Submitted:
18 January 2024
Posted:
19 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Sensory Analysis of Fruits
2.3. Morphological Traits
2.4. Biochemical Parameters
2.5. Data Analysis
3. Results and Discussion
3.1. Sensory Analysis
3.2. Morphological Traits
3.3. Biochemical Content
3.4. Principal Compenent Analysis (PCA)
Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ercisli, S.; Esitken, A.; Turkkal, C.; Orhan, E. The allelopathic effects of juglone and walnut leaf extracts on yield, growth, chemical and PNE composition of strawberry cv. Fern. Plant Soil Environ. 2005, 51, 283–387. [Google Scholar] [CrossRef]
- Erturk, Y.; Ercisli, S.; Cakmakci, R. Yield and growth response of strawberry to plant growth-promoting rhizobacteria inoculation. J. Plant Nutr. 2012, 35, 817–826. [Google Scholar] [CrossRef]
- Abanoz, Y.Y.; Okcu, Z. Biochemical content of cherry laurel (Prunus laurocerasus L.) fruits with edible coatings based on caseinat, Semperfresh and lecithin. Turk J Agric For 2022, 46, 908–918. [Google Scholar] [CrossRef]
- Daler, S.; Cangi, R. Characterization of grapevine (V. vinifera L.) varieties grown in Yozgat province (Turkey) by simple sequence repeat (SSR) markers. Turk J Agric For. 2022, 46, 38–48. [Google Scholar]
- Delialioglu, R.A.; Dumanoglu, H.; Erdogan, V.; Dost, S.E.; Kesik, A.; Kocabas, Z. Multidimensional scaling analysis of sensory characteristics and quantitative traits in wild apricots. Tur. J. Agric. For. 2022, 46, 160–172. [Google Scholar] [CrossRef]
- Ozer, G.; Makineci, E. Fruit characteristics, defoliation, forest floor and soil properties of sweet chestnut (Castanea sativa Mill.) forests in Istanbul-Turkey. Turk. J. Agric. For. 2022, 46, 703–716. [Google Scholar] [CrossRef]
- Sikora, E.; Bieniek, M.I.; Borczak, B. Composition and antioxidant properties of fresh and frozen stored blackthorn fruits (Prunus spinosa L.). Acta Sci. Pol. Technol. Aliment. 2013, 12, 365–372. [Google Scholar]
- Rampáčková, E.; Göttingerová, M.; Kiss, T.; Ondrášek, I.; Venuta, R.; Wolf, J.; Nečas, T.; Ercisli, S. CIELAB analysis and quantitative correlation of total anthocyanin content in European and Asian plums. Eur. J. Hortic. Sci. 2021, 86, 453–460. [Google Scholar] [CrossRef]
- Ghanbari, S.; Weiss, G.; Liu, J.; Eastin, I.; Fathizadeh, O.; Moradi, G. Potentials and opportunities of wild edible forest fruits for rural household’s economy in Arasbaran, Iran. Forests 2022, 13, 453. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Krska, B.; Kiprovski, B.; Veberic, R. Bioactive Components and Antioxidant Capacity of Fruits from Nine Sorbus Genotypes. J. Food Sci. 2017, 82, 647–658. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 2017, 20, 3124–3134. [Google Scholar] [CrossRef]
- Ercisli, S. A short review of the fruit germplasm resources of Turkey. Genet. Resour. Crop Evol. 2004, 51, 419–435. [Google Scholar] [CrossRef]
- Rymbai, H.; Verma, V.K.; Talang, H.; Assumi, S.R.; Devi, M.B.; Vanlalruati Sangma, R.H.C.H.; Biam, K.P.; Chanu, L.J.; Makdoh, B.; Singh, A.R.; Mawleiñ, J.; Hazarika, S.; Mishra, V.K. Biochemical and antioxidant activity of wild edible fruits of the eastern Himalaya, India. Front. Nutr. 2023, 10, 1039965. [Google Scholar] [CrossRef] [PubMed]
