determining the bandwidth. Consequently, solving to obtain its solution in the

physical variable space. The bilinear transformation relates the variable s from the Laplace domain to

the variable zk in the Z domain, considering T as the sampling period, and is defined as follows,

s
.
=

(

1

T

)(

zk − 1

zk + 1

)

, (5)

upon substituting the previous expression into the transfer function of the analog Notch filter and

algebraically simplifying, the following transfer function in the Z domain is obtained, redefining the

notation as υt = zk just to meet equivalence with the physical variable,

h(υt) =
1 − 2 cos(ω0t)υ−1

t + υ−2
t

1 − 2ξ cos(ω0t)υ−1
t + ξυ−2

t

. (6)

The 2nd-order Notch filter h(υ) was employed on raw EMG data to alleviate noise resulting from

electrical impedance and vibrational electrode interference, with parameters set at ω0 = 256Hz and

ξ = 0.1 and results depicted in Figure 4.
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a) b) c)

Figure 4. Notch filtered EMG showing one period. a) right thumb. b) right index. c) right middle.

Following this, leveraging the outcomes of the Notch filter, the data undergoes processing through

three distinct filters or linear envelopes. This serves as a secondary spatial filter and functions as a

pattern extraction mechanism. These include a filter for average variability, one for linear variability,

and another for average dispersion. Each filter serves a specific purpose, enabling the analysis of

different aspects of the signal. Consider n as the number of measurements constituting a single

experimental stimulus, and let N represent the entire sampled data space obtained from multiple

measurements related to the same stimulus. Furthermore, denote v̂i as the ith EMG measurement of an

upper limb, measured in microvolts (µV). From such statements, the following Propositions 1, 2 and 3

are introduced as new data patterns.

Proposition 1 (Filter γ). The γ pattern refers to a statistical linear envelope described by the difference of a

local mean v̂k in a window of samples and the statistical mean υ̂i of all samples population an experiment.

γ(vk) =

∣

∣

∣

∣

∣

v̂i −
1

n

n

∑
k=1

vk

∣

∣

∣

∣

∣

. (7)

Proposition 2 (Filter λ). The λ(vk) pattern refers to an statistical linear envelope denoted by the difference of a

local mean v̂k in a window of samples and the statistical mean υ̂i of the whole population of experiments of same

type,

λ(vk) =

∣

∣

∣

∣

∣

v̂i −
1

Nk

Nk

∑
k=1

v̂k

∣

∣

∣

∣

∣

. (8)

Proposition 3 (filter Ω). The Ω pattern refers to an statistical linear envelope denoted by the difference of

statistical means between population of one experiment v̂i and the whole population of numerous experiments of

the same type:

Ω(vk) =

∣

∣

∣

∣

∣

1

n

n

∑
k=1

vk −
1

N

N

∑
k=1

vk

∣

∣

∣

∣

∣

. (9)

Hence, let the vector δ⃗ ∈ R3 such that δk = (Ωk, γk, λk)
⊤ and represent filtered data points

in the Ωγλ-space. This work considered to include a brief data preprocessing as a method to

improve multi-class separability and data scattering reduction in pattern extraction. Three distinctive

patterns—γ, λ, Ω—captivatingly converge in Figure 5. This illustration exclusively features patterns

associated with sequences of muscular stimuli from both the right and left hands. For supplementary

stimulus plots, refer to the appendix in Appendix A at the end of this manuscript.
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a)

b)

Figure 5. Hands pattern space components: filters γ,λ and Ω.
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From numerous laboratory experiments, over 75% of the sampled raw data fall within the range

of one standard deviation. Consider the vector σ⃗ ∈ R3 such that the standard deviations vector

σ⃗ = (σΩ, σγ, σλ)
⊤ encompasses the three spatial components by its norm.

σ =
2

√

√

√

√

√

√

1

N

N

∑
k=1













Ωk

γk

λk






−







µγ

µλ

µΩ













2

. (10)

Building upon the preceding statement, we can formulate an adaptive discrimination criterion as

elucidated in Definition 1.

Definition 1 (Discrimination condition). Consider the scalar value δj as preprocessed EMG data located

within a radius of magnitude κd times the standard deviation ∥σ∥:

δj =

{

δk, κd∥σ∥ ≤ ∥δ⃗∥
0, κd∥σ∥ > ∥δ⃗∥

(11)

where 0 = (0, 0, 0)⊤ represents discriminated data.

Hence, considering the recent Definition 1, and in the current scenario with κd = 1.0, which serves

as a tuning discrimination factor. Therefore, the norm lh represents the distance between the frame

origin and any class in the Ωγλ-space. This distance is adaptively calculated based on the statistics of

each EMG class.

lh = 2

√

(κΩσΩ)2 + (κγσγ)2 + (κλσλ)2 (12)

where, the coefficients κΩ, κγ, κλ are smooth adjustment parameters to set separability along axes.

Hence, relocating each class center to a new position is stated by Proposition 4.

Proposition 4 (Class separability factor). New class position µ+
Ω,γ,λ in the Ωγλ-space, is established by the

statistically adaptive linear relationship:

µ+
Ω
= µΩ + ζΩlh, (13a)

µ+
σ = µγ + ζγlh (13b)

and

µ+
λ = µλ + ζλlh. (13c)

where ζΩγλ are coarse in-space separability factors. The mean values µΩγλ are the actual class positions obtained

from the linear envelopes Ω(υk), γ(υk) and λ(υk).

Thus, by following the step-by-step method outlined earlier, Figure 6 showcases the extracted

features of the EMG data, representing diverse experimental muscular stimuli. These results hold

notable significance in the research, as they successfully achieve the desired class separability and data

scattering, serving as crucial inputs for the multilayer ANN.
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a) b)

Figure 6. EMG stimuli pattern space (γ, λ, Ω). (a) Left hand classes. (b) Right hand classes.

Henceforth, the focus lies in identifying and interpreting the EMG patterns projected in the

γλΩ-space, as illustrated in Figure 6. The subsequent part of the section delve into the architecture

and structure of the deep ANN employed as a classifier, providing a detailed account of the training

process. Additionally, the section highlights the performance metrics and results achieved by the

classifier, offering insights into its effectiveness. Despite the challenges posed by nonlinearity,

multidimensionality, and extensive datasets, various neural network structures were configured

and experimented with. These configurations involved exploring different combinations of hidden

layers, neurons, and the number of outputs in the ANN. To achieve the highest success rate in accurate

data classification through experimentation, the final ANN was designed with perceptron units, as

depited in Figure 7. It featured three inputs corresponding to the three EMG patterns γ, λ, Ω and

included 12 hidden layers, each with 20 neurons. The supervised training process, conducted on

a standard-capability computer, took approximately 20–30 minutes, resulting in nearly 1% error in

pattern classification.
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Figure 7. Multi-layered ANN for EMG patterns recognition.

