Altmetrics
Downloads
154
Views
90
Comments
0
This version is not peer-reviewed
Submitted:
09 January 2024
Posted:
11 January 2024
You are already at the latest version
Time t features | Time t-1 features | Tim t features last n days | |
---|---|---|---|
GHI (output) | GHI_lag1 | WD_lag1 | GHI_1D |
DNI_lag1 | RH_lag1 | GHI_2D | |
Hour | DHI_lag1 | BP_lag1 | GHI_3D |
Day | ZA_lag1 | AOD_500_lag1 | GHI_4D |
Month | AT_lag1 | 440-675_AE_lag1 | |
WS_lag1 | OAM_lag1 |
Ref No. | Method | Features | Data source | Results |
---|---|---|---|---|
[21] | Hybrid of CNN and LSTM, LSTM-AE | Date, time, location, inverter ID & temperature, power, slope irradiation, horizontal surface irradiation, ground temperature, AT, WS, RH | Ground-based | Hybrid CNN+LSTM model achieved the lowest MAPE= 13.42, RMSE=0.0987, and MAE=0.0506 for next-hour solar power prediction at South Korea. |
[22] | CNN, LSTM | Hour, previous GHI; forecast of UV index, CC, DP, AT, RH, wind bearing, sunshine duration | Ground-based, satellite-based | Both CNN and LSTM models achieved the lowest normalized RMSE of around 43, and normalized MAE of around 17 for next-hour GHI prediction at Torino, Italy. |
[23] | RBFNN, LSTM | Previous 30 days of AT, RH, P, ZA, GHI | Satellite-based | LSTM model without weather data achieved better RMSE= 0.013 for day ahead GHI prediction at Halifax, Canada and Tripoli, Libya |
[24] | LSTM | Previous 24 hours of Clear sky GHI, DNI, DHI, RH | Satellite-based | LSTM model with four features achieved RMSE between 1.09% and 3.19% for day ahead GHI prediction at four locations in Canada |
[31] | MLP, SVR, kNN, DTR | Last hour GHI, AOD, AE, DNI, DHI; current ZA, hour, month; forecast of WD, WS, AOD | Ground-based, satellite-based |
MLP model achieved the lowest RMSE= 32.75 and the highest FS= 42.10% for next-hour GHI prediction at Riyadh, Saudi Arabia. |
[32] | ANN | AT, WS, WD, RH, P, AOD, GHI | Ground-based | ANN model achieved MSE=4.67% for next 3-hour GHI prediction at Delhi, India. |
[33] | Autoregressive, SVR, LSTM | Last 10 min clear sky index; current clear sky index, CC, RH, AOD | Satellite-based | LSTM model achieved normalized RMSE=15.25% for next 10-min GHI prediction at a town in inner Mongolia. |
[34] | Hybrid of CNN & MLP | Last 4 hours GHI; current AT, RH, ZA, AOD, WS, rainfall, P; sky images | Ground-based, satellite images | Hybrid CNN+MLP model achieved RMSE of around 38 and MAE of around 27 for next-hour GHI prediction at Shandong province, China |
[35] | Ensemble of multiple regression, SVR, & MLP | ZA, AOD, P, AT, RH, WS, sine of day, CC, air mass, azimuth angle | Satellite-based | Ensemble model of multiple regression, SVR & MLP achieved normalized RMSE=21.98% and normalized MAE=11.13% for next 10-min GHI prediction at Golden City, USA. |