- Sariburun, E.; Şahin, S.; Demir, C.; Turkben, C.; Uylaşer, A.V. Phenolic Content and Antioxidant Activity of Raspberry and Blackberry Cultivars. J. Food Sci. 2010, 75, C328–C335. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.K. Review of functional and pharmacological activities of berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef] [PubMed]
- Pap, N.; Fidelis, M.; Azevedo, L.; Vieira do Carmo, M.A.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; Granato, D. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Thompson, M.M. Survey of chromosome numbers in Rubus (Rosaceae: rosoideae). Ann. Mo. Bot. Gard. 1997, 84, 128–164. [Google Scholar] [CrossRef]
- Aglar, E.; Sumbul, A.; Karakaya, O.; Erturk, O.; Ozturk, B. Phytochemical and antimicrobial characteristics of raspberry fruit growing naturally in Kelkit valley, Turkey. Erwerbs-Obstbau 2023, 65, 65–70. [Google Scholar] [CrossRef]
- Marshall, B.; Harrison, R.E.; Graham, J.; McNicol, J.W.; Wright, G.; Squire, G.R. Spatial trends of phenotypic diversity between colonies of wild raspberry Rubus idaeus. New Phytol. 2001, 151, 671–682. [Google Scholar] [CrossRef]
- Jennings, D.L. Raspberries and Blackberries: Their Breeding, Diseases and Growth; Academic Press: London, UK, 1988. [Google Scholar]
- Kuru Berk, S.; Tas, A.; Orman, E.; Gundogdu, M.; Necas, T.; Ondrasek, I.; Karatas, N.; Ercisli, S. Agro-Morphological and biochemical characterization of wild Prunus spinosa L. subsp. dasyphylla (Schur) Domin genotypes naturally grown in Western Black sea region of Turkey. Agronomy 2020, 10, 1748. [Google Scholar] [CrossRef]
- Titirica, I.; Roman, I.A.; Nicola, C.; Sturzeanu, M.; Iurea, E.; Botu, M.; Sestras, R.E.; Pop, R.; Militaru, M.; Ercisli, S.; Sestras, A.F. The main morphological characteristics and chemical components of fruits and the possibilities of their improvement in raspberry breeding. Horticulturae 2023, 9, 50. [Google Scholar] [CrossRef]
- Yoon, H.-K.; Kleiber, T.; Zydlik, Z.; Rutkowski, K.; Woźniak, A.; Świerczyński, S.; Bednarski, W.; Kęsy, J.; Marczak, Ł.; Seo, J.-H.; et al. A Comparison of Selected Biochemical and Physical Characteristics and Yielding of Fruits in Apple Cultivars (Malus domestica Borkh.). Agronomy 2020, 10, 458. [Google Scholar] [CrossRef]
- Comlekcioglu, S.; Elgudayem, F.; Nogay, G.; Kafkas, N.E.; Ayed, R.B.; Ercisli, S.; Assouguem, A.; Almeer, R.; Najda, A. Biochemical characterization of six traditional olive cultivars: A comparative study. Horticulturae 2022, 8, 416. [Google Scholar] [CrossRef]
- Alibabic, V.; Skender, A.; Orascanin, M.; Sertovic, E.; Bajric, E. Evaluation of morphological, chemical, and sensory characteristics of raspberry cultivars grown in Bosnia and Herzegovina. Turk. J. Agric. For. 2018, 42, 67–74. [Google Scholar] [CrossRef]
- Tas, A.; Gundogdu, M.; Ercisli, S.; Orman, E.; Celik, K.; Marc, R.A.; Buckova, M.; Adamkova, A.; Mlcek, J. Fruit quality characteristics of service tree (Sorbus domestica L.) genotypes. ACS Omega 2023, 8, 19862–19873. [Google Scholar] [CrossRef]