However, in the initial stages of the classification computations, with some mistuned adaptive

parameters, the classification error was notably higher, even with much deeper ANN structures, such

as 100 hidden layers with 99 neurons per layer. To facilitate the implementation, this work utilized

the C/C++ library Fast Artificial Neural Networks (FANN), generating extremely fast binary code

once the ANN was trained. In the training process of this research, about 50 datasets from separate

experiments for each type of muscular stimulus were collectively stored, each comprising several

thousand muscular repetitions. A distinct classification label was assigned a priori for each class type

within the patterns space. To demonstrate the reliability of the approach, 16 different stimuli per

ANN were established for classification and recognition, resulting in the ANN having 4 combinatory

outputs, each with two possible states. Figure 8 depicts mixed sequences encompassing all types of

EMG stimuli, with the ANN achieving a 100% correct classification rate.
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a)

b)

Figure 8. Sequence of mixed EMG stimuli overtime and ANN’s decimal output with 100% classification

success. a) right limb. b) left limb.

Moreover, Table 2 delineates the mapping relationship between the ANN’s input, represented by

the EMG stimuli, and the ANN’s output linked to a swimming behavior for controlling the robotic

avatar.
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Table 2. ANN results of mapping EMG to robotic avatar swimming behaviors.

ANN’s EMG inputs y3 y2 y1 y0 Swimming-style1

quiet 0 0 0 0 Sink

right hand 0 0 0 1 Buoyant

right thumb 0 0 1 0 Gliding

right index 0 0 1 1 Slow thrusting

right middle 0 1 0 0 Medium thrusting

right ring 0 1 0 1 Fast thrusting

right little 0 1 1 0 Slow right maneuvering

left hand 0 1 1 1 Medium right maneuvering

left thumb 1 0 0 0 Fast right maneuvering

left index 1 0 0 1 Slow left maneuvering

left middle 1 0 1 0 Medium left maneuvering

left ring 1 0 1 1 Fast left maneuvering

left little 1 1 0 0 Speed up Right-turn

both index 1 1 0 1 Speed up Left-turn

right thumb-little 1 1 1 0 Slow down Right-turn

left thumb-little 1 1 1 1 Slow down Left-turn
1 The variables y0,1,2,3 represent combinatory outputs, while subsequently yC corresponds to the decimal value.

5. Fuzzy-based Oscillation patterns generator

This section delineates the methodology utilized to produce electric oscillatory signals, essential

for stimulating the inputs of electromagnetic devices (solenoids) embedded within the mechanized

oscillator of the bio-robotic fish. The outlined approach for generating periodic electric signals

encompasses three key components: a) the implementation of a fuzzy controller; b) the incorporation

of a set of periodic functions dictating angular oscillations to achieve desired behaviors in the caudal

undulation of the fish; and c) the integration of a transformation model capable of adapting caudal

oscillation patterns into step signals, facilitating the operation of the dual-coil electromagnetic oscillator.

Another study [28] reported a different approach, a neuro-fuzzy-topological biodynamical

controller for muscular-like joint actuators. In the present research, an innovative strategy suggested

for the fuzzy controller involves the combination of three distinct input fuzzy sets: the artificial

neural network outputs transformed into Crisp sets, and the linear and angular velocities of the robot

derived from sensor measurements. Simultaneously, the fuzzy outputs correspond to magnitudes

representing the periods of time utilized to regulate the frequency and periodicity of the caudal

oscillations. This comprehensive integration enables the fuzzy controller to effectively process both

neural network-derived information and real-time sensor data, dynamically adjusting the temporal

parameters that govern the fish’s undulatory motions.

The depiction of the outputs from the EMG pattern recognition neural network is outlined in

Table 2. Each binary output in the table is linked to its respective crisp-type input fuzzy sets when

represented in the decimal numerical base yC, as illustrated in Figure 9a. Moreover, Definition 2 details

the parametric nature of the input sets.
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a)

b)

c)

Figure 9. Swimming behavior fuzzy sets. a) Crisp input (ANN’s output). b) Input of robot’s thrust

velocity observation. c) Input of robot’s angular speed observation.

Definition 2 (Input fuzzy sets). The output of the artificial neural network (ANN) corresponds to the fuzzy

input, denoted as yC, and only when it falls within the crisp set C = [0, 1, . . . , 15], the membership in the crisp

set is referred to as µy(yC).

µy(yC) =

{

0, yC /∈ C
1, yC ∈ C.

(14a)

In relation to the sensor observations of the bio-robot, the thrusting velocity v [cm/s] and angular velocity ω

[rad/s] exhibit S-shaped sets modeled by Sigmoid membership functions. This modeling approach is applied
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consistently to both types of input variables, capturing their extreme-sided characteristics. Let µs, f (v) define the

sets labeled as ‘stop’and ‘fast’in relation to the thrusting velocity v are elucidated by,

µs, f (v) =
1

1 + e±v∓a
(14b)

Likewise, for the sets designated as ‘left-fast’(lr) and ‘right-fast’(r f ) concerning the angular velocity ω, the

S-shaped sets are modeled as,

µl f ,r f (ω) =
1

1 + e±v∓b
(14c)

In addition, the rest of the sets in-between are any of the kth Gauss membership functions (‘slow’, ‘normal’and

‘agile’), for the robot’s thrusting velocity with parametric mean-valued v̄ and standard deviation σvk

µk(v) = e
−
(

(v̄−v)2

2σ2
vk

)

, (14d)

and for its angular velocity (‘left-slow’, ‘no turn’and ‘right-slow’), with parametric mean-valued ω̄ and standard

deviation σωk
,

µk(ω) = e
−
(

(ω̄−v)2

2σ2
ωk

)

, (14e)

Therefore, the reasoning rules articulated in the inference engine have been devised by applying

inputs derived from Table 2, specifically tailored to generate desired outputs that align with the

oscillation periods T [s] of the fish’s undulation frequency (see Figure 10).

Definition 3 (v, ω = any). For any linguistic value v, representing sensor observations of the fish’s thrusting

velocity,

v = any
.
= stop or slow or normal or agile or fast .

Likewise, for any linguistic value ω, representing sensor observations of the fish’s angular velocity,

ω = any
.
= left-fast or left-slow or no turn or right-slow or right-fast .