Time t features | Time t-1 features | Time t-2 features |
Time t-3 features |
Tim t features last n days | |
---|---|---|---|---|---|
GHI (output) |
GHI_lag1 | GHI_lag2 | GHI_lag3 | GHI_1D | GHI_90D |
DNI_lag1 | DNI_lag2 | DNI_lag3 | GHI_2D | GHI_120D | |
Hour | DHI_lag1 | DHI_lag2 | DHI_lag3 | GHI_3D | GHI_150D |
Day | AT_lag1 | AT_lag2 | AT_lag3 | GHI_4D | GHI_180D |
Month | ZA_lag1 | ZA_lag2 | ZA_lag3 | GHI_5D | GHI_210D |
WS_lag1 | WS_lag2 | WS_lag3 | GHI_6D | GHI_240D | |
WD_lag1 | WD_lag2 | WD_lag3 | GHI_7D | GHI_270D | |
RH_lag1 | RH_lag2 | RH_lag3 | GHI_15D | GHI_300D | |
BP_lag1 | BP_lag2 | BP_lag3 | GHI_30D | GHI_330D | |
GHI_60D | GHI_360D |
Time t features | Time t-1 features | Time t-2 & t-3 features |
Tim t features last n days | |
---|---|---|---|---|
GHI (output) | GHI_lag1 | DUEXTTAU_lag1 | GHI_lag2 | GHI_1D |
DNI_lag1 | DUEXTT25_lag1 | DNI_lag2 | GHI_2D | |
Hour | DHI_lag1 | TOTEXTTAU_lag1 | DHI_lag2 | GHI_3D |
Day | AT_lag1 | DUCMASS_lag1 | ZA_lag2 | GHI_4D |
Month | ZA_lag1 | DUCMASS25_lag1 | AT_lag2 | GHI_5D |
WS_lag1 | DUSMASS_lag1 | GHI_lag3 | GHI_6D | |
WD_lag1 | DUSMASS25_lag1 | DNI_lag3 | GHI_7D | |
RH_lag1 | DUSCATFM_lag1 | DHI_lag3 | ||
BP_lag1 | TOTSCATAU_lag1 | ZA_lag3 | ||
TOTANGSTR_lag1 | AT_lag3 |
Dataset | Period | Missing days | Total Hourly Records | GHI mean | GHI SD | GHI var | Weather conditions |
---|---|---|---|---|---|---|---|
K.A.CARE | 24/12/2016- 03/03/2021 |
1117 days | Train: 7044 | 457.32 | 297.34 | 88411.98 | 1: 5458 2: 3090 3: 1499 |
Val: 1495 | 424.40 | 269.23 | 72482.13 | ||||
Test: 1508 | 446.66 | 293.61 | 86205.48 | ||||
Total: 10047 | 450.82 | 292.97 | 85830.41 | ||||
NSRDB | 27/12/2017- 31/12/2019 |
360 | Train: 6193 | 481.73 | 313.90 | 98534.76 | 1: 4548 2: 2780 3: 1504 |
Val: 1314 | 529.09 | 331.09 | 109624.53 | ||||
Test: 1325 | 438.84 | 278.12 | 77354.06 | ||||
Total 8832 | 482.35 | 312.40 | 97595.1 | ||||
K.A.CARE & AERONET | 05/01/2016- 03/03/2021 |
1215 days | Train: 2733 | 604.08 | 257.75 | 66436.59 | 1: 2508 2:1279 3:111 |
Val: 580 | 607.67 | 260.03 | 67615.76 | ||||
Test: 585 | 555.42 | 223.30 | 49863.17 | ||||
Total: 3898 | 597.31 | 253.78 | 64405.57 | ||||
NSRDB & GIOVANNI | 08/01/2017- 31/12/2019 |
7 days |
Train: 9180 | 473.20 | 309.68 | 95905.06 | 1: 6491 2: 4291 3: 2310 |
Val: 1948 | 530.51 | 326.67 | 106714.98 | ||||
Test: 1964 | 462.27 | 299.18 | 89503.37 | ||||
Total: 13092 | 480.09 | 311.45 | 96998.23 | ||||
*1=sunny, 2= partly clear, 3= unclear |
Experiment 1 | Experiment 2 | Experiment 3 | |||
---|---|---|---|---|---|
GHI (output) | GHI_1D | GHI_90D | GHI (output) |
GHI_1D | GHI (output) |
Hour | GHI_2D | GHI_120D | Hour | GHI_2D | Hour |
Day | GHI_3D | GHI_150D | Day | GHI_3D | Day |
