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Abstract: The adoption of algorithms based on Artificial Intelligence (Al) has been rapidly increasing
during the last years. However, some aspects of Al techniques are under heavy scrutiny. For instance,
in many use cases, it is not clear whether the decisions of an algorithm are well-informed and
conforming to human understanding. Having ways to address these concerns is crucial in many
domains, especially whenever humans and intelligent (physical or virtual) agents must cooperate in
a shared environment. In this paper, we apply an explainability method based on the creation of a
Policy Graph (PG) based on discrete predicates that represent and explain a trained agent’s behaviour
in a multi-agent cooperative environment. We show that from these policy graphs, policies for
surrogate interpretable agents can be automatically generated. These policies can be used to measure
the reliability of the explanations enabled by the PGs, through a fair behavioural comparison between
the original opaque agent and the surrogate one. The contributions of this paper represent the first use
case of policy graphs in the context of explaining agent behaviour in cooperative multi-agent scenarios
and presents experimental results that sets this kind of scenario apart from previous implementations
in single-agent scenarios: when requiring cooperative behaviour, predicates that allow representing
observations about the other agents are crucial to replicate the opaque agent’s behaviour and increase
the reliability of explanations.

Keywords: explainable AL reinforcement learning; policy graphs; multi-agent reinforcement learning;
cooperative environments

1. Introduction and Motivation

Over the last decade, methods based on machine learning have achieved remarkable performance
in many seemingly complex tasks such as image processing and generation, speech recognition or
natural language processing. It is reasonable to assume that the range of potential applications will
keep growing in the forthcoming years. However, there are still many concerns about the transparency,
understandability and trustworthiness of systems built using these methods, especially when they
are based on so-called opaque models [1]. For example, there is still a need for proper explanations
of the behaviour of agents where their behaviour could be a risk for their real-world applicability
and regulation, in domains such as autonomous driving, robots, chatbots, personal assistants, or
recommendation, planning or tutoring systems [2,3].

Since Al has an increasing impact on people’s everyday lives, it becomes urgent to keep
progressing on the field of Explainable Artificial Intelligence (XAI) [4]. In fact, there are already
regulations in place that require Al model creators to enable mechanisms that can produce explanations
for them, such as the European Union’s General Data Protection Regulation (GDPR) that went into
effect on May 25, 2018 [5]. This law creates a “Right to Explanation” whereby a user can ask for the
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explanation of an algorithmic decision that was made about them. Therefore, explainability is not
only desirable but is also a frequent requirement and, in cases where personal data is involved, it is
mandatory. Furthermore, the European Al Act [6] prescribes that Al systems presenting risks, such as
those that interact with humans and therefore may impact safety, must be transparent. Cooperation
between humans and Als will gradually become more common [7], and thus it is crucial to be able
to explain the behavior of cooperative agents so that their actions are understandable and can be
trusted by humans. However, in many cases agents trained to operate and cooperate in physical or
virtual environments use Reinforcement Learning (RL) complex models such as deep neural networks
that are opaque by nature. Due to this need for being able to make such systems more transparent,
explainability in RL (XRL) is starting to gain momentum as a distinct field of explainability.

This paper aims to contribute to XRL by building upon the line of research opened in [8,9], which
has consisted in producing explanations from predicate-based Policy Graphs (PG) generated from
the observation of RL-trained agents in single-agent environments. This paper is an extension of the
conference paper [10]!, in which we present a reformulation of the same methodology to generate
explanations for agents trained with Multi-Agent Reinforcement Learning (MARL) methods in a
cooperative environment. The contributions of this paper are focused on analysing what kind of
explanations can be produced and whether there can be explanations about the relationship between
the agents, i.e. about cooperation.

Currently, there are several approaches to explain agents trained with reinforcement learning,
mainly from a single-agent perspective. In this work, we briefly overview some of them in Section
2 and we introduce the approach followed in this paper, based on the creation of policy graphs. We
briefly summarise our initial results of applying such approach to a single-agent environment in
Section 2.1. In Section 3 we introduce a multi-agent cooperative environment, which we use in Section
4 to apply our explainability method, giving some insights about the required methodology to generate
explanations in a new domain. In Section 5, we introduce three algorithms that query policy graphs.
In Section 6, we build new agents using the graph as a policy to compare them with the originals, in
order to have a measure of reliability for the explanations. Finally, we end with a summary of the main
conclusions and contributions from the work done in Section 7.