Therefore, the following inference rules describe the essential robot fish swimming behavior.

1. if yC=sink and v = any or ω = any then Tf ,r,l =too_slow
2. if yC=buoyant and v = any or ω = any then Tf ,r,l =too_slow
3. if yC=gliding and v =any and ω = any then Tf =slow, Tr,l =too_slow

4. if yC=slow_thrust and v =any and ω = any then Tf =slow, Tr,l =too_slow
5. if yC=medium_thrust and v =any and ω =any then Tf =normal, Tr,l =too_slow
6. if yC= fast_thrust and v =any and ω = any then Tf =agile, Tr,l =too_slow

7. if yC=slow-right_maneuvering and v =any and ω =any then Tf ,l =too_slow, Tr =normal
8. if yC= medium-right_maneuvering and v = any and ω =any then Tf =slow, Tr =agile, Tl =too_slow
9. if yC=fast-right_maneuvering and v =any and ω =any then Tf =normal, Tr =fast, Tl =too_slow

10. if yC=slow-left_maneuvering and v =any and ω =any then Tf ,r =too_slow, Tl = normal
11. if yC=medium-left_maneuvering and v =any and ω =any then Tf =slow, Tr =too_slow, Tl =agile
12. if yC= fast-left_maneuvering and v =any and ω =any then Tf =normal, Tr =too_slow, Tl =fast

13. if yC=speed-up_right-turn and v =any and ω =any then Tf ,l =too_slow, Tr =fast
14. if yC=speed-up_left-turn and v =any and ω =any then Tf ,r =too_slow, Tl =fast
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15. if yC=slow-down_right-turn and v =any and ω =any then Tf ,l =too_slow, Tr = slow
16. if y=slow-down_left-turn and v =any and ω =any then Tf ,r =too_slow, Tl =slow

Hence, the output fuzzy sets delineate the tail undulation speeds of the robot fish across the

caudal oscillation period T [s], as illustrated in Figure 10. Notably, three identical output sets with

distinct concurrent values correspond to the periods of three distinct periodic functions forward: (f),

right (r) and left (l); as subsequently defined by equations (22a), (22b), and (22c).

a)

Figure 10. Three identical output fuzzy sets depicting the oscillation period of the caudal tail’s

undulation.

The inference engine’s rules dictate the application of fuzzy operators to assess the terms involved

in fuzzy decision-making. As for the thrusting velocity fuzzy sets, where v = any was previously

established, and by applying Definition 3 the fuzzy operator is described by

µmax
v = max

µk∈v

(

µstop, µslow, µnormal , µagile, µ f ast

)

.

Likewise, the angular velocity fuzzy sets, where previously ω = any was stated, by applying the

second part of Definition 3, the following fuzzy operator is described by

µmax
ω = max

µk∈ω

(

µle f t− f ast, µle f t−slow, µnoturn, µright−slow, µright− f ast

)

.

Therefore, according to premise (v = any or ω = any), the following fuzzy operator applies,

µmax
v,ω = max

µk∈v∪ω
(µmax

v , µmax
ω )

Essentially, the fuzzification process applies strictly similar for the rest of the inference rules, according

to the following Proposition,

Proposition 5 (Combined rules µ∗
i ). The general fuzzy membership expression for the ith inference rule that

combines multiple inference propositions is

µ∗
i = min

µ∈yC∩v∪ω

(

µyi
(yCi

) = 1, µmax
k (v, ω)

)

. (15)

In any Crisp set, each µi attains a distinct value of 1, irrespective of the corresponding inference rule indexed

by i. This value aligns with the ith entry in the neural network outputs outlined in Table 2. Additionally, k

represents a specific fuzzy set associated with the same input.

Executing the previously mentioned proposition, Remark 5 provides a demonstration of its

application.
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Remark (Proposition 5 example). Let us consider rule i = 1, where yC1
= ’sink’ and either (v = 10.0 cm/s

or ω = 0.0 rad/s). Thus, articulated in the context of the resulting fuzzy operator,

µ∗
1 = min

µk∈yC∩v∪ω

(

µsink(yC), max
v∪ω

µv,ω(1, 1)
)

= min
µk∈yC∩v∪ω

(1, 1) = 1,

Here, µv(10.0) = 1 and µω(0.0) = 1. Based on the earlier proposition, the resulting µ∗
1 = 1, and given that

rule 1 indicates an output period T = ’too-slow’, its inverse outcome T(µ∗
1) = 6.0 seconds. This outcome

is entirely accurate, because the fish’s swim undulation will slow down up to 6s which is the slowest period

oscillation.

Moving forward, during the defuzzification process, the primary objective is to attain an inverse

solution. The three output categories for periods T include ‘forward’, ‘right’, and ‘left’, all sharing

identical output fuzzy sets of T (Figure 10). Nevertheless, the output fuzzy sets consist of two categories

of distributions: Gauss and sigmoid distribution sets, as outlined in Definition 4. Regarding the Gauss

distributions, their functional form is specified by:

Definition 4 (Output fuzzy sets). The membership functions for both extreme-sided output sets are defined as

‘fast’with µ f and ‘too slow’with µts, such that

µ f ,ts(T) =
1

1 + e±Tk∓ck
. (16)

Here, T [s] denotes the period of time for oscillatory functions, with the slope direction determined by its sign.

The parameter c represents an offset, and k is the numerical index of a specific set.

Furthermore, the membership functions for three intermediate output sets are defined as ‘agile’with µa,

‘normal’with µn, and ‘slow’with µs, such that:

µa,n,s(T) = e
−
(

(T̄k−T)2

2σ2
Tk

)

, (17)

Here, T̄k represents the mean value, and σTk
denotes the standard deviation of set k, with k serving as the numeric

index of a specific set.

In accordance with Definition 4, any µk possesses a normalized membership outcome within

the interval µk ∈ [0, . . . , 1]. The inverse sigmoid membership function, denoted as Tk ∈ R ∀ µk, is

determined by the general inverse expression:

T(µk) = ∓ ln

(

1

µk
± ck

)

. (18)

Similarly, the inverse Gaussian membership function, where Tk ∈ R ∀ µk, is defined by the inverse

function:

T(µk) = µk − 2

√

−2σ2
k ln(µk). (19)

Hence, exclusively for the jth category among the output fuzzy sets affected by the fuzzy inference

rule essential for estimating the value of T, the Centroid method is employed for deffuzification

through the following expression:

Tf ,r,l =
∑j µ∗

j Tj(µ
∗
j )

∑j µ∗
j

, (20)
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or more specifically,

Tf ,r,l =
µ∗

f T(µ∗
f ) + µ∗

a T(µ∗
a) + µ∗

nT(µ∗
n) + µ∗

s T(µ∗
s ) + µ∗

ts(µ
∗
ts)

µ∗
f + µ∗

a + µ∗
n + µ∗

s + µ∗
ts

, (21)

For terms T(µ f ) and T(µts), the inverse membership function (18) is applicable, whereas for the

remaining sets in the jth category, the inverse membership (19) is applied.

