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Abstract: Roadway accidents significantly contribute to intermittent congestion and increased CO2 emissions 
on  freeways. This  research  introduces a  statistical  approach designed  to predict  the  rise  in CO2  emissions 
resulting from traffic disturbances or jams triggered by such incidents. It also assesses the influence of varying 
levels of accident management effectiveness  in different situations. To  construct  these scenarios,  the  study 
employs VISSIM, a  traffic modeling  software,  incorporating diverse  factors  such as  traffic volume, vehicle 
types, incident durations, and freeway lane counts. It then produces traffic flow characteristics in the form of 
vehicle paths. The emission estimates are derived by correlating these simulated vehicle paths with emission 
rates from the MOVES model. The study then applies a regression analysis to examine the connection between 
the increase in emissions and various influencing factors. The findings indicate that this approach efficiently 
reflects the impact of variables like accident duration, vehicle mix, and traffic volume on CO2 emissions across 
different lane configurations. The accuracy of these predictions is also confirmed. The outcomes suggest the 
modelʹs potential usage in guiding efforts to lower emissions and determining the optimal duration of incident 
management, particularly in terms of lane closure, to mitigate emission impacts. This paper also discusses the 
limitations of the model and the future improvement direction. 

Keywords: Freeways; CO2 Emission; Accident Management Measures   
 

1. Introduction 

With the global energy‐saving and carbon reduction in full swing, industries with high energy 
consumption  and  emissions,  including  transportation  sector,  are  under  significant  pressure  to 
translate into green practices, especially in the realm of road transportation. In 2021, greenhouse gas 
(GHG)  emissions  from  road  transportation  in  the United  States  accounts  for  82.7%  of  the  total 
emissions within the transportation sector [1]. In China, this proportion is similarly high, reaching 
79.2% [2]. GHG emissions caused by traffic congestion, especially the freeway congestion, are huge 
owing to the prolonged idling and frequent acceleration and deceleration [3]. Previous studies have 
indicated  that  in 2020, additional  fuel consumption due  to  traffic congestion  in  the United States 
reached 1.7 billion gallons, resulting in an additional 18 million tons of greenhouse gas emissions [4]. 
Among these, traffic accidents on freeways are one of the primary causes of temporary congestion. 
Existing research shows that episodic traffic congestion caused by freeway incidents, such as traffic 
accidents and vehicle breakdowns, accounts for 50% to 75% of the overall traffic congestion [5]. 

There are already several strategies to reduce the external impact of road accidents, including 
accident warning, traffic incident management [6,7], intelligent speed adaptation [6,8], etc. One of the 
key objectives for these strategies is to reduce the external impact of accidents to the traffic operations 
as much  as  possible  through  rapid  accident  emergency  response.  In  other words,  the  accident 
management duration should be minimized through a series of efficient steps: accident identification, 
strategy  generation,  accident  report  recording,  field  cleanup,  accident  lane  closure/re‐open,  etc. 
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Considering  the  significant  traffic  congestion  and  vehicle  emissions  impact  from  accidents,  an 
efficient method  is necessary to quantify such impact under various operation scenarios, in a way 
that offers guidance on the accident management goal for CO2 emissions reduction.   

There are now several methods to quantify the vehicle CO2 emission impact of road accidents, 
such as survival analysis methods [9], MEET model [10], impact factor method [11], standard driving 
schedule matching  [12], etc. These do not quantify  the  external  impacts of  incident management 
scenarios on CO2 emissions in a very comprehensive way. Some studies have simply established the 
relationship between emissions and the average speed of the scenario [6,10], or simply assessed the 
impact of accidents in terms of traffic volume [11]. These models do not build the connection between 
emissions and accident management index (e.g., accident management duration, etc.) and are thus 
difficult to use for measure evaluation or comparison analysis.   

Modeling  requires  consideration  of model  complexity,  accuracy  and  robustness.  For  such  a 
model, selecting the right predictors is critical. For accident emission reduction, the most common 
measure is to improve the efficiency of accident treatment in order to reduce the treatment time and 
the congestion duration. Although traffic accidents can lead to increased emissions due to congestion, 
it has been shown  that efficient and rapid responses  to  the  incidents  lead  to  the reduction of  this 
externality [9]. Therefore, accident duration is added to the model variables to enable the evaluation 
of  accident management measures.  In  addition,  there  are  also  very  significant  effects  of  vehicle 
composition [10,12] and traffic demand [6] on traffic CO2 emissions. This paper proposes a model 
that balances data accessibility, model complexity, accuracy, and  robustness  to predict additional 
CO2  emissions  caused  by  accidents  under  various  operation  and  vehicle  composition  scenarios. 
Moreover,  the  focus  of  the model  is  to  quantify  reductions  of  emissions  resulting  from  various 
accident management  durations.  As  for  now,  the  study  focused  only  on  single‐lane‐occupancy 
accidents. 