2. Background

The area of explainability in reinforcement learning is still relatively new, especially when dealing
with policies as opaque models. In this section, we will provide a brief overview of some state-of-the-art
XRL methods and discuss, in more depth, the method chosen for our work. A more detailed study
of the explainability methods in RL can be found in [11]: XRL methods can be classified by their
time horizon of explanation (reactive/proactive), scope of explanation (global/local), timing of
explanation (post hoc/intrinsic), type of the environment (deterministic/stochastic), type of policy
(deterministic/stochastic) and their agent cardinality (single-agent/multi-agent system).

Reactive explanations are those that are focused on the immediate moment. A family of reactive
methods is policy simplification, which finds solutions based on tree structures. In these, the agent
answers the questions from the root to the bottom of the tree in order to decide which action to execute.
For instance, Coppens et al. [12] use Soft Decision Trees (SFT), structures that work similarly to binary
trees but where each decision node works as a single perceptron that returns, for a given input x, the
probability of going right or left. This allows the model to learn a hierarchy of filters in its decision
nodes. Another family is reward decomposition, which tries to decompose the reward into meaningful
components. In [13], Juozapaitis et al. decompose the Q-function into reward types to try to explain
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why an action is preferred over another. With this, they can know whether the agent is choosing an
action to be closer to the objective or to avoid penalties. Another approach is feature contribution
and visual methods, like LIME [14] or SHAP [15], which try to find which of the model features are
the most relevant in order to make decisions. On the other hand, Greydanus et al. [16] differentiate
between gradient-based and perturbation-based saliency methods. The former try to answer the
question “Which features are the most relevant to decide the output?” while the latter are based on the
idea of perturbing the input of the model in order to analyse how its predictions changes.

Proactive models are those that focus on longer-term consequences. One possible approach is
to analyse the relationships between variables. This family of techniques give explanations that are
very close to humans because we see the world through a causal lens [17]. According to [18], the
causal model tries to describe the world using random variables. Each of these variables has a causal
influence on the others. This influence is modelled through a set of structural equations. Madumal et
al. [19] generate explanations of behaviour based on a counterfactual analysis of the structural causal
model that is learned during RL. Another approach tries to break down one task into multiple subtasks
in order to represent different abstraction levels [20]. Therefore, each task can only be carried out if its
predecessor tasks have been finished.

According to [21], in order to achieve interoperability, it is important that the tasks are described
by humans beforehand. For instance, [20] defines two different policies in hierarchical RL, local and
global policies. The first one uses atomic actions in order to achieve the sub-objectives while the second
one uses the local policies in order to achieve the final goal.

In addition, there is another approach that combines relational learning or inductive logic
programming with RL. The idea behind these methods [22] is to represent states, actions and policies
using first order (or relational) language. Thanks to this, it is easier to generalize over goals, states and
actions, exploiting knowledge learnt during an earlier learning phase.

Finally, another approach consists in building a Markov Decision Process and follow the graph
from the input state to the main reward state [19]. This allows to ask simple questions about the chosen
actions. As an optional step, we can simplify the state representation (discretizing it if needed). This
step becomes crucial when we are talking about more complex environments [8]. In this work, we will
use this last approach: we will use a method that consists in building a policy graph by mapping the
original state to a set of predicates (discretization step) and then repeatedly running the agent policy,
recording its interactions with the environment. This graph of states and actions can then be used for
answering simple questions about the agent’s execution which is shown at the end of Section 4. This is
a post hoc and proactive method, with a global scope of explanation, which works with both stochastic
environments and policies and has until now only been tested in single-agent environments (Table 1).
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Table 1. Summarized comparison of XRL methods with policy graphs according to the taxonomy
presented in Krajna et al. [11]. (i.e. respectively: time horizon, scope, timing, types of environment and
policy and agent cardinality). A more complete description of each method can be found in the cited
paper. Env. stands for type of environment (stochastic/deterministic), while P-H stands for post hoc
and Intr. stands for intrinsic.

Method Horiz. Scope Timing Env.  Policy Agents Description

Coppenset | Reac.  Global P-H Stoch.  Stoch. Single Binary decision trees, value

al. [12] heatmap images

Juozapaitis | Reac.  Local P-H Stoch.  Deter. Single Decomposed reward

etal. [13] diagrams and images

Greydanus | Reac. Global P-H Deter.  Deter. Multi- Attention saliency maps

etal. [16]

Madumal | Proac. Local P-H Stoch.  Stoch. Multi- Counterfactual text

etal. [19] explanations

Kulkarni et | Proac.  Local Intr. Stoch.  Stoch. Multi- Attention saliency maps

al. [20]

Zambaldi Proac.  Local Intr. Stoch.  Stoch. Multi- Counterfactual text

etal. [22] explanations

Policy Proac. Global P-H Stoch. Stoch. Sing./Mult. Behaviour graphs, text

graphs explanations, transparent
agent version

Thus, a policy graph is built by sampling the behaviour of a trained agent in the environment in
the form of a labelled directed graph PG = (V,E, A) where each node v; € V represents a discretized
state s;, and each edge e = (v;,4,v;) € E represents the transition (s;,4,s;), where a € A an action
from the available actions of the environment. Note that for the sake of brevity, hereinafter we equate
discretized states and their node counterparts in a policy graph: s; = v; AV C S, where S is the set of
all discretized states.