The work [29] reported a CPG model to control a robot fish’s motion in swimming and crawling,

and let perform different motions influenced by sensory input from light, water, and touch sensors.

Oscillators and Central Pattern Generators (CPGs) are closely related concepts. Oscillators are

mathematical or physical systems exhibiting periodic behavior and are characterized by the oscillation

around a stable equilibrium point (limit cycle). In the context of CPGs, these are neural networks

that utilize oscillators that create positive and negative feedback loops, allowing for self-sustaining

oscillations and the generation of rhythmic patterns, particularly implemented in numerous robotic

systems [30]. CPGs are neural networks found in the central nervous system of animals (e.g. fish

swimming [31]), that generate rhythmic patterns of motor activity and are responsible for generating

and coordinating optimized [32] repetitive movements.

The present research proposes a different approach from the basic CPG model, and as a difference

from other wire-driven robot fish’s motion approaches [33], this study introduces three fundamental

undulation functions: forward, right-turning, and left-turning. These functions are derived from

empirical measurements of the robot’s caudal fin oscillation angles. However, a distinctive behavioral

undulation swim is achieved by blending these three oscillation functions, each incorporating

corresponding estimation magnitudes derived from the fuzzy controller outputs. The formulation

of each function involves fitting empirical data through Fourier series. As a difference from other

approaches on CPG parameters adjustment[34], the preceding fuzzy outputs obtained from (21) to

estimate the time periods Tf , Tr, Tl play a pivotal role in parameterizing the time periods for the

periodic oscillation functions, as outlined in Proposition 6.

Proposition 6 (Oscillation patterns function). Three fundamental caudal oscillation patterns, designed to

generate swimming undulations, are introduced, each characterized by 11 pre-defined numerical coefficients.

These patterns are described by amplitude functions, denoted as ψ(φ, T), where φ represents oscillation angles,

and the time period T is an adjustable parameter.

The undulation pattern for forward motion is provided by the following function

ψ f (φ, Tf ) = 0.0997 + 0.3327 cos

(

φ
2π

Tf

)

− 0.1297 sin

(

φ
2π

Tf

)

− 0.5760 cos

(

2φ
2π

Tf

)

+

0.3701 sin

(

2φ
2π

Tf

)

− 0.1431 cos

(

3φ
2π

Tf

)

+ 0.1055 sin

(

3φ
2π

Tf

)

− 0.0870 cos

(

4φ
2π

Tf

)

+

0.06323 sin

(

4φ
2π

Tf

)

− 0.0664 cos

(

5φ
2π

Tf

)

− 0.0664 sin

(

5φ
2π

Tf

)

.

(22a)

Likewise, the undulation pattern for right-turn motion is given by the function,

ψr(φ, Tr) = 0.3324 + 0.1915 cos

(

φ
2π

Tf

)

+ 0.0622 sin

(

φ
2π

T

)

+ 0.4019 cos

(

2φ
2π

T

)

+

0.2920 sin

(

2φ
2π

T

)

− 0.264 cos

(

3φ
2π

T

)

− 0.3634 sin

(

3φ
2π

T

)

− 0.0459 cos

(

4φ
2π

T

)

− 0.1413 sin

(

4φ
2π

T

)

+ 0.0665 sin

(

5φ
2π

T

)

.

(22b)
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Finally, the undulation pattern for left-sided turning motion is established by expression:

ψl(φ, Tl) = −0.1994 + 0.125 cos

(

φ
2π

Tl

)

− 0.0622 sin

(

φ
2π

Tl

)

+ 0.3354 cos

(

2φ
2π

Tl

)

−

0.292 sin

(

2φ
2π

Tl

)

− 0.3305 cos

(

3φ
2π

Tl

)

+ 0.3634 sin

(

3φ
2π

Tl

)

− 0.1124 cos

(

4φ
2π

Tl

)

+

0.1413 sin

(

4φ
2π

Tl

)

− 0.0664 cos(5φ
2π

Tl
) + 0.2659 sin(5φ

2π

Tl
).

(22c)

The approaches to forward, right-turn, and left-turn based on the findings of Proposition 6 are

illustrated in Figure 11. Additionally, a novel combined oscillation pattern emerges by blending these

three patterns (23), each assigned distinct numerical weights through the neuro-fuzzy controller.

ψ(φ, Tf , Tr, Tl) = ψ f (φ, Tf ) + ψr(φ, Tr) + ψl(φ, Tl). (23)

The proposed robotic mechanism features a multilink-based propulsive spine, driven by an

electromagnetic oscillator composed of a pair of antagonistic solenoids that necessitate a synchronized

sequence of electric pulses (see Figure 12b). The amplitudes generated by ψ(φ, Tf , Tr, Tl) in Equation

23 essentially represent the desired undulation pattern for the robotic fish’s caudal fin. However, these

oscillations are not directly suitable for the inputs of the coils. To address this, our work introduces a

decomposition of ψ into two step signals centered around a stable equilibrium point (limit cycle), one

for the right coil (positive with respect to the limit cycle) and another for the left coil (negative with

respect to the limit cycle). The coil’s step function, either for the right-sided or left-sided coil is given

by sr,l , taken the equilibrium point as their limit value ξ,

sr,l =

{

0, ψ ≤ ξ

1, ψ > ξ
(24)

In contrast to the work presented in [35] focusing on the swimming modes and gait transition of

a robotic fish, the current study, as depicted in Figure 11, introduces a distinctive context. The three

oscillatory functions, ψ f ,r,l , are displayed both overlapped and separated, highlighting their unique

decoupled step signals. Assuming ξ = 0 for all φ in each case, in Figure 11a, ψr = ψl ≈ 0, with Tr,l ≥ 6;

in Figure 11b, ψ f = ψl ≈ 0, with Tf ,l ≥ 6; and in Figure 11c, ψ f = ψr ≈ 0, with Tf ,r ≥ 6. For a more

comprehensive understanding, Figure 12b presents the electromechanical components of the caudal

motion oscillator.
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a)

b)

c)

Figure 11. The three oscillation functions paired with dual coil step patterns: a) Forward undulations.

b) Right-turn undulations. c) Left-turn undulations.
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6. Robot Fish Biomechanical Model

This section introduces the design of the robotic fish mechanism and explores the model of the

underactuated physical system to illustrate the fish undulation motions. The conceptualization of the

proposed system is inspired by an underactuated structure featuring a links-based caudal spine with

passive joints, utilizing helical springs to facilitate undulatory locomotion (see Figure 12a). The robotic

fish structure introduces a mechanical oscillator comprising a pair of solenoids activated through

coordinated sequences of step signals, as described by (24). Essentially, the electromagnetic coils

generate antagonistic attraction/repulsion linear motions, translating into rhythmic oscillations within

a mechanized four-bar linkage (depicted in Figure 12b). This linkage takes on the form of a trapezoid,

composed of two parallel rigid links and two lateral linear springs functioning as antagonistic artificial

muscles. Moreover, beneath the electromagnetic oscillator, there is a ballasting device for either

submersion or buoyancy (Figure 12c). The robot’s fixed reference system consists of the X axis, which

intersects the lateral sides, and the Y axis aligned with the robot’s longitudinal axis.
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a)

b)

c)

Figure 12. Model of the robot fish mechanism, illustrating: a) Top view of the musculoskeletal system.

b) Top view of the robot’s head with antagonistic muscles-based electromagnetic oscillator. c) Side

view of the ballast system device positioned beneath the robot’s head.

In Figure 12a, the electromagnetic oscillator of the robotic avatar responds to opposing coordinated

sequences of step signals. The right-sided (R) and left-sided (L) solenoids counteract each other’s

oscillations, generating angular moments in the trapezoid linkage (first vertebra). Both solenoids are

identical, each comprising a coil and a cylindrical neodymium magnet nucleus. The trapezoid linkage,

depicted in Figure 12b, experiences magnetic forces ± fosRL
at the two neodymium magnet attachments

situated at a radius of ros, resulting in two torques, τos and τs, with respect to their respective rotation

centers. As input forces ± fosRL
come into play, the linear muscle in its elongated state stores energy.
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Upon restitution contraction, this stored energy propels the rotation of the link rs, which constitutes

the first vertebra of the fish.

Furthermore, the caudal musculoskeletal structure, comprising four links (ℓ1, ℓ2, ℓ3, ℓ4) and three

passive joints (θ1, θ2, θ3), facilitates a sequential rotary motion transmitted from link 1 to link 4. This

transmission is accompanied by an incremental storage of energy in each helical spring that is serially

connected. Consequently, the last link (link 4) undulates with significantly greater mechanical

advantage. In summary, a single electrical pulse in any coil is sufficient to induce a pronounced

undulation in the swimming motion of the robot’s skeleton.

As for the ballasting control device situated beneath the floor of the electromechanical oscillator,

activation occurs only when either of two possible outputs from the artificial neural network (ANN) is

detected: when yC equals ’sink’ or ’buoyancy.’ However, the fuzzy nature of these inputs results in a

gradual slowing down of the fish’s undulation to its minimum speed. Additionally, both actions are

independently regulated by a dedicated feedback controller overseeing the ballasting device.

Now, assuming knowledge of the input train of electrical step signals sr,l applied to the coils, let us

derive the dynamic model of the biorobot, starting from the electromagnetic oscillator and extending

to the motion transmitted to the last caudal link. Thus, as illustrated in Figure 12ab, the force f [N]

of the solenoid’s magnetic field oscillator is established on either side (right, denoted as R, or left,

denoted as L),

f =
B2 A

2µo
, (25)

in this context, A [m2] represents the area of the solenoid’s pole. The symbol µo denotes the magnetic

permeability of air, expressed as µo = 4π × 10−7 H/m (henries per meter). Hence, the magnetic field

B (measured in Teslas) at one extreme of a solenoid is approximated by:

B =
µoiN

l
, (26)

where i represents the coil current [A], N is the number of wire turns in a coil, and l denotes the coil

length [m]. Furthermore, a coil’s current is described by the following linear differential equation as a

function of time t (in seconds), taking into account a potential difference v (in volts):

i =
1

L

∫ T

0
vdt + i0, (27)

here, L represents the coil’s inductance (measured in henries, H) with an initial current condition

denoted as i0. Additionally, the coil’s induction model is formulated by:

L =
µo N2 A

l
. (28)

In essence, this study states that both lateral solenoids exhibit linear motion characterized by an

oscillator force fos. This force is expressed as:

fos =
i2 Al

2µo N2 A
(29)

and due to the linear impacts of solenoids at both sides R and L (refer to Fig. 12a), the first bar of the

oscillator mechanism generates a torque, expressed as:

τos = ( fos)(ros), (30)

it is theorized that the restitution/elongation force along the muscle is denoted as fm (R or L), with

this force being transmitted from the electromechanical oscillator to the antagonistic muscle in the
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opposite direction (refer to Fig. 12b). This implies that the force generated from the linear motion

solenoid in the oscillator’s right-sided coil, denoted as fosR
, is applied at point R and subsequently

reflected towards point L with an opposite direction, represented as − fosL
. Similarly, conversely from

the oscillator’s left-sided solenoid, the force fosL
is applied at point L and transmitted to point R as

− fosL
. For fosL

applied in L,

fmR
=

− fosL

cos(αR)
; fmL

=
− fosR

sin(αL)
, (31)

Hence, the angles αR,L assume significance as the forces acting along the muscles fm differ, resulting in

distinct instant elongations xm(t). Consequently, the four-bar trapezoid-shaped oscillator mechanism

manifests diverse inner angles, namely θ1,2, β, and γ1,2 as illustrated in Fig. 12b.

Thus, prior to deriving an analytical solution for α, it is imperative to formulate a theoretical model

for the muscle. In this study, a Hill’s model is adopted, as depicted in Figure 12a (on the right side).

The model incorporates a serial element SE (overdamped), a contractile element CE (critically damped),

and a parallel element PE (critically damped), each representing distinct spring-mass-damper systems.