With  the  advancement  of  microscopic  traffic  simulation  software  technology  (VISSIM, 
AnyLogic, etc), some studies have proposed to use them to analyze the operation impact of traffic 
accidents by simulating traffic flow under multiple scenarios [12–14]. And traffic simulation software 
also enables output of vehicle trajectories that captures detailed interruption of traffic operations from 
different types and accidents in wide impact range. 

Suitable emission model should be chosen to perform emission calculations and reflect the traffic 
flow characteristics from the simulation. There are already many emission models available, such as 
MOVES [15], CMEM [16], PERE [17]. MOVES is now one of the most widely used emission models. 
In MOVES, emission predictions can be made by using the default driving cycles in the model [12]. 
Alternatively, emission factors for predicting are available by different driving operating mode bins 
[18]. As for the simulation data, vehicle second‐by‐second speed and acceleration data are readily 
available, which can be used to capture the vehicleʹs operating modes. Therefore, in this study, the 
aforementioned  attributes  of  MOVES  can  be  utilized  to  acquire  the  second‐by‐second  vehicle 
emission data  for  each  simulation  scenario, using  the  second‐by‐second vehicle operation  results 
provided by VISSIM. 

This study used nonlinear regression model for fitting based on the actual relationship between 
emissions and these predictors. For nonlinear regression, generalized additive models (GAM) and 
polynomial  regression  are  commonly  (others  are  either  similar  or  not  applicable).  GAM  is  an 
automatic method of fitting a spline regression and does not require the specification of knots for the 
spline. it minimizes the residuals by assigning different spline functions to each variable. And the 
spline function fits the data points by computing a polynomial regression between each knot [19]. 
GAM tends to have a higher precision of fit than simple linear regression or polynomial regression, 
and  is a keen choice of method  for various research. However,  too much precision often  leads  to 
overfitting. And more importantly, GAM is a nonparametric model. This means that the resulting 
model cannot decipher the physical meaning of the parameters like a parametric model which is this 
study looking for. So polynomial regression and variable transformation are chosen for model fitting. 

Based on the above requirements, the study will use VISSIM and MOVES to simulate the effect 
of the accident duration (including accident occurrence, response, management and resumption) on 
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freeways CO2 emissions under various vehicle composition, traffic demand, and number of lanes, 
including their interactions and cumulative impact on CO2 emissions. 

2. Research Design 

This paper will consist of the following sections. Section 3 describes the scenario setting up and 
simulation  in VISSIM  to obtain  the second‐by‐second vehicle  trajectory data. And  then, Section 4 
describes the process of obtaining the emission factor library in MOVES. Section 5 uses the obtained 
second‐by‐second  trajectory  data  and  the  emission  factor  database  to  analyze  the  relationship 
between  additional CO2  emissions  and predictors  (traffic  flow  rate,  car‐truck  ratio,  and  accident 
duration),  to mine  the data  features  and  build  a  statistical model. Finally,  the model  results  are 
analyzed and summarized in concluding section. 

 
Figure 1. Research design. 

3. Microscopic Traffic Simulation Modeling 

Leveraging the capabilities of VISSIM, a simulation scenario is constructed featuring a freeway 
long enough to record congestion avoiding its overflowing, which is spanning approximately 6 km 
with lane width of 3.75 meters. On this basis, the various data detectors required are set up, including 
vehicle  travel  time  measurement,  vehicle  network  performance  recording,  vehicle  input  data 
collection, etc. 

Certain  conditions have been  simplified or omitted  in  this  study. One  such  condition  is  the 
omission of slope effects. The  reason  is  that  in  real situations,  the gradient of accident congested 
sections, especially longer congested sections, is dynamic and constantly changing, which is difficult 
to  obtain  and  consider  in  simulation  and modeling.  Future, more  complex models  can  consider 
incorporating this factor. Besides, the vehicle types are simplified into two categories, cars and trucks. 
The parameters defining these vehicle types, such as length and width, are set to default values in 
VISSIM. Specifically, cars are defined with a default length ranging from 3.75 to 4.76 meters and a 
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default width ranging from 1.85 to 2.07 meters, while trucks are defined with a default length of 10.22 
meters and a default width of 2.50 meters. 

3.1. Driving Behavior 

Driving behavior is set to ʺfreewayʺ in VISSIM including default vehicle following model type 
of freeways, default lane change rules of freeways, etc.   

Vehicle‐following refers to the state in which the following vehicle trails the front vehicle in a 
single lane, including the special case of free flow with no interactions between the following and the 
front vehicle [20]. Within VISSIM, driverʹs driving states are classified into four types based on the 
Wiedemann model: free driving, approaching, following and braking. The vehicle‐following model 
of VISSIM is a time‐based, discrete and stochastic microscopic model with driver‐vehicle‐unit as the 
basic entity, which contains two main types of vehicle‐following models, namely Wiedemann 74 and 
Wiedemann 99. For this study, the Wiedemann 99 model is applied, as it aligns with driving behavior 
on suburban or freeway roads [21]. 

