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Abstract: The utilization of smart IoT devices, commonly referred to as digital twins, is aimed at the
digitalization of human knowledge within aquaculture processes. This involves the incorporation of cutting-
edge technologies, including information-based management with big data and modeling, to automate
machinery and gain comprehensive insights into the aquaculture environment and fish farm conditions. The
ultimate objective is to empower farmers to make informed decisions, furnishing them with objective data to
enhance their capacity in monitoring and controlling the various factors impacting fish production. As a result,
farming decisions can be fine-tuned to enhance fish health and optimize farm output. In the context of large
and modern aquaculture farms, technological innovation becomes imperative to automate processes, minimize
labor requirements, and streamline fish feeding operations. Remarkably, the literature currently offers limited
discussions on the digital transformation of aquaculture through the application of digital twin methodologies.
A prior study underscores the critical influence of factors such as market prices and fish survival rates on the
profitability of offshore caging culture. In this study, we embark on an analysis of the prerequisites for
establishing a digital twin infrastructure tailored to intelligent fish feeding management. This infrastructure is
designed to facilitate the integration of technology and data-driven decision-making, ultimately enhancing the
efficiency of fish feeding processes. The proposed architecture for the fish feeding digital twin encompasses
various digital twin components, encompassing water quality forecasting, fish population assessment, fish
metrics estimation, fish feed prediction, and evaluation of fish feeding intensity. Furthermore, we optimize the
daily fish feeding process through reinforcement learning algorithms. Finally, we implement a cloud-based
AloT system that provides the runtime environment for executing digital twins and controlling our intelligent
fish feeding machinery. Experimental findings underscore the efficacy of the proposed digital twin system in
significantly improving traditional fish feeding processes, notably in terms of reducing food costs and labor
requirements.

Keywords: digital twin; smart fish feeding machine; multi-mode sensors; fish feeding process; Al aquaculture
transformation.

1. Introduction

This study aims to propose an intelligent fish feeding management scheme by virtually
representing the physical elements of the fish feeding process as a set of digital twins (DTs). These
DT objects incorporate advanced data analytics, including machine learning and deep learning
prediction models, to control a feeding machine via a wireless network. Initially, the prediction
models of a specific operation performed by a DT object are trained using data collected from IoT
sensors deployed in experimental fish ponds or offshore net cages. The performance of these data-
driven models can be further enhanced through continuous retraining and calibration when high-
quality big data are gathered.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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The process-based DT framework is an AloT (Artificial Intelligence of Things) system that
seamlessly integrates artificial intelligence (AI) functions and IoT sensing techniques into DT objects
to enhance productivity and reduce the environmental footprint. In contrast, conventional methods
in aquaculture management often rely on trial and error, making it challenging to establish standard
operating procedures (SOPs) for optimal aquaculture practices. Furthermore, the Al functions
embedded within the data-driven machine learning models of a digital twin are often challenging to
interpret due to their inherent black-box structures.

The proposed approach combines physiological growth models of fish with data collected from
aquaculture sensors to evaluate optimal fish feeding strategies using reinforcement learning. The
digital twin system then executes these optimized policies to reduce feeding costs through our smart
fish feeding machine. To the best of our knowledge, this is the first model that assesses the benefits
of digital twins in significantly reducing the need for time-consuming and resource-intensive
experiments to achieve effective physical processes for optimized management strategies.

Conventional fish farm management relies on process-based models, which base feeding
practices on the physiological growth processes of fish [1]. Key parameters of these processes are
typically determined in advance through human expert experiments to ensure the success of fish
farming. However, variations in individual experiments or climate changes can lead to significant
discrepancies and result in poor management, reduced efficiency, and production degradation.
Additionally, these key parameters need to be calibrated based on fish species and specific
environmental conditions due to complex genotype-environment interactions. For example, the
lethal temperatures for a particular fish species may vary in different environments, requiring
parameter recalibration when applied to fish ponds with different environmental conditions.
Unfortunately, the time and cost associated with experimental model calibration are high, severely
limiting existing processes. In a survey by Flinn and Midway [2], they identified the need for different
growth models to represent the growth of different fish species [3-5] and discussed the challenges
associated with process-based growth models for tracking fish growth.

Recently, data-driven approaches have been proposed for smart aquaculture, leveraging
machine learning to derive decision-making functions from input and output data captured by IoT
sensors within an AloT system [6]. These systems utilize broadband 4G/5G wireless connectivity to
connect various sensors and aquaculture machines on offshore cages, enabling fish farms to access
data from remote and hazardous locations. These devices bridge the gap and address the challenges
of data collection by remotely capturing and wirelessly transmitting data from physical environments
to a cloud platform, which can then store, manage, and process data using pre-trained machine
learning models [7]. Cloud computing has made it possible to enhance parallel computing,
scalability, accessibility, data security, visualization, and resource integration and storage.
Integrating machine learning and artificial intelligence (AI) functions into this infrastructure
enhances its capabilities, enabling predictive analysis for informed decision-making in optimizing
aquaculture processes. This combination of technologies is now referred to as the digital twin
framework, which is the fusion of IoT and Al functionalities.

In the digital twin approach, IoT sensors and devices installed in the physical environment
connect directly to the Internet via communication devices capable of transmitting collected data to
another platform, such as a cloud server. The cloud platform incorporates Al functions for data
collection, analysis, and automated decision-making. Furthermore, various smart applications may
require deploying different machine learning models in the cloud. The server-side maintenance
scheme facilitates the customized design of the DT architecture to manage a specific fish farm.

In recent years, numerous machine learning and artificial intelligence (AI) approaches have been
proposed for the advancement of smart aquaculture applications, particularly in the integration of Al
functions within a digital twin [8-16]. The accuracy of data-driven models crucially depends on the
acquisition of substantial, high-quality training data, necessitating the deployment of Internet of
Things (IoT) systems in fish ponds or offshore cages. However, the high cost associated with sensor
deployment for fish farm monitoring and the limited power supply for real-time data transmission
to the cloud via broadband telecommunication pose significant challenges in collecting the necessary
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high-quality training data. This challenge is further compounded by the opaque nature of many data-
driven models, which often operate as complex black boxes. This disparity between Al models and
the traditional, biologically driven approach used by fish farm managers creates a barrier to the
adoption of innovative technologies within aquaculture. Thus, addressing these challenges remains
a pivotal aspect of the Al transformation of aquaculture.

Intelligent fish farming embraces an AloT system equipped with IoT sensors and remotely
controllable aquaculture machinery to monitor environmental conditions, assess fish well-being, and
automate routine processes. A digital twin serves as the digital representation of physical devices
based on sensor data. While digital twins have been extensively integrated into various applications,
such as smart cities and manufacturing processes [17-19], their full realization in aquaculture is still
evolving, despite various attempts and preliminary integrations [6, 20-23]. In aquaculture, digital
twins can be instrumental in monitoring parameters like temperature, light intensity, water flow, pH
levels, salinity, and even surveillance videos. They can also optimize fish feeding strategies for weight
gain, streamline production processes, minimize waste, conserve water resources, and ensure
compliance with production standards. In fish farming, digital twins can proactively monitor fish
health, preventing diseases by simulating optimal farm conditions and applying them to physical
aquaculture processes. For instance, in a previous study [23], a digital twin approach was explored
in the context of land-based smart aquaculture. The successful integration of physical devices and
digital twins relies on several key factors: (1) employing multi-mode sensors to capture high-quality
data for the digital twin, (2) incorporating domain-specific knowledge, such as fish physiology, into
the Al functions of the digital twin, and (3) endowing the digital twin with learning capabilities to
calibrate crucial modeling parameters based on historical data from physical devices.

The success of intelligent fish farming hinges on the effective deployment of integrated physical
devices and digital twins, which enhance feed strategies and reduce the human workload in
operating aquaculture processes. This, in turn, leads to increased productivity and cost-effectiveness.
While implementing the digital twin approach in land-based fish farming is relatively
straightforward, offshore cage culturing presents unique challenges. Although it offers the advantage
of mitigating the risk of fish mortality and adverse environmental impacts, it is constrained by
substantial capital investments and operational costs. In a prior study [24], we conducted an
economic analysis of large submersible cage culture, focusing on snubnose pompano (Trachinotus
anak) and cobia (Rachycentron canadum) as target fish species. The study demonstrated that large
submersible cage culture can be financially viable with an increase in the number of operational units.
For instance, the payback periods for running cage culture with 8 and 24 units are 5.36 years and 3.55
years, respectively. These findings underscore the importance of scaling up fish farms to reduce the
risk associated with offshore cage culturing. However, this also highlights the need for smart
automation to alleviate the workload of workers managing routine processes. In essence, running a
large-scale fish farm is the foundation, with key factors influencing the benefits of offshore cage
culturing encompassing market prices, food costs, and survival rates. An effective fish feeding
strategy is essential to optimize cage culture, offering timely market pricing, cost reduction, and
improved survival rates.
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Figure 1. The block diagram of the process-based digital twin based on the proposed data-driven
processed-based fish feeding model.

Fish growth models are essential mathematical tools employed to simulate the growth of fish
over time. They hold significant value in the management of fish farms and the optimization of
production processes, as they provide predictive insights into growth patterns under varying
environmental conditions. Among the most renowned fish growth models are the Von Bertalanffy
Growth Model (VBGM) [25], which enables estimation of a fish's age, size, and growth rate. The
Gompertz Growth Model [26], on the other hand, is particularly suitable for fast-growing fish species,
such as salmonids, as it assumes exponential growth. Both of these models are grounded in the
concept that as a fish matures, its rate of growth gradually decelerates.

Certain growth models have been specifically tailored for application in aquaculture systems.
The Logistic Growth Model [27], for instance, operates on the premise that growth is restricted by the
carrying capacity of the environment. Notably, the Richards Growth Model [28] stands out as a
flexible growth model that can accommodate a broad spectrum of growth curves, accommodating
variable growth rates. It is crucial to exercise caution when employing these growth models, as mis
parameterization can lead to inaccuracies in fish growth predictions. The utilization of an
inappropriate growth model can yield suboptimal parameter estimates, thereby affecting
downstream processes like stock assessment and subsequent modeling [2].

In this paper, as illustrated in Figure 1, we introduce a digital twin approach based on the novel
data-driven process-based fish feeding model for optimizing fish feeding strategies. The key
components of this model are explained as follows.

e  Fish Species Input: This input specifies the type of fish to be bred and retrieves a set of genetic
parameters from the aquaculture knowledge base. These parameters characterize the fish's
growth model and are determined by genetics, independent of environmental factors. Initially
defined by aquaculture experts, these parameters are subject to calibration and refinement
through machine learning algorithms using historical fish feeding input and output data.

e  Environment Input: The environment input comprises a set of continuously collected
environmental data, including temperature, water velocity, dissolved oxygen, salinity, etc. These
data are acquired using the deployed water quality DT object.

e  Fish Metrics Input: This input consists of fish monitoring results, including current fish count,
length, width, and weight, obtained through pre-trained deep learning prediction models
analyzing data from RGB-D cameras or sonar imaging devices. The related DT objects
encompass fish counting DT and fish metrics estimation DT.

e  Fish Food Prediction Model: An artificial intelligence neural network predicts the quantity of
food to be dispensed into the fish cages, following our fish feeding policy, using remotely
controllable smart feeding machines. This model is incorporated into the fish food prediction
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DT, which takes inputs from the water quality DT, fish counting DT, and fish metrics estimation

DT to determine the daily fish feeding amount.

e  Fish Feeding Intensity Evaluation DT: This deep learning model predicts the level of fish feeding
intensity, which is then used as input for the fish feeding policy DT to regulate the optimal
actions controlling the smart feeding machine and minimize potential residual food during daily
fish feeding.

As aquaculture production intensifies, the imperative for precise, non-invasive, and automated
mechanisms becomes paramount to streamline operations. Effective fish feeding management
assumes critical significance, given that fish feed constitutes a substantial proportion of production
costs. Conventional manual feeding processes are not only labor-intensive but also prone to
inconsistencies stemming from subjective assessments by farm workers, resulting in erratic fish
production in terms of both quality and quantity.

In light of escalating feed prices and a dwindling workforce in aquaculture, sustainable farming
practices are indispensable as a mitigation strategy. Technological innovation significantly
contributes to enhancing the current approaches in aquaculture. This study's contributions are
summarized as follows: First and foremost, our digital twin approach seamlessly integrates cutting-
edge technologies, such as Al inference, deep learning, and big data analytics, with process-based
methodologies to optimize fish production. Secondly, this paper introduces an AloT architecture
comprising three core components: sensor devices for automated data collection, the cloud for data
management and the provision of a digital twin runtime environment, and user access, which
furnishes visualization and user access features tailored for end-users of the system. This architecture
offers an array of building blocks and essential functionalities, encompassing water quality
assessment, feeding optimizations, evaluation of fish feeding intensity, and estimations of fish
metrics, including fish size, count, and weight. These metrics provide invaluable information for
effective fish feeding management. Thirdly, each functionality is endowed with Al services capable
of optimizations, predictions, and analysis, enabling fish farmers to automate their processes. This
automation, in turn, facilitates the optimization of fish production, reduction of overfeeding or
underfeeding, and preservation of the water environment from feed contamination. These Al services
have been seamlessly integrated into the cloud computing environment, with data collected
automatically from sensors installed at the aquaculture site (e.g., cameras and water quality sensors).
The cloud, implemented in a micro-service architecture, such as Kubernetes, provides the
computational power and environment necessary to execute these Al services. Simultaneously, these
functionalities are accessible to users through a graphical user interface, accessible via a mobile
application or web browser. Finally, we incorporate physical fish feeding processes to construct our
digital twin objects, which collaborate with Al functions to reduce feeding costs. Our proposed digital
twin approach can synergize with a smart feeding machine to automate and oversee the feeding
process. We have trained and tested our digital twin models in open sea cages as our operational
environment, achieving an impressive accuracy rate ranging from 90% to 99%. This substantiates its
effectiveness in automating and managing fish feeding operations in aquaculture farms. The
remainder of this paper is structured as follows: Section 2 provides detailed insights into each digital
twin model, Section 3 presents the experimental results, and Section 4 elucidates the benefits of the
proposed approach, while also discussing its limitations. The final section summarizes the
conclusions and outlines directions for further enhancing the system.

2. Materials and Methods

2.1. Cloud-Based Digital Twin Architecture
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Figure 2. Cloud-based digital twin system for fish feeding management.

This section provides an in-depth look into our digital twin architecture and its various
components essential for achieving optimal fish feeding management, as illustrated in Figure 2. Our
architecture comprises three major components.

Initially, we employ physical devices equipped with sensors and a smart feeding machine
featuring remotely controllable actuators. These sensors autonomously collect and transmit data,
including fish images and water quality information, from the farm environment to the cloud system,
forming the second component. The on-site remote feeding machine facilitates automated feeding
control. To enable the deployment of IoT devices in the aquaculture setting for continuous data
collection, our sensors and actuators are equipped with Wi-Fi or 4G/5G telecommunication
capabilities for wireless data transmission.

The cloud system is further divided into two distinct components: data management services
and the fish feeding digital twin. Data management services integrate a database management system
to securely store, organize, and manage data collected from the aquaculture farm. Simultaneously,
the application server serves as a middleware platform for running applications related to digital
twin services, while the web server offers services accessible via the web.

In the realm of fish feeding management, the digital twin relies on the proposed data-driven,
process-based fish feeding model, encompassing two significant services: fish metrics estimation and
fish feeding. These services leverage deep learning models for their implementation, alongside
feeding policy optimization through Q-Learning. Further details regarding the fish feeding
management model will be elaborated upon in subsequent sections.

2.2. The Digital Twin for Fish Feeding Management

The first step to construct the digital twin for fish feeding management is to understand the
aquaculture processes to operate a fish farm. The first step of the cage culturing is the development
of net cages for fish breeding. As shown in Figure 3, in this study, the net cages for experiments are
in the offshore Pingtung and Penghu, Taiwan. The circular perimeter of inner pipe of the former is
102 meters, which is a large submersible cage; on the contrary, the net cages in Pinghu are relatively
small and divided into types: the circular cage with the perimeter of inner pipe of the former to be
about 30 meters; the squared cage of 10x10x8 m3 in size. The cages in Pingtung are at open sea areas
which have deeper waters and stronger ocean currents, and thus could prevent environmental
pollution and fish diseases. The tested offshore net cage in Pingtung would have annual output of
the cultured snubnose pompano up to 200 tons/cage year. However, the risk and the operation cost
of the aquaculture with large offshore net cages are relatively high as compared with small net cages
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in Penghu. Thus, the sensors and the automatic machines of IoT systems should be different for
different environments to facilitate the farmer to operate aquaculture processes.

(a) (b)

Figure 3. The offshore net cages in Taiwan for experiments: (a) the large submersible cage of the
circular perimeter of inner pipe being 102 meters in Pingtung; (b) the cage of the circular perimeter
of inner pipe being 30 meters in Penghu; (c) the squared cage of size 10x10x8 m? in Penghu.

Studying fish growth models is crucial in the context of aquaculture processes. Fish growth,
defined as the change in body mass over time, results from the interplay of two opposing processes
— one that increases body mass and another that decreases it. This growth phenomenon is intricately
linked to weight and time, allowing growth data to be constructed directly or indirectly using these
parameters [29]. From an energetic perspective, Ursin's model [30] characterizes fish growth as the
difference between anabolism (the building-up phase) and catabolism (the breakdown phase). This
energetic concept is reflected in the energy budget presented in Figure 8, and Ursin's bioenergetic
model can be expressed as

CZ_V: = HWtd - keataW:" 1)
where W, represents the weight of the fish at time t, HW,? is the energy absorbed in the entire
anabolism, and H and d represent the anabolism coefficient and slope related to anabolism and fish
weight, respectively. On the other hand, k.q,W," is the energy lost in the whole catabolism where
keqtq and n is the catabolism coefficient and the slope related to the catabolism and fish weight,
respectively. Yang [31] defined the detailed fish growth model derived from Ursin” model and took
into account the effect of environmental factors such as growth and water quality. The model includes
the effects of different parameters such as water temperature (T), body size and weight (w), un-
ionized ammonia (UIA), dissolved oxygen (DO), photoperiod (p), and relative feeding ratio (f). Thus,
the growth rate model of a fish is again described as the difference between anabolism and

catabolism:
W = 9, f,T,DOVUIA) W™ — k(T) w" 2)
dt ——
anabolism catabolism

where @(f,T,DO) (g"-"day~!) and v(UIA) are the coefficients of anabolism; m is the exponent of
body weight for net anabolism; k(T) (g-" day ' ) is the coefficient of fasting catabolism; n is the
exponent of body weight for fasting catabolism. Although more factors should be considered to
realize the fish growth model, Equation (2) lists the most important factors to measure the fish growth
rate. In [32], based on (2), Chahid et al. proposed a Fish growth trajectory tracking using Q-learning
[33] to determine a fish feeding policy which achieves 1.7% and 6.6% relative trajectory tracking errors
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of the average total weight of Nile Tilapia (O. niloticus) from both tanks on land and floating cages,
respectively.
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Figure 4. The wireless communication based AloT system for automatic data collection from net
cages, which are further inputted to our digital twins for performing intelligent fish feeding control..

The fish model mentioned in (2) was initially developed within the context of a semi-intensive
aquaculture pond to determine the nutrient requirements for Nile tilapia [31]. This implies that in
such a setting, fish growth and production are partially controlled, with aquatic species' growth
relying on a combination of natural feeds and aquafeeds. It is evident that the mathematical fish
model can be adapted for net cage culturing by substituting the parameters specific to Nile tilapia
with those corresponding to the target aquatic species [34]. By incorporating a knowledge base
pertaining to the target aquatic species to define the parameters in the growth model, we can create
a synthetic training dataset that accounts for the uncertainties and measurement noise present in real
aquaculture environments. This dataset is then utilized to train a transformer-based deep learning
model [35], which predicts fish growth rates based on environmental factors and feeding.

Furthermore, the fish growth model is fine-tuned by incorporating test data obtained from our
experimental net cages using the deployed IoT sensors. While this approach is one possible way to
design our fish feeding Digital Twin (DT) object, it remains somewhat detached from real-world
aquaculture processes. In this study, we aim to design our DT architecture based on the physical
processes, as defined by aquaculture experts, using a simplified version of (2).

Figure 4 illustrates the proposed AloT architecture, which collects water quality data, optical
stereo RGB videos, and sonar images from our experimental net cages. The digital twin is deployed
on our cloud servers. In practice, as depicted in Figure 5, the hardware architecture of the proposed
data collection system is further divided into three distinct sub-systems. These include an Al buoy
for water quality inspection, as well as two lightweight broadband carriers for operating optical
stereo cameras and sonar image cameras, respectively. Our Al buoy system primarily consists of a
solar panel, a control box, two lifebuoys, a steel skeleton, and sensors for collecting data on water
flow, temperature (T), dissolved oxygen (DO), and salinity. Additionally, three server-side Al
programs are also established on the shore server within the cloud [13].

For each data collection sub-system, we have implemented sonar panels to recharge the battery
set, ensuring a continuous power supply to operate the sensors, wireless base station, and
communication hub. As a result, these systems achieve the goal of promoting environmental, social,
and government (ESG) standards without introducing any additional carbon footprint in fish
production.
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Figure 5. The hardware architecture of the proposed data collection system is divided into three
different sub-systems: (a) the Al buoy for water quality prediction; (b) the lightweight broadband
carrier for operating optical stereo camera; (c) the lightweight broadband carrier for operating sonar
image camera.
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Figure 6. The sequence diagram of the underwater video surveillance system for fish metrics
estimation.

During the daily fish feeding process, our two-mode underwater video surveillance system is
activated to capture surveillance videos, which are then automatically transmitted to the cloud for
fish metrics estimation using our broadband wireless communication system. Additionally, a
software daemon is implemented in the cloud to monitor incoming surveillance videos, storing them
into the network-attached storage (NAS), and activating pre-trained deep learning models for fish
count, length, and weight estimation [17,21]. Figure 6 illustrates the sequence diagram of the
underwater video surveillance system, which provides fish metrics data to the digital twin for further
decision-making in fish feeding management. Figure 7 showcases the fish metrics estimation models
that were proposed in our previous work [17]. Instead of introducing new deep learning models to
complete the Al functions of the fish metrics estimation Digital Twin (DT) object, our current study
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focuses on integrating mature prediction models into our DT objects. It is worth noting that the
performance of prediction models can be enhanced by replacing them with new state-of-the-art
models. The cloud infrastructure supports a server-side maintenance scheme, offering plug-in
services to front-end users. Consequently, our DT objects are autonomous and possess self-learning
capabilities, making them adaptable and evolvable.
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Figure 7. The stereo image based fish metrics estimation model proposed in our previous work [17].

Temperature
Dissolved \ / 'v '
Oxygen
S
Salinity ’Q:!& ' Food
z]?Vzlltel:t %é‘/' Amount
elocity ‘ \ /
Fish Count ,'& 'A '
Fish Average /
Weight

Figure 8. The MLP based regression model for fish food prediction.

The next step of our digital twin approach is to estimate the amount of food for the diary fish
feeding. At time t, conventional fish farm determines the amount of fish food F: for daily feeding
process by the following equation:

Fp =k xng X w; 3)
where k, is the relative feeding rate, n, is the number of fish and w, is the average fish weight. In
practice, the value of k. is set to be about 0.3 when the fish are kept on a well-controlled fish pond;
however, it’s value is obviously dependent on the actual environmental factors. For example, the low
temperature would decrease the appetite of fish and thus the resulting value of k; should be
decreased to reduce the food residual. Actually, we cannot find a complete model to determine the
optimal value of k, in the literature. Instead of using a function to determine k., we adopt a data-
driven approach to predict the daily amount of fish food using an artificial neural network (ANN)
regression model, which is a simple regression model with multi-layer perceptron (MLP) [36]. As
shown in Figure 8, the inputs to the food prediction model include water quality data and fish metrics
estimation results, e.g., the fish count and average weight; the output is the predicted food amount.
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A training dataset of about 200 records is collected from real fish farms are used to train the model.
The testing accuracy is up to 98%. The fish food prediction DT is thus designed to predict fish food
amount based on the human being experiences.
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Figure 9. Flowchart of fish feeding procedure.

To carry out the fish feeding process, the predicted amount of fish food is dispensed into the
food bucket of our intelligent feeding machine. Figure 9 provides a flowchart depicting the fish
feeding procedure, which operates during actual feeding times. It collaborates with various digital
twin (DT) objects, integrating multifunctional Al capabilities, thus rendering the framework versatile
for feeding management. We have integrated six DT objects deployed within the Al-empowered
cloud to oversee fish feeding activities alongside the smart fish feeder machine.

Initially, the suitability of water quality conditions for feeding is assessed. The Water Quality DT
is then invoked to evaluate the current water quality condition and provides feedback, which serves
as the basis for initiating feeding. Once water quality approval is obtained, the smart feeding machine
is controlled to release the initial batch of fish food. Additionally, other DT objects, such as the Fish
Count Estimator, Fish Size Estimator, and Fish Weight Estimator, perform their respective Al
functions as indicated by their names. All estimations generated by these three DTs are stored in the
cloud's database for further data analytics, including growth predictions and optimizations.

As the water quality condition meets the criteria, the smart feeder dispenses an initial amount
of bait. When the fish are released from the smart feeder machine, they retrieve the food from the
water's surface, resulting in visible water splashes that become more pronounced as feeding
progresses. Leveraging fish feeding behavior, the area with significant surface motion determines the
current position of the fish within the cage. To ensure accurate food placement, we have integrated a
Fish Feeding Position DT, which detects the current feeding area or zone and adjusts the smart
feeder's gun barrel position based on the estimated feeding location. This optimization ensures that
the feeder dispenses feed at the current feeding spot.
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Additionally, the smart fish feeder is equipped with actuators for control and can receive
information to assist with feeding, such as determining the feeding amount. Another DT object,
known as the Fish Feeding Intensity Evaluator [12], is employed to assess the fish's feeding intensity,
categorized into four levels: strong, medium, weak, and normal. As the feeding intensity decreases
from strong to weak, the amount of feed dispensed is reduced. When the observed fish feeding
intensity reaches none, feeding ceases. The total feeding amount is also monitored and stored in the
database, along with fish count information and average weight.

To minimize food wastage, the predicted food amount F: is divided into n parts for fish feeding
when we specify n intervals to complete the daily feeding process using the smart feeding machine.
Essentially, for each part, our fish feeding control module issues a command to the feeding machine
to dispense the quantity of food Fvn into the target cage for fish feeding. However, this approach can
lead to a high probability of food wastage when the current fish feeding intensity level is normal or
weak. To address this challenge, we employ a Markov decision process (MDP) to model the decision-
making process regarding the amount of fish food to be used for each part of the feeding. The MDP
model for fish feeding management comprises the following components.

State: S is a set of finite states that describes the status of the fish feeding process. It contains two
parameters i and v; to describe the part number and the accumulative amount of food, respectively.
For the daily feeding time ¢, the values of v; and i are limited by the predicted food amount F, and
the number of parts 1, respectively. In other words, the states define the possible responses of the fish
feeding machine to the possible input actions. To simplify the state set defined as S =
{30,0,30,1, . Sn—l,m—l} of MDP as a lookup table, we discretize the continuous parameter v; into m
levels, which define the accumulative amount of food, i.e., v; = (j + 1) F;/m. The finite set S with the
state is defined as the pair (food amount, part number).

Action: a € A = {f, e} is a set of possible control actions which activate the feeding machine to
send relative feeding rate f of the schedule food at state s. To simplify the control of our feeding
machine, the relative feeding rate is quantized into two levels, i.e.,, 0 and 1, corresponding to two
operation modes, i.e., to turn on and to turn off the feeding machine, for sending the scheduled food
amount F;/m and zero food into the cage, respectively. On the contrary, the parameter ¢, i.e., the
food eaten ratio, is quantized into 4 levels corresponding to the four fish feeding intensity levels, i.e.,
‘Strong’, ‘Medium’, “Weak’ and ‘Normal’. In practice, the setting of ¢ is based on the predicted results
of the fish feeding intensity evaluation DT. For each action 4, the MDP model will result in a state
transition.

Reward: r(s,s") is reward received after transitioning from state s to state s’ , after applying the
action a. In this work, the optimal Q-learning policy based on MDP tracks a desired fish feeding
trajectory while penalizing the food eaten ratio (¢) for aquaculture cages. We formulate the reward
function r(s,a) for offshore cages as a regularized trajectory tracking error and food eaten ratio as
follows:

ri(sij a;) = faiz + ey’ “4)
where f;, is feeding ratio and 1 is the is a positive regularization term to assess the feeding input
preference. The feeding ratio is defined as

fai = (vai - 1]i)z/viz @)
where v,, is the amount of food sent into the cage by action a; and v; is the scheduled food
amount. It is tuned empirically such that a good compromise between the fish feeding that leads to
have a good growth performance and the feeding residues over the admissible space of policies. For
fish feeding management, this reward formulation (4) minimizes the food consumption and penalizes
the food residue with an optimal fish appetite profile.
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Figure 10. Q-learning feeding strategy framework.

To solve the MDP fish feeding management problem, we propose a Q-learning algorithm based
on the temporal difference method that learns Q(s,a) function from raw experience for searching the
optimal control policy based on reinforcement learning (RL), shown in Figure 10. Once the function
learned, the optimal action a could be selected using the Q(s,a) function, which can be further
represented as a Q-table by discretizing the state and action parameters. As mentioned above, the
state space S is quantized into N = m X n states, where m and n defines the number of steps to
accumulate the feeding food and the number of part the predicted food separated, respectively.
Similarly, the action space consists of M =c X d actions, where ¢ and d defines the number of
quantization levels of feeding ratio and and the number of levels to describe the fish feeding intensity.
At each feeding part ¢, the fish feeding DT learns the fish feeding intensity level from the aquaculture
environment’s response, then the temporal difference (TD) method that uses sampling experiences
updates the action-value function:

Q(spal) « Qlspa) + a [Tt(str a)+ vy max Q(Se+1, Ae1) — Qs ar) ] (6)
where « is the learning rate and y is the discount factor. Q-Learning is a class and an important
breakthrough in RL and has been proven efficient. This approach takes an indirect future reward
where a particular action leads to an account, thereby developing strategies to maximize the reward
over a series of actions. The learned action-value function Q directly approximates an optimal action-
value function independent of the policy being followed. The policy determines which action-state
pairs are visited and continuously updated to guarantee to find the optimal policy. The algorithm in
procedural form is defined as follows:

Algorithm 1: Q-Learning Policy Control Algorithm

Initialization: Q(s,a),Vs € S,a € A(s), arbitrarily, and Q(terminal — state,.) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of the episode):
Choose a from s using policy-derived Q (e.g., € —greedy)
Take action a, observe 7, s’
Q(s,a) « Q(s,a) + alr + ¥y max,Q(s",a) — Q(s, a)]
s «s’;

Until s is terminal

The Q-value, denoted as Q(s, ), represents the weighted sum of future rewards associated with
a particular state, s, and action, a. At each time step, the agent selects the action with the highest Q-
value for the current state. Whenever an action is executed in the environment, the resulting new
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state and its corresponding reward are recorded in the Q-Table, along with information about the
previous state and action. For decision-making, a random batch of stored experiences, consisting of
state, action, reward, and next_state tuples, is retrieved and used for training. The Q-value, Q(s, a), is
computed for the chosen action, and it is updated using Equation (6), where a represents the learning
rate, controlling the extent of adaptation to new information. The variable r denotes the reward
obtained from action a, while max,Q(s’,a) signifies the maximum predicted reward for the new
state, s’, considering all possible actions, a’. The Q-learning framework is employed to seek the
optimal policy that maximizes the expected reward value. The weights and biases of the agent's
neural network are fine-tuned using gradient descent to align the network's output with the updated
Q-values. Exploration of the optimal feeding policy is based on selecting the action with the highest
reward value for a given state. This mechanism allows the agent to undergo training with a randomly
sampled set of past experiences at each time step.

3. Results
3.1. Experimental Devices and Set-up

Table 1. The pre-trained machine learning and deep learning models which provide Al functions in
the DT objects of the proposed DT architecture for intelligent fish feeding management.

Machine Learning and Deep

DT Object
Objec Learning Models

Physical/DT Objects

Salinity ~meter, dissolved
oxygen meter, temperature
sensing, water velocity meter,
pH level meter

Water Quality Prediction LSTM [37]

Fish Counting YoLoV7 [38], MLP [36] RGB Camera
Mask R-CNNJ39], Optical
Fish Length/WeightFlow [40], KNN Regression

RGB St C
Estimation [41],Principal Component ereo Camera

Analysis (PCA) [42]

Water Quality Prediction,
Food Prediction MLP [36] Fish Counting, Fish

Length/Weight Estimation
Fish .Feedmg IntensﬁyOptlcal.F.low [40], I3D ActlonR GB Stereo Camera
Evaluation Recognition [43]

Automatic Feeding Machine,
Fish Feeding Control Q-Learning [32] Fish  Feeding  Intensity

Evaluation

This work used an RGB camera (Zed 2 2i stereo camera by Stereo Labs, France) to capture
underwater images. GARMIN Panoptix Live Scope System (Garmin Ltd., Taiwan), with a sonar
screen, a processor, and a sonar transducer probe, was utilized for the sonar camera system. In
addition, we used the following water quality sensors: salinity meter, Y505-A dissolved oxygen
meter, Y521 for temperature sensing, R5-232C water flow or velocity meter, and pH level for water
quality data collection. All water quality sensors are under Yosemite Technologies except for the flow
meter under Dalian Teren Instruments (DLTerren), and all were manufactured in China. These
sensors capture environmental data and underwater surveillance videos from the experimental cages
when the fish farmers operate the fish feeding process using a remote controllable feeding machine,
deployed on a workboat.

As shown in Table 1, the digital architecture consists of nine DT objects integrated with different
pre-trained machine learning and deep learning models for performing specific detection and
prediction functions which optimize the fish feeding policy. However, we did not provide the
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completed details of the learning models since this study focuses on integrating digital twins with
our cloud architecture and functionalities for intelligent fish feeding management. However, some
details of the implementation can be found in our previous works, such as the fish feeding intensity
evaluation [12], fish length and biomass estimation [14], fish count estimation [11], and water quality
monitoring [13].

3.2. Implementation of the Cloud Computing Framework

Data Driven Process-Based Fish Feeding Digital Twin
e N Ve N N\ N[
Fish = Fish | Fish Food Fligtfsse;h“g Fish Feeding CZX Z‘&ftr
Count | Metrics | Prediction Y Control —
\ N N . Evaluation \_Prediction |
I
Dogker ’—Buﬂd Docker Image Deploy Docker Hub
Project
—  ~ —'—/
; |
aml File Build Pods
y Deployment  (Containers)
J
’ Control Data Collection | GPU-Nodel GPU-Node 2 ‘ Feeding Machine
Plane (VM1) | Node (VM2) (VM3) (VM4) Actuator (VM5)

Figure 11. Schematic diagram of the Kubernetes based cloud system architecture.

The Digital Twin (DT) system relies on high-performance cloud computing infrastructure
equipped with multiple GPU servers for parallel processing to achieve real-time decision-making.
Our cloud system is implemented using Kubernetes (K8s) clusters for automated deployment,
scaling, and management of containerized DT objects. Figure 11 illustrates the deployment
architecture of the Digital Twin system in the cloud using Docker and Kubernetes (K8s). The current
K8s environment consists of two hosts and three virtual machines, all running Linux Ubuntu servers.
One of these virtual machines serves as the Master for Pod deployment, while the others function as
worker nodes for running Pods. Docker, which functions as a lightweight virtual machine (VM),
packages the program into image files. Once each component is converted into an image file, these
images are pushed to a private repository and subsequently deployed in K8s by means of a
configuration file. For each DT object, a dedicated code project is prepared, converted into an image
file, and then deployed to K8s. The initial step involves creating a Dockerfile and building a Docker
image for storage in the repository. In the K8s environment, a YAML file is authored to define the
deployment, and the associated Docker image is linked to K8s for deployment across Pods or
containers. The Docker container is integrated into the webpage, and it uses SSL certificates to
securely connect to the database, ensuring the protection of webpage access. To establish the
Kubernetes system, three computers were utilized, forming a robust infrastructure that can be
accessed and controlled through the cloud. Table 2 outlines the hardware components used in the
Kubernetes setup.

Table 2. Hardware components of the Kubernetes cluster.

Name Processor Motherboard Graphics Memory Storage
Card
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3.3. Experimental Results
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Figure 12. Low cost sensor calibration using LSTM deep learning;: (a) the result of water temperature;
(b) the result of water velocity.

To optimize the cost-effectiveness of the water quality monitoring system, this study introduces
an Al buoy, as depicted in Figure 5(a), equipped with economical water quality sensors. These sensors
autonomously transmit the collected data to the cloud-based water quality Digital Twin (DT) for
further processing. The accuracy of data obtained from these low-cost sensors is calibrated using
high-quality data acquired from precision instruments, albeit at a higher cost. Figures 12(a) and (b)
illustrate the calibrated outcomes for water temperature and water velocity, achieved through Long
Short-Term Memory (LSTM) deep learning models. This approach results in a cost-effective design
for the proposed water quality monitoring DT. The system has undergone deployment and validation
in our experimental net cage farms for a minimum duration of six months.

Figure 13 displays an example stereo video capture, which is automatically transmitted to the
cloud via a 4G telecommunication network for fish counting, fish length and weight estimation, and
fish feeding intensity evaluation. The underwater video is recorded during the fish feeding process,
typically lasting about half an hour for a large net cage. To facilitate efficient data transmission, an
end-computing system is equipped with our stereo camera. It employs the MPEG-4 video coding
scheme to compress the captured video, reducing its size to approximately 80 megabytes, which is
subsequently segmented into 30 segments. This results in a bandwidth requirement of approximately
(80x8)30, which is approximately equal to the average up-link data rate of a commercial 4G network,
approximately 24.92 Mbps. Ideally, our system is designed to transmit each video segment in real-
time, with the target latency for transmitting a stereo video comprising 30 segments being 30 seconds.
However, as depicted in Figure 12(b), the average up-link data rate of the commercial 4G network
falls significantly below 24.92 Mbps in real-world environments. To address this challenge, we
recommend incorporating a 5G network router into our end-computing module for underwater
video surveillance in the future. In this scenario, the cloud daemon can receive the surveillance video
in real-time, as the up-link rate of a 5G network is approximately ten times that of a 4G network.
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Figure 13. The results of the underwater video data collection DT which captures a stereo video from
the experimental cage, which is then sent to the cloud through the public 4G telecommunication

network.
Table 3. The food eaten ratio of the fish feeding intensity levels.
Strong Medium Weak Normal
1.0 0.7 0.6 0.2

Upon receiving an underwater video, the daemon initiates the Fish Counting DT, Fish Metrics
DT, and Fish Feeding Intensity Evaluation DT modules. These modules are responsible for generating
the fish count, fish length and weight measurements, and assessing the feeding intensity level. The
error rates associated with these DT objects, which are implemented using deep learning models
presented in our previous research works [11, 12, 14], are described as follows.

e  The Fish Counting DT exhibits a 4% error rate. This DT module utilizes optical underwater video
as input, employing the YOLOvV7 deep learning object detector to identify fish objects within
individual frames. Subsequently, it feeds the time-series fish counts into an MLP regression
model for fish count prediction. To ensure the accuracy of prediction results, it is essential to
accurately record the initial fish count and the number of deceased fish. In the event that the
ground truth for fish count changes, the MLP regression model undergoes re-training
accordingly.

e  The Fish Metrics DT modules estimate fish length and height using the input stereo video. This
process involves acquiring implicit and explicit camera parameters through a camera calibration
algorithm [44], followed by the segmentation of fish objects in the rectified left and right frames
using MaskRCNN [39]. The segmented objects in the left image are then matched with
corresponding objects in the right image, and an optical flow deep learning model [40] is
employed to establish pixel correspondences for each matched object pair. Pixel-wise disparity
and dense values are computed based on the calibrated camera parameters, facilitating 3D fish
object reconstruction. Finally, Principal Component Analysis (PCA) [42] is applied to estimate
fish length and height. Additionally, this study includes a human-labeled dataset, with each
record containing information on fish length, height, and weight. Leveraging the estimated fish
length and height alongside this dataset as inputs, we utilize the K-NN regression model [41] to
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predict fish weight. Notably, the error rate associated with fish weight estimation is
approximately 12%.

e  The Fish Food DT employs an MLP regression model, as depicted in Figure 8, to forecast the
daily food requirements for executing the fish feeding process. To align the actual daily food
consumption observed in real-world fish feeding operations with the outputs of the
aforementioned DT objects, a dedicated training dataset is meticulously curated for training the
food prediction model. Empirical findings indicate that the food prediction model exhibits an
error rate of approximately 2%.

e  The DT object for fish feeding intensity evaluation is designed to minimize residual food through
the fish feeding control algorithm. In practice, the daily fish food for feeding is initially separated
into 5 to 10 parts. The fish feeding control algorithm then uses our smart feeding machine to
send food into the cage part-by-part. For each part feeding, the state of fish feeding intensity is
evaluated to determine the scaling factor of fish food for the next part feeding by looking up
Table 3. The results are also monitored across frames in Figure 14, showing how the fish
movement intensity varies from frame to frame. When feed is fed to the fish, they initially move
faster to grab food at the water's surface. Eventually, their movement decreases or stops as their
appetite gradually declines when they are almost sated. Thus, the speed of fish movement is
used to define their feeding level. In this work, we classified fish feeding intensity into four levels:
weak, normal, medium, and strong, as presented in Figure 15. The left image shows the exact
image captured from the aquaculture farm, and the right image is the result of the analysis of
the fish motions. The second image with fewer color masks shows a normal fish movement or
no feeding being performed. Details on how fish feeding intensity is modeled and implemented
are fully described in our other works on fish feeding intensity evaluation [12]. The error rate of
the fish feeding evaluation model is about 95.8% based on the human-labeled training dataset.

#: norma
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Figure 14. Real-time fish feeding intensity evaluation based on optical flow of underwater surveillance
video: (a) ‘Normal’; (b)" “Weak’; (c) ‘Medium’; (d) ‘Strong’.

Our smart feeding machine is equipped with a programmable gun barrel designed for precision
fish feeding. Figure 15 illustrates how the gun barrel is dynamically positioned throughout the
feeding process, leveraging splash detection from surface water surveillance video. This innovative
feed delivery mechanism ensures minimal food wastage, as it is precisely aimed at the fish's location.
Furthermore, our system employs sonar technology to detect fish positions in the underwater
environment, complemented by a stereo camera system capturing images of the cage water surface,
as depicted in Figure 16. This setup provides access to the fish-feeding user interface. The prediction
results of fish feeding intensity can also serve as a valuable metric for evaluating fish vitality. Fish
schools exhibiting fast swimming speeds are indicative of robust vitality levels. The analysis of fish
vitality offers insights into their feeding appetites and eating behavior during the feeding period.
Farmers can use this information to make informed decisions about continuing feeding with the
smart fish-feeding machine. Additionally, it provides data on feeding duration, vitality levels, and
suggestions for optimizing feeding procedures. In parallel, our system maintains a feeding inventory
that tracks cumulative feeding amounts and remaining food supplies. This feature aids farmers in
assessing feed sufficiency and determining when to replenish their stocks. Moreover, the feeding
record feature compiles data on the average fish weight, fish count in the cage during feeding, the
type of feed used, and estimated feeding quantities based on both fish feeding predictions and actual
amounts dispensed. It also includes the duration of the feeding session. These feeding records are
instrumental in storing historical feeding data, which can be uploaded to the platform's cloud storage.
This dataset serves as a valuable resource for training machine learning and deep learning prediction
models, ultimately contributing to the development of expert systems in aquaculture management.