- Bozan, B.; Baser, K.H.C.; Kara, S. Quantitative determination of naphthaquinones of Arnebia densiflora (Nordm.) Ledeb. by an improved high-performance liquid chromatographic method. J. Chromatogr. A. [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolic and total flavonoids in Bulgarian fruits and vegetables. J. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Krawczyk, U.; Petri, G. Application of RP-HPLC and spectrophotometry in standardization of bilberry anthocyanin extract. Archiv D. Pharm 1992, 325, 147–149. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Kaplan, J.; Matějíček, A.; Matějíčková, J. Sensory evaluation of 17 elderberry cultivars grown in the Czech Republic. Acta Hortic. 2015, 1061, 215–218. [Google Scholar] [CrossRef]
- Pereira, C.; Martín, A.; López-Corrales, M.; Córdoba, M.d.G.; Galván, A.I.; Serradilla, M.J. Evaluation of the physicochemical and sensory characteristics of different fig cultivars for the fresh fruit market. Foods 2020, 9, 619. [Google Scholar] [CrossRef] [PubMed]
- Celik, A.; Ercisli, S.; Turgut, N. Some physical, pomological and nutritional properties of kiwifruit cv. Hayward. Int. J. Food Sci. Nutr. 2007, 58, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Serradilla, M.J.; Martín, A.; Ruiz-Moyano, S.; Hernández, A.; López-Corrales, M.; Córdoba, M.G. Physicochemical and sensory characterisation of four sweet cherry cultivars grown in Jerte Valley (Spain). Food Chem. 2012, 133, 1551–1559. [Google Scholar] [CrossRef]
- Rambaran, T.F.; Bowen-Forbes, C. Chemical and sensory characterisation of two Rubus rosifolius (Red raspberry) varieties. Int. J. Food Sci. 2020, 2020, 6879460. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yang, G.; Sun, L.; Song, X.; Bao, Y.; Luo, T.; Wang, J. Comprehensive evaluation of 24 red raspberry varieties in northeast china based on nutrition and taste. Foods 2022, 11, 3232. [Google Scholar] [CrossRef] [PubMed]
- Baldina, S.; Picarella, M.E.; Troise, A.D.; Pucci, A.; Ruggieri, V.; Ferracane, R.; Barone, A.; Fogliano, V.; Mazzucato, A. Metabolite profiling of Italian tomato landraces with different fruit types. Front. Plant Sci. 2016, 7, 664. [Google Scholar] [CrossRef] [PubMed]
- Karatas, N. Evaluation of nutritional content in wild apricot fruits for sustainable apricot production. Sustainability 2022, 14, 1063. [Google Scholar] [CrossRef]
- Sheng, L.; Ni, Y.; Wang, J.; Chen, Y.; Gao, H. Characteristic-aroma-component-based evaluation and classification of strawberry varieties by aroma type. Molecules 2021, 14, 6219. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Pal, A.; Mitra, A. An insight into fruit aroma volatilome during postharvest maturation in two popular Musa cultivars of tropics. J. Sci. Food Agric. 2022, 102, 4276–4286. [Google Scholar] [CrossRef]
- Tosun, M.; Ercisli, S.; Karlidag, H.; Şengül, M. Characterization of red raspberry (Rubus idaeus L.) genotypes for their physicochemical properties. J. Food Sci. 2009, 74, C575–C579. [Google Scholar] [CrossRef]
- Cekic, C.; Ozden, M. Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.). J. Food Comp. Anal. 2010, 23, 540–554. [Google Scholar] [CrossRef]
- Petrovic, S.; Milossevic, T. Malina-Tehnologija i organizacija proizvodnje. Agronomski fakultet, Cacak, 2002.
- Misic, P.; Nikolic, M. Jagodaste vocke. Institut za istraživanja u poljoprivredi Srbija, Beograd. 2003.
- Kulina, M.; Popovic, R.; Stojanovic, M.; Popovic, G.; Kojovic, R. Pomological characteristics of some Raspberry varieties grown in the conditions of Bratunac region. Proceedings Third International Scientific Symposium (Agrosym) 2012; pp. 178–182.
- Karaklajic-Stajic, Z., Tomic, J., Rilak, B., Pesakovic, M.; Paunovic, S.M. Fruit quality evaluation of red raspberry cultivars grown in western Serbia. Erwerbs-Obstbau 2023, in press. [CrossRef]
- Maro, L.; Pio, R.; Guedes, M.; Abreu, C.; Moura, P. Environmental and genetic variation in the post-harvest quality of raspberries in subtropical areas in Brazil. Acta Scientiarum Agronomy 2014, 36, 323. [Google Scholar] [CrossRef]
- Banados, M. P.; Zoffoli, J.P.; Soto, A.; Gonzales, J. Fruit firmness and fruit retention strength in raspberry cultivars in Chile. Acta Hortic. 2002, 585, 489–493. [Google Scholar] [CrossRef]
- Krüger, E.; Dietrich, H.; Schöpplein, E.; Rasim, S.; Kürbel, P. Cultivar, storage conditions and ripening effects on physical and chemical qualities of red raspberry fruit. Postharvest Biol Technol 2011, 60, 31–37. [Google Scholar] [CrossRef]
- Bae, H.; Yun, S.K.; Jun, J.H.; Yoon, I.K.; Nam, E.Y.; Kwon, J.H. Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development. J. Appl. Bot. Food Qual. 2014, 87, 24–29. [Google Scholar] [CrossRef]
- Veljkovic, B.; Sostaric, I.; Dajic, S.Z.; Liber, Z.; Satovic, Z. Genetic structure of wild raspberry populations in the Central Balkans depends on their location and on their relationship to commercial cultivars. Sci. Hortic. 2019, 256, 108–606. [Google Scholar] [CrossRef]
- Agüero, J.J.; Salazar, S.M.; Kirschbaum, D.S.; Jerez, E.F. Factors affecting fruit quality in strawberries grown in a subtropical environment. Int. J. Fruit Sci. 2015, 15, 223–234. [Google Scholar] [CrossRef]
- de Ancos, B.; Gonzalez, E.M.; Cano, M.P. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem. 2000, 48, 4565–4570. [Google Scholar] [CrossRef] [PubMed]
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, Gr. Antioxidant ca- pacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Purgar, D.D.; Duralija, B.; Voca, S.; Vokurka, A.; Ercisli, S. A comparison of fruit chemical characteristics of two wild grown Rubus species from different locations of Croatia. Molecules 2002, 17, 10390–10398. [Google Scholar] [CrossRef]
- Milivojevic, J.; Nikolic, M.; Bogdanovic Pristov, J. Physical, Chemical and antioxidant properties of cultivars and wild species of Fragaria and Rubus genera. J. Pomol. 2010, 44, 55–64. [Google Scholar]
- Kostecka-Gugała, A.; Ledwożyw-Smoleń, I.; Augustynowicz, J.; Wyżgolik, G.; Kruczek, M.; Kaszycki, P. Antioxidant properties of fruits of raspberry and blackberry grown in central Europe. Open Chem. 2015, 13, 1313–1325. [Google Scholar] [CrossRef]
- Benjak, A.; Ercisli, S.; Vokurka, A.; Maletic, E.; Pejic, I. Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis 2005, 44, 73–77. [Google Scholar]
- Altindag, M.; Sahin, M.; Esitken, A.; Ercisli, S.; Guleryuz, M.; Donmez, M.F.; Sahin, F. Biological control of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacihaliloglu) by Bacillus, Burkholderia and Pseudomonas application under in vitro and in vivo conditions. Biol. Control 2006, 38, 369–372. [Google Scholar] [CrossRef]
- Dogan, H.; Ercisli, S.; Temim, E.; Hadziabulic, A.; Tosun, M.; Yilmaz, S.O.; Zia-Ul-Haq, M. Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. C. R. Acad. Bulg. Sci. 2014, 67, 1593–1600. [Google Scholar]
- Urun, I.; Attar, S.H.; Sönmez, D.A.; Gündeşli, M.A.; Ercişli, S.; Kafkas, N.E.; Bandić, L.M.; Duralija, B. Comparison of polyphenol, sugar, organic acid, volatile compounds, and antioxidant capacity of commercially grown strawberry cultivars in Turkey. Plants 2021, 10, 1654. [Google Scholar] [CrossRef] [PubMed]
- Karatas, N.; Ercisli, S.; Bozhuyuk, M.R. Assessment of morphological traits, nutritional and nutraceutical composition in fruits of 18 apricot cv. Sekerpare clones. Sustainability 2021, 13, 11385. [Google Scholar] [CrossRef]
- Dawadi P.; Shrestha R.; Mishra S.; Bista S.; Raut J.K.; Joshi T.P.; Bhatt L.R. Nutritional value and antioxidant properties of Viburnum mullaha Buch.-Ham. Ex D. Don fruit from central Nepal. Turk. J. Agric. For. 2022, 46, 781–789. [CrossRef]
- Boyaci, S.; Polat, S.; Kafkas, N.E. Determination of the phytochemical contents and pomological properties of chokeberry(Aronia melanocarpa L.) fruit in different harvesting periods. Turk. J. Agric. For. 2023, 47, 842–850. [Google Scholar] [CrossRef]
- Unal, S.; Sabir, F.K.; Sabir, A. Some physicochemical and bioactive features of organically grown blackberry fruits (Rubus fructicosus L.) as influenced by postharvest UV-C and chitosan treatments. Turk. J. Agric. For. 2023, 47, 907–917. [Google Scholar] [CrossRef]


| Aroma | Taste | Juiciness | ||||
| Ecotypes | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 |
| V-1 | High | High | Sweet-Sour | Sweet | High | High |
| V-2 | Moderate | High | Sweet | Sweet | Moderate | High |
| V-3 | Moderate | Moderate | Sweet | Sweet | Moderate | Moderate |
| V-4 | High | High | Sweet | Sweet | High | High |
| V-5 | High | Moderate | Sweet | Sweet | High | High |
| V-6 | High | High | Sweet-Sour | Sweet | Moderate | Moderate |