In VISSIM,  there are a  total of  two  types of  lane  change behaviors  included: necessary  lane 
changing (to reach the next connector of a route) and free lane changing (if there is enough space in 
adjacent lane and a higher speed is required). Addressing these aspects, VISSIM integrates two lane 
change models: “slow lane rule” and “free lane selection”. The “slow lane rule” define the minimum 
distance to a leading vehicle, allowing overtaking vehicles in other lanes transition to the slower lane. 
However,  this  rule  is not  applicable  to  freeways. Consequently,  the  study  adopts  the  “free  lane 
selection” rule, in which the parameters are default. 

The calibration of vehicle speed and acceleration distributions is essential in VISSIM. Cars and 
trucks exhibit mean velocity distributions of “100km/h” (ranging from 88 to 130km/h) and “80km/h” 
(ranging from 75 to 110km/h), respectively. Regarding acceleration and deceleration behavior, it is 
need to set the maximum/desired acceleration/deceleration in VISSIM. The maximum acceleration 
ensures a certain speed on slopes, particularly in situations requiring stronger acceleration. And the 
maximum deceleration  ensures  that no  even  the desired deceleration  can  fall below  it. Only  the 
setting of desired acceleration  is considered  in  this study. The others are set  to default  functions, 
whose settings have little effect on the study. 

The speed‐acceleration functions (desired acceleration functions) of cars and trucks in this study 
are calibrated using the research findings of Liu et al. [22], which is based on vehicle data collected 
from the 2011 Atlanta Household and Activity Travel Survey [23]. The reference distribution figure 
(Figure 2) by Liu et al. illustrates the speed‐acceleration data points for cars and trucks, along with 
the 97.5th line (representing aggressive acceleration) [22]. In VISSIM, however, vehicle accelerations 
are randomly distributed, represented by the two boundary green curves defining  the bandwidth 
and  the  red  curve  defining  the median  (Figure  2). Although  the  effect  of  slope  is  additionally 
considered  in Liu  et  al.’s work,  this  study  tentatively  omits  slope  considerations.  Thus,  the  red 
median line is set by referencing the 97.5th line under a 0% slope condition. As there is no explicit 
reference for the green boundary line, it is empirically adjusted to encompass a majority of the data 
points in the reference map. This setup indicates that a significant portion of vehicles will be driven 
at aggressive accelerations during  the simulation,  reflecting  the  future applicable scenario  for  the 
model in this study. 
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Figure 2. Speed‐Acceleration distribution of the car and the truck. 

3.2. Route Settings 

To closely replicate real‐world conditions, the study establishes upstream/downstream sections 
and on/off ramps positioned at both ends of the freeway mainline (Figure 3). The ratio of mainline 
flow rate to on/off ramp flow rate is empirically set at 16:1. Because this study focuses on the impact 
of accidents on  freeway mainline  traffic and  the  ramp  flow  is not main concern  in  this  study,  its 
discussion is minimized. To mitigate congestion at the off‐ramp during high‐flow‐rate scenarios, the 
ramp flow is deliberately maintained at a relatively low proportion. This precautionary measure is 
to avoid congestion spillover into the accident area, which could potentially interfere with congestion 
detection and compromise the accuracy of the final model. 

When driving along a given route, vehicle behaviors (such as lane change for the off‐ramp) need 
to be taken into account. This study mainly considers “the lane change for off‐ramp” behavior setting, 
which mainly involves determining the distance between the point of lane changing location and the 
point  of  off‐ramp  entrance  location.  Notably,  on  freeways,  drivers  often  execute  lane  changes 
(typically transitioning to the right lane) well before exiting the mainline road. To avert congestion 
near the off‐ramp, where vehicles in the left lane may queue up and wait to change lanes for exiting 
the mainline roadway, setting an appropriate distance is crucial. Empirically, this distance between 
lane changing location and off‐ramp entrance location is set at 800 meters.   

Furthermore, the yielding rules in on‐ and off‐ramp conflict zones are configured to mirror real‐
world scenarios, with a prioritization of yielding to the mainline traffic. Specifically, when a ramp 
vehicle seeks to enter the mainline, and a conflict arises with a moving vehicle in the rightmost lane 
of the mainline, the ramp vehicles come to a stop and waits until an adequate gap is available for lane 
changing. This approach is designed to simulate the conflict in the most realistic manner possible, 
and the interaction between the on‐ramp vehicles and the original mainline vehicles. 
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Figure 3. VISSIM simulation scenario with screenshot of vehicle performance in the area around the 
parking lot during the accident (four lanes). 

3.3. Accident Setting 

Certain assumptions are made during the simulation process. Notably, road accidents need to 
be assumed, as VISSIM lacks a module for directly simulating such events. Consequently, a parking 
lot  is established within the driveway to simulate road accidents. Here, driving a vehicle  into  the 
parking  lot signifies  the start of an accident, while departing  from  the parking  lot  represents  the 
conclusion of the accident. When the following vehicle detects a stationary vehicle ahead, it exhibits 
driving behaviors of slowing down, stopping or changing lanes. This response resembles the reaction 
of the following vehicle during an actual accident, thus justifying the utilization of parking simulation 
for accident. 

The accident duration is controlled by configuring the opening hours of parking lot and parking 
time  length  distribution.  For  comprehensive  data  collection,  the  parking  lot  (accident  area)  is 
positioned on the road lane near the end of the detection area (Figure 3). This way, the parking lot 
can include as much congestion caused by the accident within the detection interval as possible (any 
incompletely record of congestion sections need to discard). Furthermore, to accommodate accident 
management activities, the length of parking lot is set to approximately 20‐50 meters. Additionally, 
the lateral placement of the parking lot (accident area) varies in different lane scenarios. In this study, 
the parking lot is positioned in the second lane from left to right in the four‐lane scenarios. Similarly, 
in the three‐lane scenarios it is positioned in the middle lane, and in the two‐lane scenarios, it is placed 
in the right lane. 

3.4. Simulation Scenarios 

A diverse array of scenarios  is designed, encompassing different  traffic  flow  (spanning  from 
congestion  to  free  flow),  the accident duration, car‐truck ratio, and number of  lanes  to effectively 
represent  a  comprehensive  spectrum of  real‐world  cases  (Table  1). Each  case  is  subjected  to  3‐5 
random seeds during simulation to mitigate the impact of randomness. The simulation duration is 
set at 7200 seconds, with a warm‐up time of 1800 seconds dedicated to traffic flow stabilization. The 
accident  simulation  and  data  recording  start  at  1900  seconds.  It  should  be  emphasized  that  in 
scenarios with varying numbers of lanes (two‐, three‐, and four ‐lane), only the number of lanes and 
the flow rate setting range need to modify. The accident location, the length of the detection area, and 
the length of the freeway remain consistent. 
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Table 1. Simulation scenarios. 

Scenarios 
Flow Rate 
(veh/h) 

Accident 
duration (min) 

Car‐truck 
ratio 

Number of random 
seeds per case 

Number of 
simulation (times) 

Two lanes 
800‐2000 

(interval 400) 
0‐50 (interval 5) 

4:6, 5:5, 
…, 9:1 

5  1320 

Three 
lanes 

1600‐4000 
(interval 400) 

0‐50 (interval 5) 
4:6, 5:5, 
…, 9:1 

5  2310 

Four lanes  2400‐6400 
(interval 400) 

0‐50 (interval 5)  4:6, 5:5, 
…, 9:1 

3  2178 

The total number of simulation (times)  5808 

At last, after a total of 5808 times of simulations, the vehicle second‐by‐second trajectory data is 
obtained, which can be used for modeling later. 

 
Figure 4. Scatterplot of speed in the lane where the accident happened (car: truck =9:1) (four Lanes). 

Based on the queuing situation of the accident  lane  in various scenarios  (Figure 4), accidents 
primarily impact traffic flow through three distinct phases: the propagation of congestion after the 
accident onset, the dissipation of congestion after the accident conclusion, and the subsequent stop‐
and‐go during congestion dissipation. The additional emissions arising from these phases collectively 
constitute  the  impact of  the  accident  on  traffic  flow  emissions.  In  the high‐traffic  scenario,  clear 
patterns of queue gathering and dissipation waves are discernible  (Figure 4). Conversely,  in  low‐
traffic scenario, such patterns are absent due to the ease with which vehicles can find lane‐changing 
opportunities in adjacent lanes, allowing them to escape the queue, leading to varying queue lengths. 
However, in high‐flow‐rate scenarios, vehicles tend to persist in queuing until the accident is resolved, 
given the challenges associated with the difficulty of lane‐changing. Consequently, a gathering wave 
occurs during the accident, followed by a dissipating wave after accident concludes. This leads to the 
development  of  a  gathering  wave  during  the  accident  and  a  dissipating  wave  following  the 
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conclusion  of  accident  processing.  Moreover,  a  noticeable  stop‐and‐go  phenomenon  manifests 
during queue dissipation  in high‐traffic scenarios. During  the queue dissipation phase,  the  traffic 
flow approaches the maximum flow rate that the road can accommodate. Therefore, traffic system 
becomes highly sensitive to various factors (e.g., vehicles changing lanes to exit the freeway), thus 
accentuating the stop‐and‐go phenomenon. 

4. Emissions Modeling with Moves Emission Factor 

The calculation and calibration of CO2 emissions in traffic simulation are achieved through the 
refinement of the ʺsplit‐boxʺ emission factor library of MOVES into the ̋ speed‐accelerationʺ emission 
factor library. The speed‐acceleration library of vehicles is categorized into distinct ranges: speed∈[0, 
140] km/h and acceleration∈[‐2, 10] m/s2. The VSP value corresponding to each speed‐acceleration 
bin  is calculated by  integrating  the vehicle basic  information. Subsequently,  the study establishes 
binning  intervals  for  each  speed‐acceleration  bin  according  to  the  binning  rules  of  the MOVES 
emission factor  library. CO2 emission factors are then assigned to each speed‐acceleration  interval 
with reference to the CO2 emission factor levels in different bins of the MOVES emission factor library. 
The binning rules from the MOVES emission factor library are provided in the table below: 

Table 2. Binning rules for MOVES emission factor library (18). 

Operating 
Mode ID 

Operating Mode 
Description 

Vehicle Specific 
Power (VSP) 

Vehicle 
Speed 

Vehicle Acceleration 

(KW/tonne)  (vt, mph)  (a, mph/sec) 

0  Deceleration/Braking     
at ≤ ‐2.0 OR (at < ‐1.0 AND 
at‐1 <‐1.0 AND at‐2 <‐1.0) 

1  Idle    ‐1.0 ≤ vt < 
1.0 

Any 

11  Coast  VSPt< 0  0 ≤ vt < 25  Any 
12  Cruise/Acceleration  0 ≤ VSPt < 3  0 ≤ vt < 25  Any 
13  Cruise/Acceleration  3 ≤ VSPt< 6  0 ≤ vt < 25  Any 
14  Cruise/Acceleration  6 ≤ VSPt < 9  0 ≤ vt < 25  Any 
15  Cruise/Acceleration  9 ≤ VSPt < 12  0 ≤ vt < 25  Any 
16  Cruise/Acceleration  12 ≤ VSPt  0 ≤ vt < 25  Any 
21  Coast  VSPt < 0  25 ≤ vt < 50  Any 
22  Cruise/Acceleration  0 ≤ VSPt < 3  25 ≤ vt < 50  Any 
23  Cruise/Acceleration  3 ≤ VSPt< 6  25 ≤ vt < 50  Any 
24  Cruise/Acceleration  6 ≤ VSPt < 9  25 ≤ vt < 50  Any 
25  Cruise/Acceleration  9 ≤ VSPt < 12  25 ≤ vt < 50  Any 
27  Cruise/Acceleration  12 ≤ VSPt< 18  25 ≤ vt < 50  Any 
28  Cruise/Acceleration  18 ≤ VSPt < 24  25 ≤ vt < 50  Any 
29  Cruise/Acceleration  24 ≤ VSPt < 30  25 ≤ vt < 50  Any 
30  Cruise/Acceleration  30 ≤ VSPt  25 ≤ vt < 50  Any 
33  Cruise/Acceleration  VSPt < 6  50 ≤ vt  Any 
35  Cruise/Acceleration  6 ≤ VSPt < 12  50 ≤ vt  Any 
37  Cruise/Acceleration  12 ≤ VSPt <18  50 ≤ vt  Any 
38  Cruise/Acceleration  18 ≤ VSPt < 24  50 ≤ vt  Any 
39  Cruise/Acceleration  24 ≤ VSPt < 30  50 ≤ vt  Any 
40  Cruise/Acceleration  30 ≤ VSPt  50 ≤ vt  Any 

This study concentrates on  the development of CO2 emission  factor  library by analyzing  the 
vehicleʹs  operational  states  across  various  speed‐acceleration modes  and  aligning  them with  the 
corresponding MOVES sub‐compartment levels. This alignment enables the establishment of direct 
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connections between the vehicleʹs ʺspeed‐accelerationʺ states and their corresponding CO2 emission 
levels (Figure 5). 

 
Figure 5. Carbon emission factor pool construction process. 

In the above figure, the horizontal axis represents speed (from 0 km/h to 140 km/h), while the 
vertical axis represents acceleration (from 0 m/s2 to 10 m/s2). The legend on the right‐hand side depicts 
various colors corresponding to emission factors (measured in g/s). This emission factor library serves 
as a valuable tool to compute the emission data of simulated vehicle trajectories. 

5. Statistical Modeling and Results   

In  the  section  of  traffic  simulation,  the  second‐by‐second  driving  states  (speed‐acceleration 
information) for all vehicles in the fleet is obtained by the trajectory recording module, thus the speed‐
acceleration distribution of the fleet can be obtained (Figure 6). In the scenario of high flow rate and 
long accident duration, the vehicle travel states mainly cluster  in the  low‐speed region, indicating 
more  severe  congestion  in  such  scenarios. A  substantial number of  vehicles  experience  frequent 
acceleration  and deceleration within  congestion or  stop‐and‐go  conditions. As  the  flow  rate  and 
accident duration decrease, the proportion of vehicles in the low‐speed region gradually diminishes, 
while  the proportion of vehicles  in high‐speed and  low‐acceleration region gradually  increases.  It 
indicates  that  in  freeway  scenarios with  low  flow  rate or brief accident duration,  the majority of 
vehicles  experience  minimal  accident‐related  impacts  and  can  maintain  high  cruising  speeds. 
Moreover,  the change  in vehicle speed‐acceleration distribution with varying accident duration  is 
more pronounced in the high‐flow‐rate scenarios, whereas this change is less notable in low‐flow‐
rate scenarios. This observation offers compelling evidence of the interaction between the effects of 
these two variables on emissions. 

The  study  integrates  the  speed‐acceleration  distribution  data  with  the  developed  speed‐
acceleration emission  factor  library  for estimation of vehicle CO2 emissions during  the simulation 
process (Figure 7).   

The  study  successfully  derives  the  comprehensive  CO2  emissions  in  distinct  scenarios  by 
aggregating the CO2 emissions from vehicles affected by traffic accidents (Figure 8). Each scenario 
reveals two prominent emission peaks corresponding to the two vehicle types (cars and trucks), with 
trucks contributing substantially to emissions despite their lower proportion (ratio=0.1) in the overall 
fleet. Moreover,  in scenarios of high  traffic volume and  long accident duration, emissions  in  low‐
speed and low‐ acceleration, as well as low‐speed and high‐acceleration states, constitute a significant 
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proportion. This  is because a  substantial number of vehicles  is  in  low‐speed states. Additionally, 
similar to the (data volume) speed‐acceleration distribution, the emission peaks predominantly occur 
in the high‐speed and low‐acceleration region as flow rate and accident duration decrease. 

The simulation data requires scrutiny and preprocess before modeling. The set  length of  the 
detection area in the simulation is 6 km, and the simulation time is limited to 7200s. As a result, if the 
congestion queue length exceeds 6 km, or if the congestion persists beyond the end of the simulation, 
some vehicle congestion is not recorded. To ensure the accuracy of modeling, such data segments 
need to be removed  from the sample. Additionally, despite the requirement for parking (accident 
occurring), the situation where there is no parking still occurs. This arises from the parking duration 
being defined by the time length distribution. In other words, despite controlling the randomness of 
the  parking  duration  with  minimal  variance,  instances  may  arise  where  the  required  parking 
duration is longer than the opening time of parking lot, resulting in vehicles not parking (the accident 
does not occur). Consequently, such data segments need to be deleted. 

 
Figure 6. Speed‐Acceleration distribution (simulated data volume) (car: truck =9:1) (four lanes). 
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Figure 7. The calculation process of fleet carbon emissions. 

 
Figure 8. Speed and acceleration distribution of CO2 emission (car: truck =9:1) (four lanes). 

The response variable of the model is the additional CO2 emissions of the scenario, calculated as 
the difference between the  total CO2 emissions of the scenario with an accident and the total CO2 
emissions of the scenario without an accident (with an accident duration of 0 min) under identical 
conditions.  This  approach  highlights  the  impact  of  CO2  emissions  resulting  from  accidents. 
Subsequently, considering the accessibility of the predictors and potential influence on emissions, the 
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predictors are finally selected including the proportion of trucks (representing the car: truck ratio), 
hourly traffic volume (measured in veh/h) and the accident duration (measured in min). 

The modeling process adheres to realistic constraints and incorporates relevant data features. 
Such as the nonlinear relationship that may exist between the response variable and each of the three 
predictors (Figure 9). After exhaustive comparisons of various function types, it is observed that the 
relationship  between  additional  emissions  and  traffic  flow  rate  exhibit  a  clear  trend  towards  an 
exponential function. However, the impact of accident duration or proportion of trucks on additional 
emissions demonstrates trend towards power function. Furthermore, the interaction and correlation 
between each predictor are obvious (Figure 10). For instance, in the particular scenario (Flow Rate / 
Proportion of Trucks / Accident Duration= 4800 / 0.5 / 30), when accident duration or proportion of 
trucks decrease, it is evident that the additional emissions for the same flow rate are reduced. While 
the  overall  trend  of  the  relationship  between  additional  emissions  and  traffic  flow  rate  remains 
consistent. 

Additionally, the constraints considered by the model are as follows: 
 When the flow rate is 0, the additional CO2 emission must be 0 
 When the accident duration is 0, the additional CO2 emission must be 0 
 When the truck proportion is 0, the additional CO2 emission must be greater than 0 

 
Figure 9. The nonlinear data features of a particular scenario as an example (four lanes). 
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Figure 10. The interaction between predictors of a particular scenario as an example (four lanes). 

Based on the data features and constraints, as well as the attempts of multiple functional forms, 
the  final  selected model  form  is  as  follows.  The  variable  ʺFlow Rateʺ  (veh/h)  is  transformed  as 
ʺexp(b*flow)  ʺ,  and  the  variables  ʺaccident  durationʺ  (min)  and  ʺthe  proportion  of  trucksʺ  are 
transformed as ʺAccident‐Duration^bʺ and “Truck‐Proportion^bʺ(“b” is parameter required to fit). 
Estimates of each parameter are obtained using the nonlinear regression module of R (Table 3). The 
model formula is as Equation 1‐3: ΔY ൌ 4.15 ∗ 10ିହ ∗ ൫eଶ.ଷ଼ଡ଼భ/ଵ଴଴଴ െ 1൯ ∗ Xଶଵ.ଷଶ ∗ Xଷଶ.ଵ଺ ൅ 4.29 ∗ 10ିହ ∗ ൫eଶ.ଷଷଡ଼భ/ଵ଴଴଴ െ 1൯ ∗ Xଷଵ.ସସ  (1)ΔY ൌ 1.63 ∗ 10ି଺ ∗ ൫eଶ.ଷ଺ଡ଼భ/ଵ଴଴଴ െ 1൯ ∗ Xଶଵ.଼ସ ∗ Xଷଶ.ଶଵ ൅ 5.28 ∗ 10ିହ ∗ ൫eଵ.଼ଶଡ଼భ/ଵ଴଴଴ െ 1൯ ∗ Xଷ଴.଼ଵ (2)ΔY ൌ 9.65 ∗ 10ି଻ ∗ ൫eଵ.ଽହଡ଼భ/ଵ଴଴଴ െ 1൯ ∗ Xଶଶ.଴ହ ∗ Xଷଶ.଴ଽ ൅ 9.71 ∗ 10ି଻ ∗ ൫eଵ.ଽଶଡ଼భ/ଵ଴଴଴ െ 1൯ ∗ Xଷଵ.଴ଶ (3)