The generalized model for the antagonistic muscle is conceptualized in terms of the restitution

force, and it is expressed as:

fm = fSE − ( fCE + fPE), (32)

Therefore, by postulating an equivalent restitution/elongation mass mw associated with instantaneous

weight-force loads w (such as due to hydrodynamic flows), the preceding model is replaced with

Newton’s second law of motion,

fm = mw ẍSE − mw ẍCE − mw ẍPE. (33)

Furthermore, through the independent solution of each element within the system in terms of

elongations, the SE model can be expressed as:

xSE(t) = s1eλ1 t + s2eλ2 t, (34)

Here, s1,2 represent arbitrary constants representing damping amplitude. The terms λ1,2 denote the

root factors,

λ1,2 = − cSE

mw
±

2

√

( cSE
mw

)2 − 4 kSE
mw

2
(35)

Here, the factors λ1,2 are expressed in relation to the damping coefficient cSE (in kg/s) and the elasticity

coefficient kSE (in kg/s²).

Similarly, for the contractile element CE, its elongation is determined by:

xCE(t) = (c1 + c2t)e−
cCE
mw

t, (36)

With amplitude factors c1,2 and damping coefficient cCE, a similar expression is obtained for the parallel

element PE:

xPE(t) = (p1 + p2t)e−
cPE
mw

t, (37)

with amplitude factors p1,2 and damping coefficient cPE, the next step involves substituting these

functional forms into the general muscle model,

fm(t) = mw

[

d2

dt2
xSE(t) +

d2

dt2
xCE(t) +

d2

dt2
xPE(t)

]

(38)
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such that the complete muscle’s force model fm formulated by

fm(t) =
s1λ2

1

mw
eλ1t +

s2λ2
2

mw
eλ2t + c1

c2
CE

mw
e

−c
mw

t − c2cCEe
−c
mw

t − c2cCEe
−c
mw

t+

c2
c2

CE

mw
te

−c
m t + p1

c2
PE

mw
e

−c
mw

t − p2cPEe
−c
mw

t − p2cPEe
−c
mw

t+

p2(
c2

PE

mw
)te

−c
mw

t.

(39)

Subsequently, simplifying the preceding expression leads to the formulation presented in Proposition

7.

Proposition 7 (Muscles force model). The solution to the muscle force model, based on a Hill’s approach, is

derived as a time-dependent function fm(t) encompassing its three constituent elements (serial, contractile, and

parallel). This formulation is expressed as:

fm(t) =
s1λ2

1eλ1t + s2λ2
2eλ2t

mw
+

(

c1 + c2t

mw
cCE − 2c2

)

cCEe
−cCE

mw
t+

(

p1 + p2t

mw
cPE − 2p2

)

cPEe
−cPE

mw
t.

(40)

Thus, without loss of generality, considering a muscle model characterized by elongation xm and

a force-based model fm, we proceed to derive the passive angles of the oscillator and the output forces

fx and fy for ℓ1.

Under initial conditions, the trapezoid oscillator bars are assumed to have θ0 = 0o, aligning the

four-bar mechanism with the X axis. As the bars rotate by an angle θ1 due to solenoid impacts at

points R or L, the input bar of the oscillator with a radius of ros undergoes an arc displacement s1.

Simultaneously, the output bar of shorter radius rs experiences a displacement rate of s2, such that:

s2 =

(

rS

ros

)

s1. (41)

the arc displacement at points R or L is given by s1 = rosθos. Consequently, the rotation angle of the

input oscillator is expressed as:

θos =
s1

ros
. (42)

Therefore, by formulating this relationship in the context of forces and subsequently substituting the

newly introduced functions, the resulting expression is

θos =
1

ros

∫∫

t
ÿdt2 (43)

Here, ÿ denotes the linear acceleration of either point R or L along the robot’s Y axis. By replacing the

solenoid’s mass-force formulation,

θos =
1

mros

∫∫

t
fosdt2 =

f t2

2mros
. (44)

Hence, the functional expression for s1 takes the form

s2 =
rs fost2

2mr2
os

. (45)
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Without loss of generality, the inner angle θ1 of the oscillator mechanism (refer to Figure 12b) is derived

as:

θ1 =
π

2
± θos. (46)

Initially, when the oscillator bars are aligned with respect to the X axis, an angular displacement

denoted by θ1 occurs as a result of the transfer of motion from the solenoid’s tangential linear motion

to the input bar. Similarly, in the output bar, the corresponding angular displacement is represented by

θ2,

θ2 = π ± (θ + ∆θ), (47)

here, ∆θ signifies a minute variation resulting from motion perturbation along the various links of

the caudal spine. The selection of the ± operator depends on the robot’s side, whether it is denoted

as R or L. As part of the analysis strategy, the four-bar oscillator was geometrically simplified to half

a trapezoid for the purpose of streamlining deductions (refer to Figure 12b). Within this reduced

mechanism, two triangles emerge. One triangle is defined by the parameters ros, ℓ, d, while the other

is characterized by xm(t), ℓ, rs, where ℓ serves as the hypotenuse and the sides d, ros, and rs remain

constant. Consequently, the instantaneous length of the hypotenuse is deduced as follows:

ℓ
2 = r2

os + d2 − 2dros cos(θ1), (48)

Upon determining the value of ℓ, the inner angle γ1 can be derived as follows:

ros2=d2+ℓ2−2ℓd cos(γ1)
(49)

Therefore, by isolating γ1,

γ1 = arccos

(

ros − ℓ2 − d2

−2dℓd

)

. (50)

Until this point, given the knowledge of γ1 and θ2, it is feasible to determine the inner complementary

angle γ2 through the following process:

γ2 = θ2 − γ1, (51)

Subsequently, the angle formed by the artificial muscle and the output bar can be established according

to the following principle:
sin(γ2)

xm
=

sin(β)

ℓ
, (52)

thus, the inner angle β is

β = arcsin

(

ℓ

xm
sin(γ2)

)

, (53)

or alternatively, an approximation of the muscle length is

xm = ℓ
sin(γ2)

sin β
, (54)

this is the mechanism through which the input bar transmits a force fm1
, as defined in expression (31),

from the tangent fos to the output bar, achieving a mechanical advantage denoted as fm2 ,

fm2 =

(

ros

rs

)

fm1
. (55)

Hence, in accordance with the earlier stipulation in expression (31), Definition 5 delineates the

instantaneous angles αR,L.
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Definition 5 (Angles αR,L). The instantaneous angle α, expressed as a function of the inner angles of the

oscillator, is introduced by:

αR,L = βR,L − θ1R,L
. (56)

It is noteworthy that, owing to the inertial system of the robot, the longitudinal force output

component fy aligns with the input force fos in direction. Consequently, for a right-sided force, we

have αR
.
= βR − θ1R

, where:

fxR
=

(

ros

rs

)

fosL

sin(αR)

cos(αR)
(57a)

and

fyR
=

(

ros

rs

)

fosR
. (57b)

Likewise, for the left-sided αL
.
= βL − θ1L

,

fxL
=

(

ros

rs

)

fosR

sin(αL)

cos(αL)
(58a)

as well as

fyL
=

(

ros

rs

)

fosL
. (58b)

In this scenario, an inverse solution is only applicable for fxR,L
, with no necessity for determining

fyR,L
. Consequently, the mechanical advantage transferred between the input and output bars can be

expressed by a simplified coefficient.

κ
.
=

ros

rs
. (59)

Furthermore, through the utilization of the following trigonometric identity,

sin(β − θ1)

cos(β − θ1)
≡ tan(β − θ1) (60)

can substitute and streamline the ensuing system of nonlinear equations by solving them

simultaneously. Additionally, let θ1 be defined as:

θ1R,L
=

π

2
±

rs fosR,L
t2

2mr2
os

. (61)

Hence, the simultaneous nonlinear system is explicitly presented solely for the force components along

the X axis:

fxR
= κ fosL

tan(βR − θ1R
) (62a)

and

fxL
= κ fosR

tan(βL − θ1L
). (62b)

Therefore, for the numerical solution of the system, a multidimensional Newton-Raphson approach is

employed as outlined in the provided solution:

βRt+1
= βRt

−
fxR

∂ fxL
∂βL

− fxL

∂ fxL
∂βL

∂ fxR
∂βR

∂ fxL
∂βL

− ∂ fxR
∂βL

∂ fxL
∂βR

(63a)
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and

βLt+1
= βLt

−
fxL

∂ fxR
∂βR

− fxR

∂ fxL
∂βR

∂ fxR
∂βR

∂ fxL
∂βL

− ∂ fxR
∂βL

∂ fxL
∂βR

. (63b)

Thus, by defining all derivative terms to finalize the system,

∂ fxR

∂βR
= κ fosR

( −θ1R

cos2(βR − θ1R
)

)

, (64a)

∂ fxR

∂βL
= 0, (64b)

∂ fxL

∂βR
= 0, (64c)

∂ fxL

∂βL
= κ fosL

( −θ1L

cos2(βL − θ1L
)

)

. (64d)

Therefore, by subsequently organizing and algebraically simplifying,

βRt+1
= βRt

−
fxR

∂ fxL
∂βL

∂ fxR
∂βR

∂ fxL
∂βL

= βRt
+

tan(βR − θ1R
) cos2(βR − θ1R

)

θ1R

(65a)

and

βLt+1
= βLt

−
fxL

∂ fxR
∂βR

∂ fxR
∂βR

∂ fxL
∂βL

= βLt
+

tan(βL − θ1L
) cos2(βL − θ1L

)

θ1L

. (65b)

The objective is to achieve numerical proximity, aiming for βt+1 ≈ βt. Consequently, through this

inverse solution, the lateral force components of the first spinal link, denoted by fx, are intended to

be estimated because they are perpendicular to the links and produce the angular moments at each

passive joint.

fx =

(

fxR

fxL

)

= κ ·









fosL
tan

(

βRt+1
− π

2 +
rs fosL

t2

2mr2
os

)

fosR
tan

(

βLt+1
− π

2 − rs fosR
t2

2mr2
os

)









. (66)

Thus, given that the torque of the trapezoid’s second bar is τs = fsrs (see Figure 12b), we establish

a torque-angular moment equivalence, denoted as τs ≡ M1. Leveraging this equivalence and the prior

understanding of the torque τs acting on the second bar of the trapezoid, mechanically connected to

the first link ℓ1, we affirm their shared angular moment. Consequently, the general expression for the

tangential force fk applied at the end of each link ℓk is:

fk =
Mk

ℓk
. (67)

Yet, considering the angular moment Mk for each helical-spring joint, supporting the mass of the

successive links, let’s introduce equivalent inertial moments, starting with Iε1
= I1 + I2 + I3 + I4.

Subsequently, we define Iε2 = I2 + I3 + I4, Iε3 = I3 + I4, and finally, I4. Thus, in the continuum of

the caudal spine, the transmission of energy to each link is contingent upon the preceding joints, as

established by:

M1 = Iε1
θ̈1, M2 = Iε2 θ̈2, M3 = Iε3 θ̈3, M4 = I4θ̈4. (68)

Each helical spring, connecting pairs of vertebrae, undergoes an input force f = −kx, directly

proportional to the angular spring deformation indicated by elongation x. Here, k [kg m2/s2] represents

the stiffness coefficient. External forces result in an angular moment, given by τ = −kθ, where torque
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serves as an equivalent variable to angular momentum, such that Iα = −kθ. Consequently, when

expressing the formula as a linear second-order differential equation, we have:

θ̈ +
k

I
θ = θ̈Lk

. (69)

Here, θ̈Lk
represents undulatory accelerations arising from external loads or residual motions along

the successive caudal links, which are detectable through encoders and IMUs. Assuming an angular

frequency ω2 = k/I, a period p = 2π
√

I/k, and moments of inertia expressed as Ik = r2
kmk, the

general equation is formulated as follows:

Mk = Iεk
θ̈k, (70)

where θ̈k is replaced by the helical spring expression (69) to derive

Mk = Iεk

(

θ̈Lk
− kk

Iεk

)

. (71)

By algebraically extending, omitting terms, and rearranging for all links in the caudal spine, we arrive

at the following matrix-form equation:











M1

M2

M3

M4











=











Iε1
0 0 0

0 Iε2 0 0

0 0 Iε3 0

0 0 0 Iε4











·











θ̈L1

θ̈L2

θ̈L3

θ̈L4











−











k1θ1

k2θ2

k3θ3

k4θ4











. (72)

Hence, in accordance to expression (67), the tangential forces exerted on all the caudal links of the

robotic fish are delineated by the following expression:











fl1

fl2

fl3

fl4











=















Iε1
ℓ1

0 0 0

0
Iε2
ℓ2

0 0

0 0
Iε3
ℓ3

0

0 0 0
Iε4
ℓ4















·











θ̈L1

θ̈L2

θ̈L3

θ̈L4











−













k1
ℓ1

0 0 0

0 k2
ℓ2

0 0

0 0 k3
ℓ3

0

0 0 0 k4
ℓ4













·











θ1

θ2

θ3

θ4











(73)

Alternatively, the last expression can be denoted as the following control law:

f = Mθ̈L − Qθt ≡ M(θ̇tt1
− θ̇tt1

)

t2 − t1
− Qθt, (74)

Where f = ( fl1, fl2, fl3, fl4)
⊤, M represents masses dispersion, and θ̈ = (θ̈L1

, θ̈L2
, θ̈L3

, θ̈L4
)⊤ denotes the

vector of angular accelerations for the caudal vertebrae, including external loads. Additionally, Q

stands for the matrix of stiffness coefficients. Therefore, the inverse dynamics control law, presented in

a recursive form, is:

θ̇Lt+1
= θ̇Lt

+
M−1

t2 − t1
(f + Qθt) . (75)

Finally, for feedback control, both equations are simultaneously employed within a computational

recursive scheme, and angular observations are frequently derived from sensors on both joints:

encoders and IMUs.