Figure 15. Fish location analysis for the best position in dispensing feeds using the smart feeding

machine gun barrel.
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Figure 16. The user interface for intelligent fish feeding management: (a) fish vitality analysis; (b) feed

inventory; (c) feeding record.

4. Discussion

Table 4. The key factors affect the investment feasibility of large submersible cage culture in Taiwan.
BCR is benefit cost ratio; NPV is net present value; IRR is internal rate of return.
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-30% 3.60 [34,566(74.36% [1.22

Incorporating a smart feeding mechanism to control or automate as a part of our mechanism
would entail a more efficient and cost-saving strategy to ensure that fish are not overfed or underfed.
Predicting feed intake and growth is necessary to increase the efficiency of farming systems through
proper feed management [45]. Therefore, feed intake must be optimized to increase growth and body
composition, food conversion, and fish weight. Furthermore, it is necessary to determine whether the
fish are already hungry (a physiological necessity for food) and are looking for food and making sure
they consume it. Also, efficient feeding management help reduce excess feeding that can degrade and
pollute the water resources.

In our previous work [24], with Snubnose Pompano as the target fish species, we proposed an
approach to analyze the investment feasibility analysis of large submersible cage culture in Taiwan.
The research findings show that large submersible cage culture is financially profitable when the
number of operation units are larger than 8. Furthermore, the sensitivity analyses show that the key
factors to improve the benefit of cage culturing including the market price, cost reduction and
survival rate. In this study, we follow the analysis framework to find how DT approaches improve
the benefit of net cage culturing. As shown in Table 4, the reduction of food reduction heavily affects
the benefit of cage culturing. The usage of the process based DT approach for intelligent fish feeding
management is to make the sure the benefit of cage culturing. Experimental results show that the
proposed approach can have 30% food cost reduction in practical fish feeding process. The BCR is
thus larger than 2, which implies the proposed approach is expected to deliver a positive net present
value to a firm and its investors.

While the proposed Decision Tree (DT) approach primarily focuses on fish feeding management,
it is crucial to note that fish vitality analysis can also detect abnormal behaviors, such as loss of
appetite or swimming difficulties, which may signal more severe problems like diseases.
Additionally, rapid and erratic swimming patterns without feeding could indicate stress due to poor
water quality. Employing computer vision, machine learning, and deep learning methods with data
from the environment, such as images and videos, can help identify various fish behaviors. This
comprehensive approach aims to increase fish survival rates by promptly identifying and removing
abnormal fish to prevent further losses on the farm.

One limitation of our current findings is the challenge of collecting a high-quality training
dataset to improve the accuracy of deep learning and machine learning models within the DT
framework. Furthermore, the lack of a reliable power supply in offshore cages often leads to missing
sensor data, requiring careful data prediction. To address these issues, we recommend initially
building accurate DT models using AloT technology in land-based fish ponds and then fine-tuning
these models using data from the target offshore cages.

5. Conclusions

The proposed process-based Digital Twin (DT) approach for intelligent fish feeding
management offers significant contributions: (1) A digital twin model for fish feeding management
leverages a substantial stream of water quality data and underwater/water surface surveillance
videos to construct a comprehensive digital representation of the fish feeding process. This
representation integrates the intricate aspects of fish physiology with state-of-the-art machine
learning models, (2) AloT systems have been strategically deployed across three experimental net
cages, with one located in Pingtung and the remaining two situated in Penghu. These systems are
specifically designed to digitalize and optimize fish feeding operations, while their primary purpose
is to rigorously assess and validate the performance of the digital twin model, and (3) End computing
systems, designed to support multi-mode sensors and control smart fish feeding machines, have been
meticulously crafted to capture and generate the full spectrum of data required for the creation,
training, and validation of the digital twin. Our current findings demonstrate the successful
implementation of an agile-based AloT system, underscored by an intelligent cloud infrastructure


https://doi.org/10.20944/preprints202401.0927.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 January 2024 doi:10.20944/preprints202401.0927.v1

22

rooted in the digital twin concept. This comprehensive approach encompasses various digital twin
objects, encompassing fish counting, fish metric estimation, environmental monitoring, fish food
prediction, and fish feeding intensity monitoring. These elements collectively empower intelligent
decision-making for aquaculture farm management and monitoring. To enhance efficiency further,
we have harnessed reinforcement learning algorithms to optimize daily fish feeding policies, thereby
minimizing residual food waste. While the application of the Digital Twin concept is still emerging
within the field of fish farming and aquaculture, we have successfully developed a prototype system
in which learning models have been rigorously verified, validated, and fine-tuned. This prototype
system integrates essential and pivotal functionalities for smart aquaculture systems, seamlessly
interfacing with the deployed sensors. As a result, the farm's physical environment can effortlessly
collect and monitor data through the cloud, revolutionizing the way aquaculture operations are
managed and observe.

In our future work, we envision the implementation of autonomous flying and underwater
drones to complement data capture in cases where the installed sensors in the aquaculture
environment become damaged or unavailable. Furthermore, we plan to integrate complete
augmented reality functionality as an additional feature, providing a virtual representation of the
real-world environment. This visual interface will facilitate manipulation and offer a simulated
environment for advanced planning and equipment placement, enhancing preventive measures to
mitigate damages and operational challenges. Our forthcoming efforts also include the integration of
comprehensive autonomous digital twin functions, reducing the need for human supervision in
decision-making and control processes, while ensuring optimal fish welfare and production
efficiency. Additionally, we intend to incorporate a robust decision-support system to empower farm
owners, users, and other stakeholders with intelligent, data-driven decision-making capabilities
applicable across various species. This strategic direction reflects our commitment to advancing
aquaculture practices through cutting-edge technology and innovative solutions.
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