In  Equation  1‐3  and  Table  3,  ΔY is  additional CO2  emissions  due  to  accidental  congestion 
(ton),Xଵ  is traffic flow rate (veh/h),  Xଶ  is the proportion of trucks,  Xଷ  is accident duration (min) and 
a, b଴, bଵ, c, d଴, dଵ  are the model parameters to be fitted.   

Table 3. The results of each model. 𝚫𝐘 ൌ 𝐚 ∗ ൫𝐞𝐛𝟎∗𝐗𝟏/𝟏𝟎𝟎𝟎 െ 𝟏൯ ∗ 𝐗𝟐𝐛𝟏 ∗ 𝐗𝟑𝐛𝟐 ൅ 𝐜 ∗ ൫𝐞𝐝𝟎∗𝐗𝟏/𝟏𝟎𝟎𝟎 െ 𝟏൯ ∗ 𝐗𝟑𝐝𝟏 
  Two‐lane  Three‐lane  Four‐lane 
  Coeff*  Std‐E*  P*  Coeff*  Std‐E*  P*  Coeff*  Std‐E*  P* 
a  4.150e‐5  8.1e‐6  4e‐7  1.628e‐6  2.7e‐7  2e‐9  9.645e‐7  1.7e‐7  2e‐8 
b0  2.378  4.7e‐2  <2e‐16  2.364  2.9e‐2  <2e‐16  1.948  2.2e‐2  <2e‐16 
b1  1.324  4.2e‐2  <2e‐16  1.837  3.7e‐2  <2e‐16  2.049  3.6e‐2  <2e‐16 
b2  2.155  3.6e‐2  <2e‐16  2.211  2.4e‐2  <2e‐16  2.085  2.5e‐2  <2e‐16 
c  4.290e‐5  2.9e‐5  0.133  5.275e‐5  3.6e‐5  0.147  9.711e‐7  1.3e‐6  0.446 
d0  2.327  1.8e‐1  <2e‐16  1.815  1.4e‐1  <2e‐16  1.921  2.0e‐1  <2e‐16 
d1  1.440  1.2e‐1  <2e‐16  8.027e‐1  1e‐1  3e‐15  1.020  1.6e‐1  3e‐10 

ad‐R2*  0.9750  0.9694  0.9767 
RMSE  0.16 (ton)  0.255 (ton)  0.432 (ton) 
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Notes*: Coeff: Coefficient    Std‐E: Standard Error    P: p‐Value of t test    ad‐R2: adjusted R2 

In the process of parameter fitting, we mainly utilized the nonlinear least squares function in R 
and adopted the Gauss‐Newton algorithm for solving. The use of this function requires providing 
initial  values  for  each  parameter, which  are  obtained  empirically  through  repeated  attempts  to 
acquire well‐behaved values. 

The  goodness‐of‐fit  indicators  for  the  model  mainly  include  adjusted  R2,  RMSE  and  a 
comparison between predicted and actual (simulated) values. The models for each scenario exhibit 
compelling goodness of fit with notably high adjusted R2 (ranging from 0.960 to 0.977) and low RMSE 
values  (ranging  from  0.160  to  0.432).  Meanwhile,  the  scattered  points  are  evenly  and  closely 
distributed around the y = x line. These observations exhibit the strong alignment of the model result 
with the simulation data (Figure 11). 

For validating the model, test data is obtained by resetting the VISSIM scenarios and conducting 
simulations.  Specifically,  the  two‐,  three‐  and  four‐lane  scenarios  are  simulated  respectively, 
encompassing various conditions of high/low  traffic  flow rate, high/low proportion of  trucks and 
high/low accident duration. Therefore, for each model, there are 240 different simulation results to 
test (Table 4). To ensure the integrity and credibility of data validation, this study intentionally select 
some  cases  that  are  not  included  in  the  previous  sample  data  as much  as  possible,  and  even 
incorporated some extreme cases (such as the proportion of trucks is 0) to test the robustness of the 
model. 

 
Figure 11. Scatterplot of model‐predicted values vs simulated emission values for each scenario. 
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Table 4. Simulation scenarios of model validating. 

Scenarios 
Flow Rate 
(veh/h) 

Accident 
duration (min) 

Car‐truck 
ratio 

Number of random 
seeds per case 

Simulation 
frequency (times) 

Two lanes 
600‐1800 

(interval 400) 
0‐40 (interval 10) 

4:6, 6:4, 
…, 10:0 

3  240 

Three 
lanes 

2000‐3500 
(interval 500) 

0‐40 (interval 10) 
4:6, 6:4, 
…, 10:0 

3  240 

Four lanes  2000‐5000 
(interval 1000) 

0‐50 (interval 10)  4:6, 6:4, 
…, 10:0 

3  240 

The total of simulation frequency (times)  720 

Regarding the model validation metrics, RMSE and comparison between predicted and actual 
(simulated) values are considered. As shown in the figure, the model validation results perform very 
well (Figure 12), which prove the robustness and accuracy of these models. 

 
Figure 12. Scatterplot of model‐predicted values vs simulated emission values for each scenario (test 
data). 

From this statistical model, it is evident that the impact of accident duration, truck proportion 
and traffic flow rate on the additional emissions caused by accidents is nonlinear (Equation 1‐3). This 
nonlinearity indicates that the marginal effect of these three variables on emissions increases with the 
increase of themselves. Moreover, there is also a clear interaction between variables in the statistical 
model. The effects of each variable on emissions vary in response to changes in the other two, with a 
mutually reinforcing and positive relationship. For instance, at high traffic demand or long accident 
duration, optimizing accident management efficiency (reducing management time) results in more 
substantial emission  reductions compared  to scenarios with  low  traffic demand or short accident 
duration. 
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A comparison of the three models reveals that the two‐lane model exhibits superior fit compared 
to the other two models (Figure 11, Figure 12). This superiority can be attributed to the fact that the 
two‐lane model  incorporates fewer stochastic factors, such as  fewer  free  lane‐changing behaviors, 
compared to the other two scenarios. Regardless of the number of lanes in the scenario, CO2 emissions 
demonstrate increasingly sensitivity to the accident duration as traffic flow rate and the proportion 
of  trucks  rise.  In addition, CO2 emissions are more sensitive  to  traffic  flow  rate  in comparison  to 
accident duration and the proportion of trucks. This implies that implementing measures to evacuate 
vehicles  from  the accident area  (to  reduce  traffic  flow  rate  in  the accident area) may prove more 
effective in mitigating emissions than other emission reduction measures.   

6. Conclusions 

This study quantifies the nonlinear relationship and positive interaction between additional CO2 
emissions due  to  accidents  and  three key predictors  (accident duration,  traffic  flow  rate  and  the 
proportion of  trucks). The  findings demonstrate  that optimizing  accident management  efficiency 
results in more substantial emission reductions in scenarios with high traffic demand or long accident 
duration. Moreover, the study suggests that implementing measures to evacuate vehicles from the 
accident area (to reduce traffic flow rate in the accident region) may be more effective than alternative 
emission reduction measures. The modeling approach employed in this paper can serve as a viable 
and valuable reference for future studies seeking to model real‐world data. 

The model proposed in this study holds promising potential for providing valuable guidance 
with  formulating  emission  reduction  strategies  and  serving  as  a  reference  for  policy‐making 
decisions. By quantitatively assessing  the  impact of accident on CO2 emissions and  the  impact of 
accident  management  efficiency,  the  model  can  help  freeway  O&M  companies  and  relevant 
stakeholders adopting more targeted means to mitigate the influence of accidents on CO2 emissions. 
For  instance,  if  improving  the  efficiency  of  accident management  requires  the  employment  of 
engineering equipment that emits more CO2, we should consider the impact of efficiency improving 
strategies from a  full life cycle perspective. In other words, if  the reduction  in emissions from the 
improved efficiency is significantly less than the increase in emissions from the equipment, it will be 
unadvisable to implement those strategies to improve the efficiency of accident management. 

There is still a lot of work ahead. Many assumptions and simplifications made during the current 
study present opportunities  for  further  refinement. For  instance, enrichment of simulated vehicle 
types and incorporating emission factors for vehicles with different emission standards are areas that 
warrant attention in future investigations. The model still has potential for improvement. The model 
validation  of  this  study  is  currently  conducted  through  VISSIM  simulations,  but  future 
improvements may involve refining the model based on real‐world data to enhance its applicability 
in real scenarios. 

Moreover, there is scope for enhancing the research design in future work. While this study is 
conducted at the micro level, a more macroscopic simulation is essential to evaluate the impact of the 
accident duration on  the  traffic  flow of  road network  (particularly  for urban  traffic accidents).  In 
addition,  this  study  can  be  used  to  evaluate measures  of  improving  the  efficiency  of  accident 
management, but there are numerous other measures for accident abatement (speed management, 
traffic flow smoothing, etc.). Future work can enrich and expand the model to encompass a broader 
range of measure assessments. 
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