Month | GHI_4D | GHI_180D | Month | GHI_4D | Month |
GHI_lag1 | GHI_5D | GHI_210D | GHI_lag1 | GHI_5D | GHI_lag1 |
GHI_lag2 | GHI_6D | GHI_240D | GHI_lag2 | GHI_6D | GHI_lag2 |
GHI_lag3 | GHI_7D | GHI_270D | GHI_lag3 | GHI_7D | GHI_lag3 |
GHI_15D | GHI_300D | GHI_15D | |||
GHI_30D | GHI_330D | GHI_30D | |||
GHI_60D | GHI_360D | GHI_60D | |||
Total: 26 features | Total: 16 features | Total: 6 features |
Experiment 1 | Experiment 2 | |||||||
---|---|---|---|---|---|---|---|---|
GHI (output) | GHI_lag1 | GHI_lag2 | GHI_lag3 | GHI_1D | GHI_90D | GHI (output) |
GHI_3D | GHI_120D |
DNI_lag1 | DNI_lag2 | DNI_lag3 | GHI_2D | GHI_120D | GHI_4D | GHI_150D | ||
DHI_lag1 | DHI_lag2 | DHI_lag3 | GHI_3D | GHI_150D | Hour | GHI_5D | GHI_180D | |
Hour | AT_lag1 | AT_lag2 | AT_lag3 | GHI_4D | GHI_180D | Day | GHI_6D | GHI_210D |
Day | ZA_lag1 | ZA_lag2 | ZA_lag3 | GHI_5D | GHI_210D | Month | GHI_7D | GHI_240D |
Month | WS_lag1 | WS_lag2 | WS_lag3 | GHI_6D | GHI_240D | GHI_lag1 | GHI_15D | GHI_270D |
WD_lag1 | WD_lag2 | WD_lag3 | GHI_7D | GHI_270D | GHI_lag2 | GHI_30D | GHI_300D | |
RH_lag1 | RH_lag2 | RH_lag3 | GHI_15D | GHI_300D | GHI_lag3 | GHI_60D | GHI_330D | |
BP_lag1 | BP_lag2 | BP_lag3 | GHI_30D | GHI_330D | GHI_1D | GHI_90D | GHI_360D | |
GHI_60D | GHI_360D | GHI_2D | ||||||
Total: 50 features | Total: 26 features |
Experiment 1 | Experiment 2 | ||
---|---|---|---|
GHI (output) | GHI_4D | GHI (output) | GHI_lag1 |
Hour | GHI_lag1 | Hour | DNI_lag1 |
Day | DNI_lag1 | Day | DHI_lag1 |
Month | DHI_lag1 | Month | ZA_lag1 |
AOD_500_lag1 | ZA_lag1 | GHI_1D | AT_lag1 |
440-675_AE_lag1 | AT_lag1 | GHI_2D | WS_lag1 |
OAM_lag1 | WS_lag1 | GHI_3D | WD_lag1 |
GHI_1D | WD_lag1 | GHI_4D | RH_lag1 |
GHI_2D | RH_lag1 | BP_lag1 | |
GHI_3D | BP_lag1 | ||
Total: 19 features | Total: 16 features |
Experiment 1 | Experiment 2 | |||||||
---|---|---|---|---|---|---|---|---|
GHI (output) | GHI_lag1 | DUEXTTAU_lag1 | GHI_lag2 | GHI_1D | GHI (output) | GHI_lag1 | GHI_lag2 | GHI_1D |
DNI_lag1 | DUEXTT25_lag1 | DNI_lag2 | GHI_2D | DNI_lag1 | DNI_lag2 | GHI_2D | ||
Hour | DHI_lag1 | TOTEXTTAU_lag1 | DHI_lag2 | GHI_3D | Hour | DHI_lag1 | DHI_lag2 | GHI_3D |
Day | AT_lag1 | DUCMASS_lag1 | ZA_lag2 | GHI_4D | Day | AT_lag1 | ZA_lag2 | GHI_4D |
Month | ZA_lag1 | DUCMASS25_lag1 | AT_lag2 | GHI_5D | Month | ZA_lag1 | AT_lag2 | GHI_5D |
WS_lag1 | DUSMASS_lag1 | GHI_lag3 | GHI_6D | WS_lag1 | GHI_lag3 | GHI_6D | ||
WD_lag1 | DUSMASS25_lag1 | DNI_lag3 | GHI_7D | WD_lag1 | DNI_lag3 | GHI_7D | ||
RH_lag1 | DUSCATFM_lag1 | DHI_lag3 | RH_lag1 | DHI_lag3 | ||||
BP_lag1 | TOTSCATAU_lag1 | ZA_lag3 | BP_lag1 | ZA_lag3 | ||||
TOTANGSTR_lag1 | AT_lag3 | AT_lag3 | ||||||
Total: 39 features | Total: 29 features |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated