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Article

The Language of Spheres in Physics

Jean-Pierre Gazeau

Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France; gazeau@apc.in2p3.fr

Abstract: Physical laws manifest themselves through the amalgamation of mathematical symbols,
numbers, functions, geometries, and relationships. These intricate combinations unfold within a
mathematical model devised to capture and represent the “objective reality” of the system under
examination. In this symbiotic relationship between physics and mathematics, the language of
mathematics becomes a powerful tool for describing and predicting the behavior of the physical world.
The language used and the associated concepts are in a perpetual state of evolution, mirroring the
ongoing expansion of the phenomena accessible to our scientific understanding. In this contribution,
written in honor of Richard Kerner, we delve into fundamental, at times seemingly elementary,
elements of the mathematical language inherent to the physical sciences, guided by the overarching
principles of symmetry and group theory. Our focus turns to the captivating realm of spheres, those
strikingly symmetric entities that manifest prominently within our geometric landscape. By exploring
the interplay between mathematical abstraction and the tangible beauty of symmetry, we seek to
deepen our understanding of the underlying structures that govern our interpretation of the physical
world.
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MSC: 58D19; 58J70; 76M60; 52B15

1. Introduction

This contribution serves as a friendly tribute to Richard Kerner, a distinguished figure in the realm
of theoretical and mathematical physics, whose methodologies consistently embody a harmonious
blend of precision, intuition, and a poetic touch. Kerner’s ability to reveal the concealed facets of
diverse phenomena, whether in the domains of general relativity and gauge theory (Kaluza-Klein, e.g.,
[1]), condensed matter (glasses, e.g., [2]), particle physics (quarks and ternary algebras, e.g., [3]), or
noncommutative geometric structures (e.g., [4]), and many others, is an attestation of his profound
insights.

In each of his works, Kerner consistently imparts that distinct touch of originality, elevating his
contributions beyond the ordinary. His dedication to unraveling the intricacies of the universe is
reflected not only in the rigor of his approach but also in the elegance with which he brings to light the
hidden dimensions of our physical reality. One of his latest publications, as referenced in [5], stands as
a magisterial testament to his multifaceted talents.

This current contribution aligns seamlessly with the theme encapsulated in the title The Languages

of Physics of the special issue in honor of Kerner. My focus will be directed towards the mathematical
language of physics, emphasizing the inherent limitation in precision when scrutinized from the
perspective of a physicist. Such models are transient rather than eternal, subject to the passage of
(entropic) time and contingent upon the scale at which they operate. To align with experimental
observations and predictions, these models often undergo modifications, sometimes requiring radical
transformations. In the dynamic interplay between the modeler and the modeled object, a degree of
probability emerges, representing the level of epistemic confidence in the model’s appropriateness [6].

This recognition of inherent uncertainty gives rise to the imperative of introducing some level of
coarse-graining into the initial mathematical model, conceived to portray an ontic entity or fact. Take,
for example, the inconceivability of irrational numbers in human perception, conceivability being here
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understood in terms of a measurable physical quantity. Yet physical laws, for several centuries now,
have been articulated in terms of real numbers, denoted as R, constructed from the abstract concept of
limits (such as the limit of Cauchy sequences of rational numbers).

Nevertheless, these profoundly abstract mathematical concepts have evolved to such a degree of
familiarity that they now stand as an indispensable foundation for formulating descriptions of our
environment. Serving as a robust backdrop, they assist us in imposing structure and establishing a set
of physical laws capable of navigating the intricacies of complexity and chaos. In our pursuit of order,
we inevitably organize observations through the lens of symmetry.

Beneath the allure of this aesthetic concept lies the intricate framework of mathematics,
particularly the concept of a group, with all its potential generalizations, deformations, approximations,
and the inherent challenges of incompleteness and partial versions. It is within this mathematical
tapestry that we find the tools and principles allowing us to not only conceptualize but also articulate
the laws that govern the universe, providing a coherent and profound understanding of our complex
reality.

In this contribution, which draws inspiration from a previous review [7] and recent lectures held
in both Poland and Brazil, serving as a significant element within the thematic framework of the
special issue titled “The Languages of Physics”’, we harness the potency of the concept of symmetry
to reexamine the first elements of the sequence of unit spheres, denoted as Sn, and explore their
profound physical implications across various domains of physics. This exploration extends into
realms such as atomic, molecular, nuclear, particle, and condensed matter physics, shedding light on
the intricate interplay between the mathematical abstraction of spheres and their tangible relevance
in understanding the fundamental structures and behaviors that underpin the diverse facets of the
physical world. In this regard, I cannot resist quoting the following excerpt from [8], translated from
French.

From there comes her fascination for pieces, lids, and other wheels whose circular movement she

perpetuates, immersed in a hypnotic contemplation that extracts her from the world and disconnects

her from a reality that is too aggressive.

We do not aspire to introduce entirely original content in this paper. Rather, it is conceived as
a fusion of fundamental (somewhat very basic) and advanced discussions on the mathematics of
symmetry. Rather than striving to introduce entirely novel content, this article is crafted as a synthesis,
merging fundamental (yet foundational) discussions with advanced insights into the mathematics of
symmetry.

The journey begins with a recapitulation of essential concepts pertaining to groups and
semi-groups (Section 2), followed by a freshman level reminder of algebraic and topological aspects of
numbers (Section 3). We then show the significant role played by simple or semi-simple Lie groups in
elucidating symmetries across classical and quantum physics realms (Section 4).

The core of this presentation centers on a reexamination of the realm of spheres (Section 5), and
the ensuing exploration of the associated geometry of Hopf fibrations (Section 6). Furthermore, we
unravel the mesmerizing simplifications that the spherical symmetry contributes to explaining the
Balmer lines, detailing the spectral line emissions of the hydrogen atom—a proto-quantum formalism
dating back to 1885 (Section 7). The paper concludes with a succinct summary in Section 8.

For those seeking a more in-depth understanding, Appendices A and B provide additional details
on group actions and the Lie algebra formalism.

2. Semi-Groups and Groups

In this section we remind the main definitions concerning semi-groups, groups, and structures
built from them. Usually these notions are supposed known, but remind them lies in the self-contained
spirit of this contribution.
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2.1. Definitions

A semi-group is a set G = {g ∈ G} equipped with an operation that combines any two elements
g1 ∈ G, g2 ∈ G to form a third element g3 = g1g2 ∈ G while being associative, i.e. (g1g2)g3 =

g1(g2g3) ≡ g1g2g3.
A group is a semi-group having an identity element e, eg = ge = g and inverse elements,

g−1g = gg−1 = e.
A group or semi-group is abelian if the operation is commutative: g1g2 = g2g1 for all g1, g2 ∈ G,

e.g., translations in the line or to rotations on the circle or in the plane. Rotations in space are
non-commutative.

Groups can be finite (e.g., permutations, point groups of symmetry of molecules), discrete
(e.g., space group of symmetry of crystals), continuous (e.g., Euclidean displacements), Lie groups
(infinitesimal transformations can be considered as well).

Continuous groups can be compact (parameters of transformation are bounded, e.g., rotations on
the sphere) or non compact, e.g., translations in the plane.

Two elements g1, g2 of a group G are said conjugate if there exists g ∈ G such that g2 = gg1g−1.
This is an equivalence relation whose equivalence classes are called conjugacy classes (one famous
example is the Rubik cube where the essential property for winning is precisely the set of conjugate
classes of one permutation group, see Figure 1, and [9] for explanation).

Figure 1. Rubik cube.

2.2. Example: Chirality

Chirality is the simplest example of a group: G = {I, P}, with IP = PI = P, I2 = I = P2. P is like
mirror image. A figure is chiral if it cannot be mapped to its mirror image by rotations and translations
alone. Examples are shown in Figures 2 and 3.
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Figure 2. From https://chem.libretexts.org Licence CC BY-SA 4.0 DEED

A chiral object and its mirror image are said to be enantiomorphs.

Figure 3. Left: from Obs 7352 - Doc 9412 - Credits Roger CULOS - BY-NC-SA; Right from [[File:Chirality
with hands.svg|thumb|Chirality with hands]]

An interesting question about mirror is shown in Figure 4: Why does a mirror reverse left to right,
but not top to bottom?

Figure 4. Why does a mirror flip the left and right orientation of Ossola, while leaving the top-to-bottom
arrangement unaffected? Answer is found at [10].

Beyond space parity (usually noted P), notable similar instances are observed in the realm
of particle physics. These include charge conjugation (C), where the charge of a particle is reversed
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(q ↔ −q), time reversal (T), involving the reversal of time (t ↔ −t), and the dichotomy between matter
and antimatter. Furthermore, the interplay of these individual symmetries gives rise to intriguing
combinations such as PT, CP, and CPT, adding depth and complexity to our understanding of
fundamental physical principles.

2.3. Building Groups from Subgroups

A subset H of a group G is a subgroup of G if it contains e and is stable versus group operations:
HH := {h1h2 , h1, h2 ∈ H} ⊂ H and H−1 := {h−1 , h ∈ H} ⊂ H. Direct product of two groups G1

and G2 consists in glueing the two groups together, without interaction: G = G1 × G2 is simply their
Cartesian product, endowed with the group law:

(g1, g2)(g′1, g′2) = (g1g′1, g2g′2) , g1, g′1 ∈ G1, g2, g′2 ∈ G2 .

Neutral element is (e1, e2). With the identifications g1 ∼ (g1, e2), g2 ∼ (e1, g2), both G1 and G2 are
invariant subgroups of G1 × G2 (think to the plane as the product of two lines, or to the torus as the
product of two circles).

For semi-direct product of two groups G1 and G2, one suppose given a homomorphism α from G2

into the group Aut G1 of automorphisms of G1. Then one defines the semidirect product G = G1 ⋊ G2

as the Cartesian product, endowed with the group law:

(g1, g2)(g′1, g′2) = (g1αg2(g′1), g2g′2)

Neutral element is (e1, e2) and the inverse of (g1, g2) is is (g1, g2)
−1 =

([
α

g−1
2
(g1)

]−1
, g−1

2

)
(think to

the affine group of the line, which combines dilation and translation).

2.4. Group Cosets

Let H be a subgroup of G. One says that g1 ≡ g2 mod H if there exists h ∈ H such that g2 = g1h.
Denoting ḡ = gH the equivalence class of g mod H, the set of equivalence classes is denoted G/H and
called the left coset of G by H. Right coset H\G is defined in a similar way as the set of equivalence
classes {Hg , g ∈ G}.

2.5. Group Actions

Irreducibility linked to symmetry (and invariance) is the mathematical concept of a group, more
precisely group of transformations (see Appendix A for more details). Concretely, elements in a
group G, like the group of Euclidean displacements in the plane (semi-direct product of rotations and
translations), transform into themselves objects in a set X, like the set of triangles, in such a way that
we can compose such transformations in an associative way and we can transform back too:

g ∈ G , x ∈ X , g · x = y ∈ X ⇔ x = g−1 · y , (gg′) · x = g · (g′ · x)

3. Numbers and Groups

In this section we implement the group material exposed above through the sequence of numbers,
from the most elementary ones to some sophisticated objects like octonions and Cayley algebras.

3.1. Sets N, Z, Zp

In preamble, one should remind that Arithmetic with (cardinal) Hindu-Arabic numerals is easy
while it is inextricable with (ordinal) Roman numerals (e.g., Figure 5).
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Figure 5. Andry is acquiring proficiency in the Hindu-Arabic numeral system, encompassing the digits
from 0 to 9. See: On the Calculation with Hindu Numerals by al-Kwharizmi (about 825 AD) and On the Use

of Indian Numerals by Abu Yusuf Yaqub Ibn Ishdaq al-Kindi (830 AD). Eventually the Hindu-Arabic
way of writing numbers and computations replaced the Roman Numerals [11].

The set of natural numbers N := {0, 1, 2, 3, · · · } (note that including 0 is now the common
convention among set theorists and logicians, maybe not with artists assents, see Figure 6 and [12])
equipped with addition, is not a group (no inverse), just an abelian semi-group. Equipped with
multiplication, N is an abelian semi-group as well.

Figure 6. OPAŁKA, 1965, série / 1 − ∞ Détail, Acrylic on canvas.

The set of rational integers Z := {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · } = −N∗ ∪ N, equipped with
addition, is an abelian group. Equipped with multiplication, it is a semi-group.
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The set of rational integers modulo p, p = 2, 3, · · · : Zp = {0, 1, 2, ·, p − 1 , mod p}. Equipped
with addition, it is a finite abelian group with p elements. Chirality corresponds to Z2

3.2. Example: Cubic Relations

Richard Kerner, in a comprehensive series of papers (refer to [3] for a detailed review), posited
that cubic (or ternary) relations possess the ability to encapsulate diverse symmetries in relation to the
permutation group S3 or its cyclic subgroup Z3.

Significantly, these insights find applications in the Z3-graded generalization of Grassmann
algebras, manifesting in their realization within the realm of generalized exterior differential forms.
Moreover, they play an important role in the development of gauge theory founded upon this
differential calculus and in the ternary generalization of Clifford algebras. These advancements
not only unlock new perspectives in mathematical structures but also extend their reach to the realm
of physics, providing a framework for describing families of quarks.

3.3. Set Q

The set Q of rational numbers is defined as the set of equivalence classes of pairs of integers (p, q)

with q ̸= 0, (p1, q1) ∼ (p2, q2) ⇔ p1q2 = p2q1. The equivalence class of (p, q) is denoted
p

q
.

The set Q, together with the addition and multiplication operations shown below, forms a field:

(p1, q1) + (p2, q2) = (p1q2 + p2q1, q1q2) , (p1, q1)× (p2, q2) = (p1 p2, q1q2) .

Actually Q is the prototype of the concept of field: a set on which addition, subtraction, multiplication,
and division are defined and behave as the corresponding operations on rational.

3.4. Q Is Not “Complete”

Let us equip the field Q with the metrical topology associated with the distance d(x, y) := |x − y|
between two rationals x and y. This topology gives a sense to the notion of a Cauchy sequence (xn)n∈N of
rationals: one says that (xn)n∈N is Cauchy if for all ϵ > 0, there exist N > 0 such that, for all m, n ≥ N,
one has

|xm − xn| < ϵ , i.e. , lim
m,n→∞

|xm − xn| = 0 .

If (xn) is a convergent rational sequence (that is, Q ∋ xn → x ∈ Q), then it is a Cauchy sequence. On
the other hand not all Cauchy sequences of rationals are convergent in Q.

Our intuitive sense suggests that when a sequence of terms progressively approaches one another,
they must be converging towards a specific value. Take, for instance, the sequence 1, 1.4, 1.41, 1.414, · · · ,
an approximation for the positive solution to the algebraic equation x2 = 2, or the sequence
3, 3.1, 3.14, 3.142, 3.1416, 3.14159, · · · , which approximates the non-algebraic (or transcendant) mythic
length of the circumference of the unit circle. Both sequences adhere to the Cauchy criterion, signifying
their terms draw near each other, yet they don’t converge to a rational number.

This observation prompts the existence of certain “irrational” numbers, denoted as “
√

2” and
“π”, towards which these sequences converge. Consequently, to encompass these irrational values, as
well as all other numbers that Cauchy sequences seem to approach, one extends the number system
beyond rationals [13].

3.5. Unreal “Real” Numbers Complete Real Rationals!

It is this intuition which motivated Cauchy to use such sequences to define the real numbers: R
is a completion of Q. The real numbers are constructed as equivalence classes of Cauchy sequences [14].
Two Cauchy sequences (xn) and (yn) of rational numbers are equivalent if |xn − yn| → 0, i.e., if the
sequence (xn − yn) tends to 0. The real numbers R are the equivalence classes of Cauchy sequences of
rational numbers. That is, each such equivalence class is a real number. Through this construction,
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R inherits the algebraic field structure of Q, and is complete for the metric topology: all Cauchy
sequences of real numbers are convergent in R. In this sense one says that R is the closure of Q: R = Q,
i.e., R contains all limit points of Q. However there is a big difference: while Q is countable, i.e., there
exist a one-to-one map Z 7→ Q, the field R is uncountable.

3.6. C Is Complete and “Algebraically Closed”

The algebraic equation x2 + 1 = 0 has no solution in R. So let us equip the set R×R := {z =

(x, y) , x, y ∈ R} (Cartesian product) with the commutative addition and multiplication operations:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) , (x1, y1)× (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1) . (3.1)

Both operations afford R×R with a commutative field structure, 0 ≡ (0, 0) and 1 ≡ (1, 0) being the
neutral elements for addition and multiplication respectively. This is the field of complex numbers
and is denoted by C. One introduces the “imaginary” number i ≡ (0, 1), imaginary because it is the
square root of −1 [15–17]. Indeed, one checks that i2 = −1, and so i is solution of z2 + 1 = 0 (like the
real

√
2 is solution of x2 − 2 = 0). The complex numbers also form the real vector space of dimension

two, with {1, i} as a standard basis. This justifies the notation z = x1 + yi ≡ x + iy.
Introducing the mirror symmetry with respect to the real axis, z = x + iy 7→ z̄ := x − iy, one

checks that zz̄ = x2 + y2 ≡ |z|2. Equipped with the topology associated with the distance |z1 − z2|, C
is complete, and, as a vector space, is isomorphic to the Euclidean plane.

Any algebraic equation anzn + anzn + · · · a1z + a0 = 0, with complex coefficients, has n roots in C

, i.e., C is algebraically closed (fundamental theorem of the algebra).

3.7. Complex Numbers Emerging from Tensor Product of Two Planes

There exists an interesting interpretation of the multiplication law (3.1) in terms of tensor product

of two planes. The tensor product stands as a cornerstone, arguably the most distinctive one, in the
realm of quantum mechanics. In essence, the Cartesian product, traditionally employed to model two
systems independently in classical physics, undergoes a transformative process known as quantization.
This metamorphosis results in the emergence of the tensor product of two vector spaces, a fundamental
framework indispensable for understanding the intricacies of quantum mechanical systems.

First, we remind that a vector space V over a field F, e.g., Q or R, is a set whose elements or vectors,
may be added together and multiplied (“scaled”) by elements (“scalars”) in F. Two essential properties
must be satisfied: the distributivity of scalar multiplication with respect to the vector addition and the
distributivity of scalar multiplication with respect to field addition. Then, the tensor product V ⊗ W of
two vector spaces V and W (over the same field) is the vector space over F is defined as the vector
space over F consisting of all bilinear forms from V × W to F. Note that dim(V ⊗ W) = dimVdimW

while dim(V × W) = dimV + dimW.
Hence the tensor product R2 ⊗ R2 of the plane with itself, with basis (e1, e2), is the

four-dimensional vector space of bilinear forms

R2 ×R2 ∋ (x = x1e1 + x2e2, y = y1e1 + y2e2) 7→ φ (x, y)

= ∑
i,j=1,2

xiyj φij =
(

x1 x2

)(φ11 φ12

φ21 φ22

)(
y1

y2

)
≡ txAφy ,

where φij = φ
(
ei, ej

)
. Any 2 × 2 real matrix A can decompose as A = a0✶2 + a1σ1 + a2τ2 + a3σ3 with

σ1 =

(
0 1
1 0

)
, τ2 =

(
0 −1
1 0

)
, σ3 =

(
1 0
0 −1

)
.
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The matrices σ1, σ2 := −iτ2, σ3 were introduced by Pauli [18]. Hence, we have for the matrix elements
of Aφ:

a0 =
φ11 + φ11

2
, a1 =

φ21 + φ12

2
, a2 =

φ21 − φ12

2
, a3 =

φ11 − φ11

2
.

Due to the algebraic relations

σ1τ2 = σ3 = −τ2σ1 , τ2σ3 = σ1 = −σ3τ2 , σ3σ1 = −τ2 = −σ1σ3 , (3.2)

one can give the decomposition of the matrix Aφ the bi-complex form:

Aφ = a0✶2 + a2τ2 + σ1 (a1✶2 + a3τ2) =

(
a0 + a3 a1 − a2

a1 + a2 a0 − a3

)
(3.3)

≡ z1 + σ1z2 = z1 +
tz2σ1 . (3.4)

Due to τ2
2 = −✶2, which means that the ±τ2 are square roots of −✶2, whilst σ2

1 = ✶2 = σ2
3 , the

expression

z = x✶2 + τ2y =

(
x −y

y x

)
(3.5)

is a matrix representation of the complex number z = x + iy with the correspondences 1 7→ ✶, i 7→ τ2,
and z̄ 7→ tz. The multiplication law defined in (3.1) perfectly aligns with the matrix multiplication
operation represented as z1z2. Now any matrix of the type (3.5) can be factorised as

z =

(
x −y

y x

)
=
√

x2 + y2

(
cos θ − sin θ

sin θ cos θ

)

=
√

x2 + y2 exp θτ2 , cos θ =
x√

x2 + y2
, sin θ =

y√
x2 + y2

.

(3.6)

This is the matrix form of the expression of the complex number z = reiθ in terms of its polar
coordinates, (r, θ), r ≥ 0, θ ∈ [0, 2π) mod (2π).

The correspondence i ↔ τ2 is not inherently absolute; an alternative choice could be i ↔ −τ2. This
ambiguity arises from the existence of two possible orientations when defining trigonometric functions:
clockwise and anticlockwise. It is crucial to recognize that this feature should not be disregarded when
transitioning from a formalism based on complex numbers to one expressed in terms of real numbers
[19].

3.8. 2D Lattices

3.8.1. General

Consider two complex numbers ω1, ω2 such that ω2/ω1 is not real. They define the (“Bravais”)
lattice in the plane Λ(ω1, ω2) = {n1ω1 + n2ω2 , n1, n2 ∈ Z} ≡ Zω1 + Zω2 with lattice basis

(or primitive) {ω1, ω2}, and with fundamental parallelogram [or primitive (unit) cell] determined by
(0, ω1, ω2). Λ is a subgroup of C for the addition (∼ translation). Two pairs (ω1, ω2), (α1, α2) are

equivalent if they generate the same lattice, i.e., if there exists

(
a b

c d

)
, a, b, c, d ∈ Z , ad − bc = ±1,

such that (
α1

α2

)
=

(
a b

c d

)(
ω1

ω2

)
.

The set of such matrices form the noncommutative modular group PSL(2,Z) (relevant for Weirstrass
elliptic functions).
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There are 5 possible Bravais lattices in 2-dimensional space: monoclinic (arbitrary ω1, ω2),
tetragonal or (square ω2/ω1 = e±iπ/2) , hexagonal (ω2/ω1 = e±2iπ/3), orthorhombic (rectangular
ω2/ω1 = ρe±iπ/2, 1 ̸= ρ > 0), and orthorhombic centered (rectangular centered). They are shown in
Figure 7.

Figure 7. Five 2D lattice types. From 2d Bravais Licence CC BY-SA 3.0 DEED.
.

3.8.2. Graphene example

A (two-dimensional) crystal is a periodic array of atoms. For the graphene (hexagonal lattice or
honeycomb), Figure 8, the primitive translation vectors are alternatively defined as:

ω1 = a

(√
3

2
+

3
2
i

)
, ω2 = a

√
3 , a ≈ 1.42

◦
A ,

which means that ω2/ω1 = e−iπ/3.

Figure 8. An illustration of atomic organisation of Graphene. From Pixabay: Graphite.

4. Symmetry and Group(s)

4.1. Symmetry in Physics

D. Gross, in his enlightening 1995 Physics Today article [20] exploring Wigner’s legacy, aptly
observed that

Einstein’s great advance in 1905 was to put symmetry first, to regard the symmetry principle as the

primary feature of nature that constrains the allowable dynamical laws.
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In contemporary physics, the principles of symmetry hold a paramount status as the most fundamental
components of our description of nature. This prominence owes a significant debt to the influential
contributions of the Princeton group, comprising notable figures such as Wigner, Bargmann, Weyl,
Gödel, von Neumann, ..., from Princeton University and/or the Institute for Advanced Study
(IAS). Their collective insights and groundbreaking work have played a pivotal role in elevating
the significance of symmetry principles, making them a cornerstone in our understanding of the
fundamental laws governing the physical universe.

In this context, it is essential to pay tribute to Emmy Noether, as highlighted in [21]. Albert
Einstein hailed Noether as the most “significant” and “creative” female mathematician in history. She
formulated a theorem [22] that, with magisterial concision, harmonized two fundamental concepts
in physics: symmetry in nature and the universal laws of conservation. Noether’s theorem, now
considered as crucial as Einstein’s theory of relativity, forms the bedrock for much of today’s
cutting-edge research in physics, including recent breakthroughs such as the observation of the
Higgs boson. Despite her pivotal contributions, Noether herself remains largely unknown, not only to
the general public but also to a large part of the scientific community.

The foundation of our comprehension regarding the existence of elementary particles is rooted in
the relativity principle. This principle posits that physical laws remain invariant under fundamental
transformations of inertial frames, specifically translation (implying homogeneity in space-time),
rotation (indicating isotropy in space-time), and boosts. Together, these transformations constitute
a relativity or kinematic group, known as the Galileo or Poincaré group. Notably, both groups
exhibit a structure that can be described as a semi-direct product of subgroups. In addition to these
two well-known groups, there are other relativity groups identified and classified by Bacry and
Lévy-Leblond in [23]. This group theoretical framework has laid the foundation for quantum field
theory, enabling a profound understanding of the nature and existence of elementary particles within
the realm of physics [24]. Note that the term “invariant”, strictly denoting the constancy of an
observable in a physical system under a particular transformation, is used here in a broader sense of
“covariance”. Precisely, “covariance” implies the absence of any alteration in the form of physical laws
under a given transformation.

One should add the importance of

• discrete translational and rotational symmetries in classifying molecules, crystals, quasicrystals,
• continuous rotational symmetries (together with parity and time reversal) in explaining and

classifying atomic spectra,
• unitary symmetries for describing and classifying nuclear spectra,
• unitary symmetries for describing strong and weak interactions (gauge fields) and successfully

predicting the existence of new elementary particles.

In his 1963 Nobel lecture quoted by D. Gross, Wigner pointed out that progress in physics was partly
based on the ability to separate the analysis of a physical phenomenon into two parts:

1. initial conditions that are arbitrary, complicated, unpredictable, as forming the “phase space" of a physical

system in a wide sense, and laws of nature that summarize the regularities which are independent of the

initial conditions.
2. Then, Wigner argued that symmetry or invariance principles provide a structure and coherence to the

laws of nature: they summarize the regularities of the laws that are independent of the specific dynamics.

Without regularities in the laws of nature we would be unable to discover the laws themselves.

One should also mention what Pierre Curie noticed in 1894 [25] (Neuman-Minnigerode-Curie
Principle):

• When certain causes produce certain effects, the elements of symmetry of the causes must be
found in the effects produced.

• When certain effects reveal a certain asymmetry, this asymmetry must be found in the causes
which gave rise to it.
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Note that the reciprocal of these two assertions is not true. More precisely, the characteristic symmetry
of a phenomenon is that symmetry which is best compatible with the existence of the phenomenon.
A phenomenon can exist in surroundings which possess its characteristic symmetry or at least one
subgroup of its characteristic symmetry. In other words, certain symmetry elements can exist together
with certain phenomena but they are not necessary. But it is necessary that certain symmetry elements
do not exist (Neuman-Minnigerode-Curie Principle).

4.2. Lie Groups and Lie Algebras

Building upon the foundational principles of symmetries and natural laws, as eloquently
discussed by Levy-Leblond [26], we delve deeper into one of their unescapable mathematical
frameworks: the theory of Lie groups and algebras [27].

To a Lie group G corresponds its Lie algebra g ∋ X 7→ exp X = g ∈ G, where the notation exp
takes it susual sense when we deal with group of matrices (see Appendix B for more mathematical
details). Simple or semi-simple Lie groups (Lie algebras), like (pseudo-)rotation groups or unitary
groups or symplectic groups, are ubiquitous in Physics, see Table 1 for the nomenclature.

Following previous works by Killing [28], simple Lie algebras have been classified by Cartan [29]
through their one-to-one correspondence to possible (irreducible reduced) root systems in Rn. See
Table 1 for the nomenclature for the most current Lie groups and algebras, and B.2 and B.3 for details
concerning root systems. There are four classes of classical (irreducible reduced) root systems in Rn:

1. An associated with unitary groups SU(n + 1) or their complexified SL(n + 1,C) or the real form
SL(n + 1,R).

2. Bn associated with orthogonal (rotation) groups SO(2n + 1) or their pseudo- rotation counterparts
SO(p, q, p + q = 2n + 1).

3. Cn associated with symplectic groups Sp(2n).
4. Dn associated with orthogonal (rotation) groups SO(2n) or their pseudo- rotation counterparts

SO(p, q, p + q = 2n).

Moreover there are five exceptional cases: G2, F4, E6, E7, E8.

Table 1. Nomenclature for the most current Lie groups and algebras. The symbol M(n,K) is for the

algebra of n × n matrices with coefficients in K = Z,Q,R,C, etc. Note that J =

(
0n ✶n

−✶n 0n

)
and that

Sp(n) is frequently written as Sp(2n). (M, g): Manifold M with metric g, X (M): vector fields on M,
LX : Lie derivative, (M, ω): Symplectic manifold M with symplectic 2-form ω.

Lie Group Lie Algebra

General Linear Group:
GL(n,K) = {A ∈ M(n,K) , det A ̸= 0} gl(n,K) = {A ∈ M(n,K)}

Special Linear Group:
SL(n,K) = {A ∈ GL(n,K) , det A = 1} sl(n,K) = {A ∈ gl(n,K) , Tr A = 0}

Special Orthogonal Group:
SO(n,K) = {A ∈ SL(n,K) , A tA = ✶n} so(n,K) = {A ∈ sl(n,K) , A + t A = 0}

Special Unitary Group:
SU(n) = {A ∈ SL(n,C) , AA† = ✶n} su(n) = {A ∈ sl(n,C) , A + A† = 0}

Symplectic Group:
Sp(n) = {A ∈ GL(2n,R) , AJ tA = J} sp(n) = {A ∈ gl(2n,R) , AJ + J tA = 0}

Group of Isometries of (M, g):
G = {ϕ : M 7→ M | ϕ preserves g} g = {X ∈ X (M) | LX g = 0}

Group of Symplectomorphisms of (M, ω):
G = {ϕ : M 7→ M | ϕ∗ω = ω} g = {X ∈ X (M) | LXω = 0}
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4.3. Physics and Low-Dimensional Root Systems

There exist isomorphisms between low-dimensional root systems (see Appendix B). Borrowing its
terminology to atomic spectroscopy one can enunciate that the lowest levels in the Cartan classification
are occupied by the most familiar or well-known symmetries of our physics discipline:

(i) A1 ≃ B1 ≃ C1, (SO(3) ≃ SU(2)/Z2, SL(2,R) ≃ SU(1, 1) ≃ Sp(2,R) ≃ SO0(2, 1)× Z2): space
isotropy, spherical rotator, geometric optical devices, q-bits, Lorentz invariance, infinite well,
isospin, kinematic groups of 1 + 1 de Sitter and Anti de Sitter space-times, ...

(ii) A1 × A1 (SU(2)× SU(2) ≃ SO(4), SU(1, 1)× SU(1, 1) ≃ SO0(2, 2)): orbital degeneracy of the
Coulomb potential or Kepler problem [30], two-dimensional square infinite well (quantum dot),
...

(iii) A2 (SU(3)): spatial harmonic oscillator, standard model color, q-trits, ...

(iv) B2 ≃ C2 (SO0(4, 1) ≃ Sp(2, 2)/Z2, SO0(3, 2) ≃ Sp(4)/Z2): kinematic groups of 3+1 de Sitter [31]
and Anti de Sitter [32] space-times, dynamical symmetry of the H atom discrete or continuous
spectrum [30], ...

(v) A3 ≃ D3 (SO(6) ≃ SU(4)/Z2, SO0(4, 2) ≃ SU(2, 2)/Z2, SO0(5, 1)): gauge symmetries,
conformal group of 3 + 1 de Sitter, Anti de Sitter and Minkowski space-times respectively,
and their roles in the interpretation of the dark universe (e.g., see [33], and references therein),
dynamical symmetry of the H atom discrete and continuous spectrum, AdS/DS-CFT, ...

5. Playing with Spheres

We now explore the world of unit spheres in light of group theory.

5.1. The Circle and Its Complexified Version

The unit circle is defined in the complex plane as S1 = {eiθ , θ0 ≤ θ < θ0 + 2π , mod 2π}. It is
a compact multiplicative commutative group, denoted U(1). One should think to the importance of
this group in mathematics (e.g., Fourier series and integral) and in physics (e.g., gauge invariance in
electrodynamics).

The complexified unit circle S1
C = {(z1, z2) ∈ C2 | z2

1 + z2
2 = 1} = {eiz , z = x + iy ∈ C} is also a

group. It is the non-compact multiplicative commutative group

SO(2,C) =
{(

cos(x + iy) − sin(x + iy)

sin(x + iy) cos(x + iy)

)
=

(
cos x − sin x

sin x cos x

)(
cosh y −i sinh y

i sinh y cosh iy

)}

= {exp τ2x exp σ2y , x, y ∈ R} ≃ U(1)×R . (5.1)

An example is found with the motion of a particle on the unit circle: the corresponding phase
space, i.e., the set of pairs (angular position, angular momentum) is the infinite cylinder

Cyl = {(θ , J ∝ θ̇) , θ ∈ R mod 2π , J ∈ R}
≡
{

eiθ (cosh J + (−1) sinh J) , θ ∈ R mod 2π , J ∈ R
}
∼= S1

C ,

whose the matrix form (5.1) is obtained through the maps i 7→ τ2 for the first factor and (−1) 7→ σ2 = iτ2

for the second factor.
We could as well consider the free motion on the two-dimensional de Sitter space-time [31]. The

latter has the topology S1 ×R. It may be visualized as the one-sheet hyperboloid {(y0, y1, y2) ∈ R3 |
(y0)2 − (y1)2 − (y2)2 = −R2}.
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The phase space for such a motion is also a one-sheet hyperboloid with the same cylinder
topology. In this case both the configuration space and the phase space have SO0(1, 2) ≃ SU(1, 1)/Z2

as invariance group.

5.2. The Sphere S3 through Its Multifaceted Aspects

Our familiar sphere S2 is “poor": no intrinsic group structure, save the fact that it includes
mythological structures, like the five platonic solids (see next subsection). Then let us consider
the next one in the sequence: the sphere S3. It may be identified with the compact multiplicative
non-commutative group SU(2) corresponding to A1. Think to the importance of this group in
mathematics (e.g., harmonic analysis in space) and in physics (angular momentum, spin, q-bit, ...).

5.2.1. Sphere S3 and Group SU(2)

The relation of S3 to SU(2) is given by:

SU(2) ∋ Uξ =

(
α β

−β̄ α̃

)
≡




ξ0 + iξ3 −ξ2 + iξ1

ξ2 + iξ1 ξ0 − iξ3


 , ξ0 , ξi ∈ R , i = 1, 2, 3 ,

det(Uξ) = |α|2 + |β|2 = ξ2
0 + ξ2

1 + ξ2
2 + ξ2

3 = 1 ,

i.e. , ξ ≡ (ξ0, ξ1, ξ2, ξ3) ≡ (ξ0, ξξξ) ∈ S3 .

5.2.2. Sphere S3 and Rotations in R3

Let us explain the relation between S3 and the proper rotations in space R3. Any proper rotation
in space is determined by a unit vector n defining the rotation axis and a rotation angle 0 ≤ θ < 2π

about n in the direct sense.

✟✟✟✟✟✟✟✟✟✯

O

r′❳❳❳❳❳❳❳❳❳②
⟲

θ

n

❈
❈
❈
❈
❈
❈❖

r

Figure 9. Proper rotation of vector r to r′ by angle θ about unit vector n in space R3.