| V-7 | Moderate | High | Sweet-Sour | Sweet-Sour | High | High |
| V-8 | High | High | Sweet-Sour | Sweet-Sour | High | High |
| V-9 | High | High | Sweet | Sweet | High | High |
| V-10 | High | High | Sweet | Sweet | Moderate | Moderate |
| V-11 | Moderate | Moderate | Sweet-Sour | Sweet-Sour | Moderate | Moderate |
| Fruit weight (g) | Number of drupelets | Firmness (N) | Chroma | |||||
|---|---|---|---|---|---|---|---|---|
| Ecotypes | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 |
| V-1 | 1.14±0.18bc | 1.09±0.16bc | 65±3.8cd | 61±3.3ab | 0.41±0.2bc | 0.45±0.2ab | 29.34±1.7abc | 25.22±1.6ab |
| V-2 | 1.02±0.12d | 0.99±0.10d | 56±3.1ef | 50±3.2c | 0.44±0.4bc | 0.51±0.3ab | 32.11±1.9ab | 30.19±1.8a |
| V-3 | 1.21±0.16b | 1.15±0.17b | 68±4.2c | 63±4.0ab | 0.52±0.5a | 0.56±0.3a | 30.03±1.6b | 26.14±1.4ab |
| V-4 | 1.33±0.24a | 1.27±0.20a | 76±3.0a | 68±3.1ab | 0.40±0.2bc | 0.43±0.4ab | 28.30±1.4ab | 26.56±1.3ab |
| V-5 | 1.11±0.10c | 1.08±0.11bc | 62±3.2d | 60±3.4b | 0.41±0.3bc | 0.46±0.5ab | 26.36±1.4c | 27.19±1.6ab |
| V-6 | 1.14±0.12bc | 1.11±0.10bc | 66±3.0cd | 59±3.0b | 0.47±0.6abc | 0.53±0.5ab | 33.70±2.1a | 29.06±2.4ab |
| V-7 | 1.04±0.10cd | 1.02±0.11c | 58±2.7e | 54±2.8bc | 0.40±0.2bc | 0.45±0.3ab | 27.30±1.5bc | 28.25±1.4ab |
| V-8 | 1.07±0.10cd | 1.03±0.10c | 72±3.8b | 69±3.5a | 0.41±0.2bc | 0.47±0.2ab | 29.11±1.8bc | 25.44±1.6ab |
| V-9 | 1.04±0.10cd | 1.00±0.09cd | 68±3.4c | 62±3.0ab | 0.38±0.9c | 0.40±0.5b | 31.18±1.9ab | 30.10±2.2a |
| V-10 | 1.06±0.10cd | 0.97±0.08d | 70±4.4bc | 67±4.0ab | 0.46±0.7b | 0.47±0.4ab | 30.33±1.9b | 27.41±1.8ab |
| V-11 | 1.10±0.09c | 1.06±0.11bc | 60±3.7de | 55±3.8bc | 0.43±0.8bc | 0.49±0.6ab | 26.11±2.1c | 23.17±2.0b |
| Ecotypes | Citric acid (g/100 g) 2021 2022 |
Malic acid (g/100 g) 2021 2022 |
Tartaric acid (g/100 g) 2021 2022 |
|||
| V-1 | 2.46±0.09a | 2.73±0.12a | 0.66±0.2a | 0.71±0.1ab | 0.14±0.01NS | 0.17±0.01NS |
| V-2 | 2.11±0.09bc | 2.32±0.10bc | 0.59±0.1ab | 0.63±0.2ab | 0.10±0.03 | 0.12±0.03 |
| V-3 | 2.07±0.08bc | 2.15±0.09bc | 0.60±0.1ab | 0.55±0.1b | 0.15±0.03 | 0.15±0.01 |
| V-4 | 2.04±0.11c | 2.07±0.10bc | 0.50±0.1ab | 0.57±0.2ab | 0.21±0.02 | 0.23±0.02 |
| V-5 | 2.10±0.07bc | 2.07±0.11bc | 0.60±0.2ab | 0.64±0.1ab | 0.09±0.01 | 0.14±0.01 |
| V-6 | 2.32±0.09ab | 2.26±0.13bc | 0.65±0.2a | 0.68±0.2ab | 0.12±0.02 | 0.10±0.02 |
| V-7 | 2.41±0.09a | 2.47±0.12ab | 0.63±0.1ab | 0.75±0.1a | 0.16±0.00 | 0.22±0.00 |
| V-8 | 2.22±0.06b | 2.27±0.14bc | 0.63±0.1ab | 0.70±0.1ab | 0.10±0.00 | 0.19±0.00 |
| V-9 | 1.93±0.07bc | 1.99±0.09c | 0.57±0.2b | 0.63±0.1ab | 0.20±0.02 | 0.26±0.00 |
| V-10 | 2.16±0.08bc | 2.22±0.09bc | 0.58±0.2ab | 0.65±0.2ab | 0.23±0.00 | 0.27±0.01 |
| V-11 | 2.43±0.12a | 2.37±0.14b | 0.64±0.4ab | 0.69±0.3ab | 0.11±0.00 | 0.16±0.00 |
| Ecotypes | SSC (%) 2021 2022 |
Vitamin C (mg/100 g FW) 2021 2022 |
||
| V-1 | 9.8±0.4cd | 10.3±0.6de | 36.3±1.9ab | 41.3±2.1ab |
| V-2 | 11.2±0.6bc | 11.5±0.7c | 29.3±1.7c | 33.4±1.8c |
| V-3 | 12.4±1.0ab | 12.2±1.1b | 33.6±2.1bc | 36.0±2.0bc |
| V-4 | 11.7±0.8b | 11.9±0.7bc | 39.7±2.4ab | 43.4±2.0ab |
| V-5 | 12.8±0.7a | 12.9±1.3a | 37.2±2.2ab | 39.1±2.0abc |
| V-6 | 10.3±0.5cd | 11.1±0.6cd | 38.8±2.0ab | 38.6±2.1b |
| V-7 | 10.5±0.4cd | 10.8±0.5d | 37.2±1.8ab | 40.3±1.8ab |
| V-8 | 9.9±0.4d | 10.2±0.3e | 40.1±1.9ab | 44.4±2.1a |
| V-9 | 11.9±0.6abc | 11.8±0.7bc | 35.5±2.5b | 38.3±2.3bc |
| V-10 | 11.6±0.6abc | 12.0±0.7bc | 35.0±2.3bc | 39.0±2.2abc |
| V-11 | 10.6±0.7c | 10.9±0.5cde | 41.4±3.1a | 42.7±3.0ab |
| Ecotypes | Total phenolic (mg GAE/100 g FW) |
Total phenolic (mg GAE/100 g FW) |
Total flavonoid (mg QE/100 g FW) | Total flavonoid (mg QE/100 g FW) | Total anthocyanin (mg cy-3-g eq./100 g) |
Total anthocyanin (mg cy-3-g eq./100 g) |
FRAP (mmol TE/100 g |
FRAP (mmol TE/100 g |
| V-1 | 255±13.2d | 303±15.1c | 14.8±0.9cd | 15.4±0.8bc | 27.0±0.8e | 26.3±0.7bc | 17.0±1.0e | 19.3±1.1 |
| V-2 | 210±10.9ef | 232±14.2 | 17.2±1.1a | 16.9±1.0ab | 32.1±1.1b | 28.3±1.0ab | 14.8±0.9f | 16.2±0.8 |
| V-3 | 270±12.6cd | 279±11.3d | 15.0±0.7cd | 15.5±0.8b | 28.4±0.9d | 26.2±0.7bc | 18.2±1.3d | 19.5±1.0 |
| V-4 | 233±11.2e | 256±12.0e | 14.0±0.8de | 15.2±0.9bc | 23.2±0.6f | 23.0±0.5c | 16.2±0.8ef | 17.9±0.7 |
| V-5 | 164±9.8g | 188±9.2g | 12.9±0.6ef | 13.3±0.5c | 19.4±0.6g | 20.3±0.4cd | 13.4±0.4g | 14.6±0.5 |
| V-6 | 362±18.4a | 390±17.1a | 16.3±0.9b | 17.6±1.1a | 33.2±1.3a | 31.0±1.1a | 22.3±1.5a | 23.3±1.4 |
| V-7 | 355±17.6ab | 367±18.0b | 13.6±0.8e | 14.2±0.9bc | 22.0±0.8fg | 21.4±0.7cd | 21.0±1.3b | 22.7±1.2 |
| V-8 | 241±12.0de | 250±11.1e | 14.4±1.1d | 14.8±1.0bc | 17.3±0.5i | 17.6±0.4de | 12.0±0.6h | 15.5±0.7 |
| V-9 | 296±14.9c | 308±15.2bc | 15.2±1.2c | 15.9±1.1ab | 30.9±1.1c | 27.9±1.0b | 19.0±1.1cd | 21.4±1.4 |
| V-10 | 188±10.5f | 204±11.0f | 10.3±0.5f | 11.8±0.5d | 30.0±1.2cd | 29.6±1.1ab | 10.4±0.5i | 12.3±0.8 |
| V-11 | 340±16.7b | 361±18.0b | 15.9±1.1bc | 14.6±1.0bc | 18.0±0.5h | 19.2±0.7d | 19.6±0.9c | 20.7±1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).