7. Ballasting Control System

This section delineates the integration of the ballasting control system, crafted to complement the

primary structure of the biorobot. It introduces the ballasting model-based control system, selectively
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activated in response to the artificial neural network’s (ANN) output, particularly triggered when the

ANN signals ’sink’ or ’buoyancy.’ Figure 13a visually depicts the biorobot’s ballasting system, while

Figure 13b presents a diagram illustrating the fundamental components of the hydraulic piston, crucial

for control modeling.

a) b)

Figure 13. Ballasting system of the robot fish. a) Detailed 3D model of the robot fish with the ballast

device positioned beneath its floor. b) Components of the basic ballasting device designed for modeling

and control purposes.

The core operational functions of the ballasting device involve either filling its container chamber

with water to achieve submergence or expelling water from the container to attain buoyancy. Both

actions entail the application of a linear force for manipulating a plunger or hydraulic cylindrical

piston, thereby controlling water flow through either suction or exertion. Consequently, the volume of

the liquid mass fluctuates over time, contingent upon a control reference or desired level marked as H,

along with quantifying a filling rate u(t) and measuring the actual liquid level h(t).

Hence, we can characterize the filling rate u(t) as the change in volume V with respect to time,

expressed as
dV(t)

dt
= u(t), (76)

and assuming a cylindrical plunger-chamber with radius r and area A = πr2, the volume is expressed

as

V(t) = Ah(t), (77)

Here, h(t) represents the actual position of the plunger due to the incoming hydraulic mass volume.

Consequently, the filling rate can also be expressed as

u(t) = k(H − h(t)). (78)

Consider k as an adjustment coefficient, and let H be the reference or desired filling level. The

instantaneous longitudinal filling level is denoted as h(t). By substituting the previous expressions

into the initial equation (76), we derive the following first-order linear differential equation:

A
dh(t)

dt
= k(H − h(t)). (79)

To solve the aforementioned equation, we employ the integrating factor method, such that

ḣ(t) +
k

A
h(t) =

k

A
H. (80)
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In this instance, the integrating factor is determined as follows:

µ(t) = e
∫

k
A dt = e

kt
A . (81)

Thus, by applying the integrating factor, we effectively reduce the order of derivatives in the subsequent

steps,

e
kt
A ḣ(t) + e

kt
A

k

A
h(t) =

k

A
He

kt
A , (82)

Through algebraic simplification of the left side of the aforementioned expression, the following result

is determined
(

h(t)e
kt
A

)′
=

k

A
He

kt
A . (83)

Following this, by integrating both sides of the equation with respect to time,

∫

t

(

h(t)e
kt
A

)′
dt =

∫

t

k

A
He

kt
A dt, (84)

where the expression on the left side undergoes a transformation into

h(t)e
kt
A =

k

A
H
∫

t
e

kt
A dt, (85)

and the right side of the equation, once solved, transforms into

h(t)e
kt
A = He

kt
A + c. (86)

Now, to obtain the solution for h(t), it is isolated by rearranging the term e
kt
A :

h(t) = H + ce−
kt
A (87)

For initial conditions where h(t0) = 0 indicates the plunger is completely inside the contained chamber

at the initial time t0 = 0 s, the integration constant c is determined as

0 = H + ce0. (88)

Therefore, the value of c takes on c = −H, and substituting it into the previous obtained solution,

h(t) = H(1 − e−
kt
A ). (89)

In addition, considering that the required force of the piston fe is hence given by:

fe = m(t)
dv

dt
+ fk + ρa A, (90)

where fk is the friction force of the piston in the cylindrical piston, and ρa A refers to the water pressure

at that depth over the piston’s entry area. The instantaneous mass considers the piston’s mass me and

the liquid mass of the incoming water ma:

m(t) = me + ma, (91)

where the water density is δa =
ma
Va

and Va = πr2h(t), thus completing the mass model:

m(t) = me + δaπr2H(1 − e−
kt
A ). (92)
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Therefore, the force required to pull/push the plunge device is stated by the control law given as

fe =
(

me + δaπr2H(1 − e−
kt
A )
) dv

dt
+ fk + ρa A. (93)

8. Conclusion and future work

In summary, this study introduces a cybernetic control approach integrating electromyography,

haptic feedback, and an underactuated bio-robotic avatar fish. Human operators control the avatar

fish using their muscular stimuli, eliminating the need for handheld apparatus. The incorporation of

fuzzy control, combining EMG stimuli with motion sensor observations, has proven highly versatile in

influencing the decision-making process governing the fish’s swimming behavior.

The implementation of a deep neural network achieved remarkable accuracy, surpassing 98%, in

recognizing sixteen distinct electromyographic gestures. This underscores the system’s robustness,

effectively translating human intentions into precise control commands for the underactuated robotic

fish.

This manuscript reports results from experimental EMG data classification and recognition using

a multilayered artificial neural network. The oscillation pattern generator provided real signals

to an experimental prototype of the underactuated robotic fish with its electromagnetic oscillator.

Additionally, the fuzzy controller and the fish’s dynamical control model were validated through

computer simulations.

While the introduction of haptic feedback and interface is conceptual in the proposed architecture,

it represents a promising avenue for future research, aiming to enhance remote operation with

immersive experiences. The advancements showcased in this work hold significant potential for

future applications in underwater exploration through immersive cybernetic control.
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Appendix A. EMG stimuli patterns

a)

b)

Figure A1. Thumbs pattern space components: filters γ,λ and Ω.
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a)

b)

Figure A2. Indexes pattern space components: filters γ,λ and Ω.
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a)

b)

Figure A3. Middle fingers pattern space components: filters γ,λ and Ω.
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a)

b)

Figure A4. Ring fingers pattern space components: filters γ,λ and Ω.
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a)

b)

Figure A5. Little fingers pattern space components: filters γ,λ and Ω.
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