The action of such a rotation, R(n, θ), on a vector r is given by:

r′ def
= R(n, θ) • r = r · n n + cos θ n × (r × n) + sin θ (n × r)

=
[
cos θ✶3 + (1 − cos θ)n tn + sin θ n×

]
r ,

n× :=




0 −nz ny

nz 0 −nx

−ny nx 0



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The correspondence between elements rotations R(n, θ) and the matrix form Uξ ∈ SU(2) of ξ =

(ξ0, ξξξ) =
(

cos θ
2 , sin θ

2 n
)

is understood as :

r′ = (x′1, x′2, x′3) = R(n, θ) • r

⇕
(

ix′3 −x′2 + ix′1
x′2 + ix′1 −ix′3

)
= Uξ

(
ix3 −x2 + ix1

x2 + ix1 −ix3

)
U†

ξ .

(5.2)

5.3. Sphere S3 and Quaternions (Hamilton, 1843)

Let us equip the set C×C = C2 := {q = (u, v) , u, v ∈ C} with the commutative addition and
non-commutative multiplication operations:

(u, v) + (u′, v′) = (u + u′, v + v′) , (u, v)(u′, v′) = (uu′ − vv′, uv′ + vu′) . (5.3)

Both operations afford C2 with a noncommutative field structure, 0 ≡ (0, 0) and 1 ≡ (1, 0) being the
neutral elements for addition and multiplication respectively. This is the field of quaternions [34,35]
(see also [36] and references therein) and is denoted by H. One identifies (u, 0) with the complex u and
one introduces the “quaternionic imaginary” ȷ̂ ≡ (0, 1). One checks that ȷ̂

2 = −1 and the fundamental
commutation rule

u ȷ̂ = ȷ̂ū ∀ u ∈ C , i.e. iȷ̂ = − ȷ̂i .

Hence we have the bicomplex notation for quaternions:

q = (u, v) = u + v ȷ̂ = u + ȷ̂v̄ . (5.4)

With the notations ı̂ := (i, 0) and k̂ := (0, i) = ı̂ ȷ̂ = − ȷ̂ı̂, one has as well ı̂ = ȷ̂k̂ = −k̂ ȷ̂, and
ȷ̂ = k̂ı̂ = −ı̂k̂, with ı̂

2 = −1ȷ̂
2. Quaternions form the real vector space R4 of dimension 4, with

{1, ı̂, ȷ̂, k̂} as a standard basis. Quaternions with null scalar component, i.e., q = (0, q) ≡ q, are said
pure vector quaternions. It results that one can decompose a quaternion in two different forms:

q = (u, v) = q0 + q1 ı̂ + q2 ȷ̂ + q3k̂ ≡ (q0, q) (scalar-vector notation) , (5.5)

q = (u, v) = u + v ȷ̂ with

{
u = q0 + q1 ı̂

v = q2 + q3 ı̂
(bicomplex notation) . (5.6)

With the bicomplex notation, one easily understands the origin of the multiplication law given in (5.3).
With the scalar-vector notations, the quaternionic multiplication reads as

qq′ = (q0q′0 − q · q′, q0q′ + q′0q + q × q′) .

Introducing the mirror symmetry with respect to the 0th axis, q = (q0, q) 7→ q̄ := (q0,−q), one checks
that qq̄ = q2

0 + q2
1 + q2

2 + q2
3 ≡ |q|2, qq′ = q′ q̄ (involutive), |qq′| = |q||q′|, and the inverse of q ̸= 0 is

given by q−1 = q̄/|q|.

5.4. Quaternions and Space Rotations

Expressed in “polar” coordinates q = |q|ξ, ξ ∈ S3 ∼ SU(2), one obtains the matrix realisation of
quaternions:

q = (q0, q) ↔ Aq =

(
q0 + iq3 iq1 − q2

iq1 + q2 q0 − iq3

)
. (5.7)
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Hence, the correspondence (5.2) between elements ξ = (ξ0, ξξξ) =
(

cos θ
2 , sin θ

2 n
)
∈ S3 and rotations

R(n, θ) in space is now understood in terms of quaternions:

r′ = R(n, θ) • r ⇔ (0, r′) = ξ(0, r)ξ̄ . (5.8)

5.5. Coquaternions (Cockle, 1849) versus Quaternions

It is interesting to compare the matrix realisation of quaternions with the decomposition (3.3) of
the (Lie) algebra M(2,R) composed of 2 × 2 real matrices. Forgetting this matrix realisation and
considering the matrix basis (✶2 ≡ 1, σ1, τ2, σ3) as pure numbers

(✶2 ↔ 1, σ1 ↔ ℓ1, τ2 ↔ ℓ2, σ3 ↔ ℓ3) ,

obeying the same algebraic relations as those given in (3.2), one obtains the noncommutative ring
Hco of numbers q = (a0, a), aµ ∈ R, µ = 0, 1, 2, 3, named coquaternions [37,38] or split-quaternions. We
remind that rings are algebraic structures that generalize fields in the sense that multiplicative inverses
need not exist. With this scalar-vector form, the multiplication law for coquaternions reads as

qq′ =
(
(a0a′0 + a1a′1 − a2a′2 + a3a′3 , a0a′ + a′0a + a ×co a′

)
, a ×co a′ :=





a2a′3 − a2a′3
a1a′3 − a3a′1
a1a′2 − a2a′1

If instead we start from the bicomplex form (3.4) and adopt the one-to-one correspondence matrix ↔
coquaternion

M(2,R) ∋ A = z1 + σ1z2 ↔ q = z1 + ℓ1z2 ≡ (z1, z2) , z1 = a0 + a2ℓ2 , z2 = a1 + a3ℓ2 ,

then the multiplication law reads

qq′ = (z1, z2)(z
′
1, z′2) =

(
z1z′1 + z̄2z′2 , z̄1z′2 + z2z′1

)
,

a formula to be compared with (5.3).
Ring Hco is equipped with the isotropic quadratic form

N(q) := a2
0 − a2

1 + a2
2 − a2

3 = |z1|2 − |z2|2 = qq∗ , (5.9)

where q∗ = (a0,−a) is the conjugate of q. Each coquaternion q with N(q) ̸= 0 has inverse q−1 =

q∗/N(q). One checks that N(qq′) = N(q)N(q′).
The multiplicative group of coquaternions with N(q) = 1 form the unit pseudo-sphere in R4:

H
3 :=

{
ς ∈ Hco , ςς∗ = a2

0 − a2
1 + a2

2 − a2
3 = 1

}
.

The topology of H3 is that of the Cartesian product S1 × S1 ×R ∼ T2 ×R. This is inferred from the
parametrisation with (θ, ψ, t):

a0 = cosh t cos θ , a2 = cosh t sin θ , a1 = sinh t cos ψ , a3 = sinh t sin ψ .

Like the matrix realisation of S3 is SU(2), the matrix realisation of H3 is the group SL(2,R). The
symmetry group of the quadratic form (5.9) on R4 is O(2, 2).
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5.6. Complex Quaternions

The ring of complex quaternions is the tensor product H⊗C ≡ HC. It is just obtained from H by
extending real scalars to complex ones in (5.5):

HC =
{

z = z0 + z1 ı̂ + z2 ȷ̂ + z3k̂ ≡ (z0, z) , za ∈ C , a = 0, 1, 2, 3
}

.

Note the biquaternion form of a complex quaternion: z = p + iq , p, q ∈ H (the correct writing should
be z = p ⊗ 1 + q ⊗ i), which corresponds to the isomorphism HC

∼= H⊕H. The matrix representation
of HC is analogous to (5.7):

HC ∋ z = (z0, z) ↔ Az =

(
z0 + iz3 iz1 − z2

iz1 + z2 z0 − iz3

)
.

This establishes the ring isomorphism HC
∼= M2(C). For more in-depth information, refer to [32]

where these objects are efficiently utilized to describe the two-fold covering Sp(4,R) of the Anti-de
Sitter group SO0(2, 3).

5.7. The Complexified Sphere S3
C

The complexified sphere S3
C
= {z = (z0, z) ∈ C4 | z2

0 + z2
1 + z2

2 + z2
3 = 1} is also a group. It is

the (universal) covering SL(2,C) of the Lorentz group SO0(3, 1) ≃ SL(2,C)/Z2. Let us consider the
motion of a particle on S3. The phase space is the cotangent bundle

T∗(S3) = {z = (q, p) ∈ R4 ×R4 ≃ H×H | |q|2 = 1 , q · p = 0} .

This phase space can be identified with the complex sphere S3
C

through the following parametrization
of the latter:

z = q cosh |p|+ i
p

|p| sinh |p| ∈ HC , |q| = 1 , q · p = 0 .

We could as well consider the free motion on the 3 + 1-dimensional de Sitter spacetime. The latter
may be viewed as a one-sheeted hyperboloid embedded in a five-dimensional Minkowski space with
metric ηαβ = diag(1,−1,−1,−1,−1):

MdS ≡
{

x ∈ R5; x2 = ηαβ xαxβ = − 3
ΛdS

}
, α, β = 0, 1, 2, 3, 4 .

For the past years it has becoming a realistic model for our space-time because of the observed non
zero value of the cosmological constant Λ, a model accompanied of concepts like “dark energy" or
“quintessence"). The phase space for the motion of a test particle on the de Sitter space-time has also
the topology S3 ×R3 or equivalently the complexified S3

C
≃ SL(2,C). In this case both configuration

space and phase space have SO0(1, 4) ≃ Sp(2, 2)/Z2 as invariance group. More details are found in
the volume [31].

5.8. The Sphere S3, Its Icosians and Its Icosian Ring

The group SU(2) has a finite subgroup denoted here by I with 120 elements, named icosians by
Hamilton. There exists an icosian game invented by Hamilton [39,40]. It is a kind of Eulerian path
through the 20 vertices of the dodecahedron, the dual polyhedron of the icosahedron (see Figure 10,
and the nice illustration in [41]): a path such that every vertex is visited a single time, no edge is visited
twice, and the ending point is the same as the starting point. Winning strategies use the icosian group
I .
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Figure 10. Dodecahedron and its dual, the icosahedron (left). With its twenty triangular faces, twelve
vertices and thirty edges, the latter is one of the five Platonic Solids (right). From Don Steward: platonic
solids and duals. Among the platonic solids (Theaetetus of Athens, 417- 369 BC; Plato, 428/427–348/347
BC; Euclid, fl. c. 300 BC; Johannes Kepler, 1571-1630), either the dodecahedron or the icosahedron may
be seen as the best approximation to the sphere. Remind that a platonic solid is a convex polyhedron
with vertices in a sphere S2

r of radius r. The faces of a platonic solid are congruent regular polygons,
with the same number of faces meeting at each vertex. All edges are congruent, as are its vertices and
angles. See the celebrated Coxeter treatise [42] to know more about these objects.

One has the isomorphism I/Z2 ≃ Y , where Y is the symmetry group (60 proper rotations) of the
icosahedron (or of its dual, the dodecahedron).

Let us consider, together with the quaternionic unity 1, three unit-norm quaternions describing
through (5.8) 72◦ rotations around three distinct five-fold axes of the icosahedron,

α =
1
2
(τ, 1, 1/τ, 0) , β =

1
2
(τ, 0, 1, 1/τ) , γ =

1
2
(τ, 1/τ, 0, 1) .

Here, τ
def
= 1+

√
5

2 = 2 cos π
5 is the golden mean, with −1/τ = 1−

√
5

2 = τ − 1, both being algebraic
integers, solutions of the algebraic equation with integer coefficients

x2 = x + 1 .

The Z-span of I is the icosian ring I [43] which fills densely R4 ≃ H. One shows that

I = Z[τ] +Z[τ]α +Z[τ]β +Z[τ]γ ,

where Z[τ] = {m + nτ | m, n ∈ Z} is the extension ring of the golden mean.

5.9. The Root System E8 and Quasicrystals

Let us now consider the root system E8. It is made of 240 vectors in R8. The corresponding root
lattice E8 is the Z-span of E8. Because of the crystallographic properties of E8, we have:

E8 =
8

∑
i=1

Zαi ,

where the αi’s are the basis roots of the corresponding Dynkin diagram shown in Figure A2.
Subsequently, by selecting a particular four-dimensional plane within R8 possessing a distinct

“golden mean” orientation and executing the orthogonal projection of the root lattice E8 onto this
hyperplane, the result is the formation of the icosian ring I.

Similar manipulations on the D6 root lattice projected onto R3, on the A4 root lattice projected onto
the plane R2, and on the A2 root lattice projected onto the real line R, accompanied by “cuts" based on
the choice of appropriate “windows", produce standard models for three-, two- and one-dimensional
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quasicrystals (e.g., icosahedral quasicrystals, Penrose tilings, Fibonacci chain ...), as is shown in Figure
11, [44].

Figure 11. Cut and Project trick is a method to get a quasiperiodic set in R from a lattice in R2 (From
Cut&Project Fibonacci CC BY-NC-SA 2.0 Deed).

In Figure 12 is shown an example of observed quasicrystalline surface.

Figure 12. Quasicrystalline five-fold surface of Al70 Pd21 Mn9, from [45].

5.10. Algebraic Modelling of Quasicrystals

The identified self-similarity factors, denoted by β, within quasicrystals exhibit a distinctive
mathematical nature known as quadratic Pisot-Vijayaraghavan (PV) numbers. In essence, these
numbers correspond to roots greater than 1 of specific quadratic polynomials. These polynomials
possess a leading coefficient of 1 and consist of integer coefficients. Notably, the other root of these
polynomials is characterized by an absolute value less than 1.

In the case presented above, the factor is the golden mean β = τ = 1+
√

5
2 . The other ones are

β = τ2 =
3 +

√
5

2
, β = δ = 1 +

√
2, β = θ = 2 +

√
3.

Each value of β serves as the defining parameter for a discrete set on the number line, denoted as
Zβ or the set of “beta-integers”, as introduced in [46] (see also [47], and references therein). This
set is specifically designed to function analogously to integers within the context of quasicrystalline
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investigations. A visual representation of this concept is illustrated in Figure 13, depicting the first
tau-integers in proximity to the origin.

t t t t t t

S L L S L

−τ −1 0 1 τ τ2

−10 −1 0 1 10 100

Figure 13. First elements of Zτ (tau-integers) around the origin and associated tiling.

Beta-lattices are designed to serve as direct substitutes for traditional lattices within the unique
framework of quasicrystals. Much like lattices are built upon sets of integers, beta-lattices find their
structural basis in beta-integers. This deliberate choice aligns with the goal of seamlessly adapting
mathematical structures to the intricate properties of quasicrystals. A typical beta-lattice Γ is defined
as:

Γ =
d

∑
i=1

Zβei ,

with (ei) a base of Rd. Examples are shown in Figures 14 and 15.

Figure 14. τ-lattice Γ2(τ) := Zτ + eiπ/5Zτ in R2.
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Figure 15. The mathematical five-fold quasicrystal Γ5[τ] := ∑
4
n=0 einπ/5Zτ in R2.

5.11. Sphere S7 and Octonions (Graves, 1843, Cayley, 1845)

Like Q,C,H, the algebra O of octonions [48,49] is built by providing the Cartesian product H×
H = {(p, q) , p, q ∈ H} with the commutative addition and the non-commutative and non-associative
product:

(p, q) + (p′, q′) = (p + p′, q + q′) , (p, q)(p′, q′) = (pp′ − q′q, q′p + qp′) .

Let us introduce the 8 octonionic basis numbers: 1 ≡ (1, 0) (unity) and

ı̂ ≡ (ı̂, 0) , ȷ̂ ≡ ( ȷ̂, 0) , k̂ ≡ (k̂, 0) , (5.10)

l̂ ≡ (0, 1) , ı̂l̂ = (0, ı̂) ≡ ı̂ , ȷ̂l̂ = (0, ȷ̂) ≡ ȷ̂ , k̂l̂ = (0, k̂) ≡ k̂ , (5.11)

with the commutation rules

ı̂l̂ = (0, ı̂) = −l̂ı̂ , ȷ̂l̂ = (0, ȷ̂) = −l̂ ȷ̂ , k̂l̂ = (0, k̂) = −l̂k̂ . (5.12)

We then obtain the biquaternion notation for octonions:

O ∋ x = p + ql̂ = p0 + p1 ı̂ + p2 ȷ̂ + p3k̂ + q0 l̂ + q1 ı̂ + q2 ȷ̂ + q3k̂ = p + l̂q̄ . (5.13)

In octonionic calculations we should be aware of the non-associativity of the product, e.g., ( ȷ̂k̂)l̂ = ı̂l̂

whilst ȷ̂(k̂l̂) = −ı̂l̂.
The octonionic conjugate of the octonion x is defined as

x = (p, q) 7→ x̄ := ( p̄,−q) .

This operation allows to define the Euclidean norm of x ∈ O and its inverse if x ̸= 0.

xx̄ = x̄x = |p|2 + |q|2 ≡ |x|2 , x−1 =
x̄

|x|2 .

Conjugation is involutive: xx′ = x′ x̄, and one checks that |xx′| = |x||x′|.
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Like the bicomplex notation (5.4)-(5.6) for quaternions, we also have the quadricomplex notation
for octonions:

x = (p, q) = (t, u) + ȷ̂(v, w) where

{
t = p0 + p3k̂ , u = q0 + q3k̂

v = p2 + p1k̂ , w = q2 − q1k̂
. (5.14)

The Hurwitz theorem establishes that the real numbersR, complex numbersC, quaternionsH, and
octonions O stand as the exclusive normed division algebras over the real numbers, up to isomorphism.
Normed in the sense that the product of any two elements satisfies the norm property: |xx′| = |x||x′|.
Moreover, these four algebras represent the sole examples of alternative, finite-dimensional division
algebras over the real numbers.

A general rotation in R8, i.e., an element among the 28 elements of SO(8), can be written through
successive right multiplications:

O ∋ x 7→ ((((((x η1) η2) η3) η4) η5) η6) η7 , ηi ∈ O , |ηi| = 1 .

For a recent review on the role of octonions in Nuclear Physics, see [50].

6. Higher Spheres and Hopf Maps and Fibrations

What about Sn, n ≥ 4? There is nothing really special from a strictly group point of view when
we deal with higher dimensional spheres. Naturally many interesting topological features exist, like
the Hopf fibrations [51,52]:

6.1. Hopf Fibrations

They are the following relations involving spheres the Sn , n = 1, 2, 3, 4, 5, 7, 8, 15:

S1 →֒ S3 p→ S2 , S3 →֒ S7 p→ S4 , S7 →֒ S15 p→ S8 ,

where “→֒” stands for embedding, and p is the Hopf map. The first one is displayed in Figure 16.
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Figure 16. Hopf fibration (from Niles Johnson CC BY 4.0). The described fiber bundle structure,

succinctly represented as S1 →֒ S3 p→ S2, intricately intertwines the components of the fiber space S1

within the overarching structure of the total space S3. The projection, denoted as p and referred to as
Hopf’s map, serves as the intermediary, mapping the elements of S3 onto the base space S2. In this
visual representation, each fiber of S1 projects to a circle in three-dimensional space, with one such
circle extending to infinity, forming what is termed a “circle through infinity” or effectively a line. The
resulting arrangement fills space with a captivating array of tori (products of two circles), each of which
is the stereographic projection of the inverse image of a latitude circle on S2. The accompanying image
on the right, depicting linked keyrings on the right, serves as an illustrative example of one of these
tori. Points on S2 and their corresponding fibers are color-matched, providing a visual insight into the
intricate and captivating structure induced by the Hopf fibration.

The Hopf construction, in its broader application, yields circle bundles in the form of S2n+1 p→ CPn

over complex projective space. This construction is essentially a restriction of the topological line
bundle over CPn to the unit sphere in Cn+1.

Note the elementary example where one considers S1 embedded in R2 and factors out by unit

real multiplication. One then obtains RP1 = S1. This results in a fiber bundle S1 p→ S1 with the circle
S0 as the fiber.

Extending these constructions, one can view S4n−1 within quaternionic n-space (Hn) and factor

out by unit quaternion multiplication (≃ S3) to obtain HPn. Notably, a bundle S7 p→ S4 with fiber S3

emerges from this construction, connecting quaternionic and real projective spaces.

Similarly, leveraging octonions leads to a bundle S15 p→ S8 with fiber S7.
These constructions are often referred to as Hopf bundles, encompassing the realms of real,

quaternionic, and octonionic Hopf bundles. Importantly, Adams’ theorem asserts that these bundles
represent the exclusive instances of fiber bundles with spheres as the total space, base space, and fiber.

Hopf fibration surfaces show up in the description of quantum entanglement [53,54]. In particle
physics they underly the mathematics of the Dirac monopole. It also appears in general relativity, for
instance in the Robinson congruence (see for instance [55]).
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6.2. Group Interpretation of the First Hopf Map: S3 p→ S2

Let us consider the element ξ = (ξ0, ξ1, ξ2, ξ3) of S3 ∼= SU(2) which brings the north pole of S2 to
the direction (x, y, z) ∈ S2:

ξ(0, 0, 0, 1)ξ̄ = (0, x, y, z) , x2 + y2 + z2 = 1 .

This gives the quadratic relations which exemplify the projection p (Hopf’s map) of S3 onto the base
space S2:

S3 ∋





x = 2(ξ0ξ2 + ξ1ξ3)

y = 2(ξ2ξ3 − ξ0ξ1)

z = ξ2
0 + ξ2

3 − ξ2
1 − ξ2

2

.

One easily checks that the Hopf inverse of a point ∈ S2 is a circle S1 ⊂ S3 and that the Hopf inverse of
a circle S1 ⊂ S2 is a torus S1 × S1.

6.3. Group Interpretation of the Second Hopf Map: S7 p→ S4

We here consider the special group isomorphism proper to B2
∼= C2 (see Figure A1):

Spin(5) ≡ SO(5)×Z2 ≃ G =

{
g =

(
a b

c d

)
, a, b, c, d ∈ H , g tg = ✶2

}
.

It is understood through the action of the group G on specific 2 × 2-quaternionic matrices

g

(
y4 p

p̄ −y4

)
tg =

(
y′4 p′

p′ −y′4

)
, p ∈ H , y4 ∈ R , y2

4 + |p|2 = 1 .

Just consider the group element g =

(
a b

−bα ā

)
∈ G, bα = āba/|a|2, which brings the “north pole" of

S4, (y4 = 1 , p = 0), to the point (y4, p) ∈ S4. We have |a|2 + |b|2 = 1, i.e., (a, b) ∈ S7. This gives the
quadratic relations:

p = −2ba , y4 = |a|2 − |b|2 .

The Hopf inverse of a point ∈ S4 is the sphere S3 ⊂ S7 and the Hopf inverse of a sphere S3 ⊂ S4 is
S3 × S3 ≃ SO(4).

6.4. Group Interpretation of the Third Hopf Map: S15 p→ S8

The octonionic Hopf fibration finds its elegant description through the lens of the automorphism
group G2 of the normed algebra of octonions. Actually, one can grasp its essence by considering the
group Spin(9) (where Spin(n) serves as the two-fold covering of SO(n)), as explained in [56].

7. Kepler-Coulomb Problem and Spheres

Concluding our exploration of the world of spheres, it is essential to acknowledge the pivotal
role played by S1 and S3, and their complexified versions, in understanding the symmetries of a
particle’s motion subjected to the Kepler or Coulomb potential. Alongside the harmonic oscillator, it
stands as one of the most emblematic examples of integrable systems within the domain of Galilean
classical or quantum mechanics. This symmetry elucidates, at the quantum level, the empirical
laws discovered by Balmer in 1885 [57] for describing the spectral line emissions of the hydrogen
atom. The literature on this topic is extensive (see, for instance, the review [30]), and its content can
attain a high level of mathematical sophistication. To provide some insight, we will first examine in
detail the one-dimensional case before sketching the main concepts of the realistic three-dimensional
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model. It is worth noting that providing a comprehensive account of the symmetries inherent in the
Kepler-Coulomb problems, both classically and quantum mechanically, would necessitate delving into
a much broader scope of material.

7.1. 1-Dimensional Kepler-Coulomb Problem

Consider the energy of a particle of mass m trapped in a well determined on the positive line
q ≥ 0 by the attractive Kepler-Coulomb potential:

V(q) = − k

q
, k > 0 ,

and V(q) = ∞ for q < 0. Its energy is given by

E =
p2

2m
− k

q
.

Regularizing the Kepler problem in the case of negative energy consists in considering the alternative
equation:

Θ
def
= q(p2

0 + p2)− 2mk = 0 , q > 0 .

where p0 =
√
−2mE. Let us see how the Balmer laws [57] come to light from the symmetry A1.

One considers the three observables defined on the upper half-plane viewed as the phase space
{(q, p) | q > 0 , p ∈ R}:

d = qp , γ0 =
1
2

q(p2 + p2
0) , γ1 =

1
2

q(p2 − p2
0) .

Their Poisson brackets
(
{ f , g} def

=
∂ f

∂q

∂g

∂p
− ∂ f

∂p

∂g

∂q

)
obey the commutation relations of the Lie algebra

sl(2,R) of SL(2,R):
{d, γ0} = γ1 , {d, γ1} = γ0 , {γ0, γ1} = p2

0 d .

After quantization of these classical observables, say A 7→ Â, Poisson brackets become commutators,
quantum counterparts become (essentially) self-adjoint operators acting in some Hilbert space of
quantum states, and a specific unitary irreducible representation of SL(2,R) is involved. Precisely,
that one for which the generator γ̂0 has non zero positive integers multiples of p0 as spectral values.
This is due to the fact the inverse operator γ̂0

−1 is compact. We remind that an operator A on a
infinite-dimensional Hilbert space H is said to be compact if it can be written in the form A =

∑
∞
n=1 λn⟨fn, ·⟩en where {en} and {fn} are orthonormal sets (not necessarily complete) and the λn’s

form a sequence of positive numbers with limit zero (they can accumulate only at zero). Since the
classical equation Θ = 2γ0 − 2mk = 0 becomes Θ̂ = 2(γ̂0 − 2mk)ψ = 0, the spectral condition leads
directly to the Balmer-like quantization of the energy:

n p0 − mk = 0 ⇔ E = −mk2

2n2 .

7.2. Phase Space of the Regularized 1d-Kepler-Coulomb Problem: The Complexified Circle with Zero Radius

Let us show that the phase space of the regularized 1d-Kepler problem is the complexified circle
with zero radius.

Following the Fock method [58,59] for displaying the symmetry of the H-atom, let us introduce
the circle variable

ξ =

(
p2

0 − p2

p2
0 + p2

,
2p0 p

p2
0 + p2

)
∈ S1 .
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(Inverse stereographic projection transforming the compactified momentum real line into the unit
circle). By imposing that this change of variable be part of a canonical transformation of the phase
space, the conjugate variable πξ to ξ reads:

πξ =

(
−qp , q

p2
0 − p2

2p0

)
=

(
−d ,

γ1

p0

)
.

One easily checks the two constraints:

∣∣πξ

∣∣ = mk

p0
on the energy shell and ξ · πξ = 0 .

Therefore, the pair
(

ξ,
p0

mk
πξ

)
parametrizes the complex circle in C2 with null radius:

S1
C(0) = {(z1, z2) ∈ C2 | z2

1 + z2
2 = 0} .

This is a geometric model for the phase space of the one-dimensional regularized Kepler problem,
which can be identified to T∗

0 S
1 (cotangent bundle on S1 with the zero-section deleted, named Moser

manifold or Kepler manifold).

7.3. Phase Space of the Three-Dimensional Regularized Kepler-Coulomb Problem

The above material is easily generalisable to three dimensions. Indeed, the phase space of the
three-dimensional regularized Kepler problem is the complexification of S3 with radius 0.

Following Fock again in dealing with the more realistic 3-dimensional Kepler-Coulomb problem,
let us introduce the S3 variable

ξ =

(
p2

0 − ∥p∥2

p2
0 + ∥p∥2

,
2p0 p

p2
0 + ∥p∥2

)
∈ S3 .

(Inverse stereographic projection transforming the 3d-compactified momentum space into 3-sphere).
By imposing that this change of variable be part of a canonical transformation of the phase space,

the conjugate variable πξ to ξ together with ξ parametrizes the complexification of S3 in C4 with null
radius. This is the phase space of the three dimensional regularized Kepler problem, which can be
identified with T∗

0 S
3 (cotangent bundle on S3 with the zero-section deleted, Moser manifold or Kepler

manifold, as named by Souriau [60]).
The three-dimensional aspect of this structure explains the accidental degeneracy of the discrete

spectrum of the hydrogen atom with its SO(4) symmetry.

8. Conclusions

This contribution is an invitation to embark on an exploration of the realm governed by
numbers, symmetries, and intricate symmetry groups, and, as an appealing illustration, to delve
into the profound significance encapsulated within the fundamental aspects of the circle and
higher-dimensional spheres. Its aim is to share our appreciation for their value in shaping our
mathematical comprehension of the natural world and establishing the foundational principles that
underpin the laws of physics.
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Abbreviations

The following abbreviations are used in this manuscript:

UIR Unitary irreducible representation

Appendix A. Group Actions

A transformation of a set S is a one-to-one mapping of S onto itself. A group G is realized as a
transformation group of a set S if, for each g ∈ G, there exists an associated transformation s 7→ g · s of
S, where for any g1 and g2 in G and s ∈ S, the property (g1g2) · s = g1 · (g2 · s) holds. The set S is then
referred to as a G-space, and a transformation group is deemed transitive on S if, for any s1 and s2 in S,
there exists a g ∈ G such that s2 = g · s1. In such a scenario, the set S is termed a homogeneous G-space.

A (linear) representation of a group G is a continuous function g 7→ T(g) that takes values in the
group of nonsingular continuous linear transformations of a vector space V . This function satisfies the
functional equation T(g1g2) = T(g1)T(g2) and T(e) = Id, where e is the identity element of G, and Id

is the identity operator in V . Additionally, it follows that T(g−1) = (T(g))−1, meaning that T(g) is a
homomorphism of G into the group of nonsingular continuous linear transformations of V .

A representation is deemed unitary if the linear operators T(g) are unitary concerning the inner
product ⟨·|·⟩ on V . In other words, ⟨T(g) v1|T(g) v2⟩ = ⟨v1|v2⟩ holds for all vectors v1 and v2 in V .
Furthermore, a representation is irreducible if there is no non-trivial subspace V0 ⊂ V such that, for all
vectors v0 ∈ V0, T(g) v0 is in V0 for all g ∈ G. In simpler terms, there exists no non-trivial subspace V0

of V that remains invariant under the operators T(g).

Appendix B. Lie Algebra Material

Appendix B.1. General

Consider a complex Lie algebra g, defined as a complex vector space equipped with an
antisymmetric bracket [·, ·] satisfying the Jacobi identity:

[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0 , ∀ X, Y, Z ∈ g . (A1)

For any X, Y ∈ g, the adjoint representation is given by (adX)(Y) = [X, Y], providing a linear map ad:
g → End g, where End g represents the endomorphisms of g. This is known as the adjoint representation

of g.
If the dimension of g is finite (dim g < ∞), one can define a symmetric bilinear form B(X, Y) for

X, Y ∈ g as follows:
B(X, Y) = Tr[(adX)(adY)], X, Y ∈ g . (A2)

Here, B is termed the Killing form of g.
Alternatively, one can choose a basis Xj , j = 1, . . . , n in g, where n = dim g. In terms of this basis,

the commutation relations are expressed as:

[Xi, Xj] =
n

∑
k=1

ck
ijXk , i, j = 1, . . . , n , (A3)
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where ck
ij are the structure constants. It is then evident that gij = ∑

n
k,m=1 cm

ik ck
jm = B(Xi, Xj) defines a

metric on g. This metric is known as the Cartan-Killing metric.

Appendix B.2. Roots and Cartan Classification

The Lie algebra g is classified as simple if it lacks any nontrivial ideal. In other words, there is no
additive subgroup I of g that absorbs the left multiplication by elements of g, i.e., [I , g] ⊂ I . On the
other hand, if g contains an Abelian ideal, it is referred to as semisimple. A semisimple Lie algebra can
be decomposed into a direct sum of simple Lie algebras. Importantly, g is semisimple if and only if the
Killing form is nondegenerate, as per Cartan’s criterion.

Let g be a semisimple Lie algebra. Within g, a Cartan subalgebra h is chosen, defined as a maximal
nilpotent subalgebra. Notably, this subalgebra is maximal Abelian and unique up to conjugation. The
dimension ℓ of h is referred to as the rank of g. A root of g with respect to h is a linear form on h, α ∈ h∗

such that there exists a non-zero element X in g satisfying (adH)X = α(H)X for all H ∈ h.
Then, it is possible to find, as demonstrated by Cartan and Chevalley, a basis Hi, Eα for g with the

following distinctive properties: the set {Hj , j = 1, . . . , ℓ} forms a basis for the Cartan subalgebra h.
Each generator Eα is associated with a nonzero root α. Furthermore, these generators can be organized
in such a way that the commutation relations, given by Equation (A3), may be expressed in a specific
form. The precise details of this form would depend on the specific properties of the chosen basis:

[Hi, Hj] = 0 , i, j = 1, . . . , ℓ , (A4)

[Hi, Eα] = α(Hi)Eα , i = 1, . . . , ℓ , (A5)

[Eα, E−α] = Hα ≡
ℓ

∑
i=1

αi Hi ∈ h , (A6)

[Eα, Eβ] = Nαβ Eα+β , (A7)

where Nαβ = 0 if α + β is not a root.
The set of roots of g is denoted by ∆. Notably, the nonzero roots exhibit a specific pairing:

α ∈ ∆ ⇔ −α ∈ ∆, and no other nonzero multiple of a root is itself a root. As a consequence, the set of
nonzero roots can be divided into two subsets: ∆+, comprising positive roots, and its corresponding
counterpart of negative roots, denoted ∆− = −α, , α ∈ ∆+. The set ∆+ is encapsulated within a simplex
(a convex pyramid) in h∗, where the edges are defined by the so-called simple positive roots. These are
positive roots that cannot be expressed as the sum of two other positive roots. This characterization
also applies to ∆−.

The examination of root systems provides the foundation for the Cartan classification of simple Lie
algebras. This classification encompasses four infinite series, namely Aℓ, Bℓ, Cℓ, Dℓ, and five exceptional
algebras: G2, F4, E6, E7, E8.

Appendix B.3. Dynkin Diagrams: General

The roots of a complex Lie algebra collectively form a lattice of rank n within the dual space of a
Cartan subalgebra h ⊂ g, where n signifies the Lie algebra rank of g. Consequently, the root lattice
can be viewed as a lattice in Rn. Each vertex, or node, in the Dynkin diagram corresponds to a Lie
algebra simple root, which is a generator of the root lattice. For any pair of nodes α and β in the
Dynkin diagram, an edge is drawn if the simple roots associated with them are not perpendicular.
The nature of the edge varies: a single undirected edge is drawn if the angle between them is 2π/3, a
directed double edge if the angle is 3π/4, and a directed triple edge is drawn if the angle is 5π/6. It is
noteworthy that there are no other possible angles between Lie algebra simple roots. In the case of
directed edges, double and triple edges point toward the shorter vector (indicated by a black circle).

Dynkin diagrams are shown in Figures A1, A2, A3, A4.
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Appendix B.4. From Top to Bottom, Dynkin Diagrams for An, Bn, Cn, Dn

An

Bn

Cn

Dn

Figure A1. Dynkin diagrams An, Bn, Cn, Dn

Appendix B.5. Dynkin Diagrams G2, F4, E6, E7, E8

G2

F4

E6

E7

E8

Figure A2. From top to bottom: Dynkin diagrams for G2, F4, E6, E7, E8

Appendix B.6. Examples: Roots A1 × A1, A2, B2

Figure A3. rank-2 root systems A1 × A1, A2, B2 (from Licence CC BY-SA 3.0 DEED).

Appendix B.7. Examples: Roots C2, D2, G2

Figure A4. rank-2 root systems C2, D2, G2 (from Licence CC BY-SA 3.0 DEED).
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