There may exist more than one transition between the same pairs of nodes as long as the labels
are different, as performing different actions in a certain state may still lead to the same resulting state.
Conversely, there may exist more than one transition between a particular state and many different
states labelled with the same action, as the result of applying an action on the environment may have a
stochastic effect (e.g., the action could occasionally fail).

Eachnode v € V stores the well-formed formula in propositional logic that represents its state and
its probability P(v). Each edge e = (v;, a,v;) stores the action a that causes the transition it represents,
and its probability P(v},a|v;), such that:

VoeV,3de=(v,a,0)eE= Y  P(vja]v)=1 (1)
(v,a;,0)€EE
Essentially, for every node in the policy graph, either the sum of probabilities for every edge
originating from the node is exactly 1, or the node has no such edges.

2.1. Explaining the Cartpole Scenario

Before detailing the use of policy graphs for explaining agents’ behaviour in a multi-agent
cooperative setting, it may be worth describing first how this methodology can be applied to a
single-agent setting.

In [9], we use Cartpole as the scenario for this work. Cartpole is an environment for reinforcement
learning provided by the OpenAl Gym library?, in which a pole is attached to a cart through an
unactuated joint, and both move along a friction-less track, as depicted in Figure 1. The agent controls

2 https://gym.openai.com
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the cart by moving it left or right, and the challenge is to prevent the pole from falling over due to
gravity. To represent the state of the system, the agent has access to observations containing four
variables: cart position, cart velocity, pole angle, and pole angular velocity. A fall is determined when
the pole angle exceeds 12 degrees from the vertical or when the cart moves out of bounds.

It was possible to generate valid and accurate explanations for this environment by using the
following set of predicates as the discretiser for the policy graphs:

e pole_falling(X), where X € {left, right}.

e pole_stabilizing(X), where X € {left,right}.

e pole_standing_up().

e cart_moving(X), where X € {left,right}.

e cart_pos(X), where X € {far_left, far_right,left, right}.
o cart_near_middle().

e stuck(X), where X € {left, right}.

This set of predicates, combined with the algorithms introduced in [8], allow for generating
explanations for the behaviour of any agent operating in the Cartpole environment. This explanations
can be validated via qualitative methods, e.g. by human expert validation. In order to validate these
explanations from a quantitative perspective, our previous work [9] presented a novel technique based
on the creation of a new agent policy inferred from the structure of the policy graph, trying to imitate
the behaviour developed by the original trained agent’s policy.

pivot point

%

Figure 1. Cartpole environment.

One concern related to this proposal is that the policy graph is based on a simplification of the
states and the actions (using predicates), and therefore such a policy could also be an over-simplification
of a policy that is backed by a complex, opaque model. For this reason, our aim was to confirm whether
the behaviour of the two policies entail a similar performance and, therefore, that the critical decisions
that influence performance are comparable. If that is the case, the explanations generated would be
able to reflect the trained agent in terms of human interpretation.

Figure 2 provides a histogram illustrating the final steps achieved by various policies. These
final steps could be a consequence of either reaching success (200 steps) or encountering failure.
Among these policies, the ones involving random agents (HRD 5.54% success rate and RND 0%)
are severely outmatched by those considering either the original agent (DQN 78.65%), the policy
graph (PGR 78.16%), or their hybrid (HEX 72.95%), the three of them having comparable success
rates. Interestingly, the success rate of the PGR agent displays significant deviations in the initial
steps, particularly around steps 25 to 50, as evidenced by non-marginal frequencies in the histogram.
These deviations can be attributed to the previously mentioned state simplification and discretization,
affecting the agent’s ability to stabilize in challenging scenarios, such as when the pole is far from the
center. In contrast, DQN and HEX, the latter being 50% based on PGR, showcase remarkably similar
histograms, indicating that the PGR policy has a stable behaviour after 50 steps, aligning well with the
original behavior.
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Figure 2. Histogram of frequencies indicating up to which step each policy was able to keep the pole
standing up. Policies are, in this order (left to right, top to bottom): DQN (all actions are chosen by the
original policy), PGR (all actions are chosen by the policy graph), HEX (each step, the action is chosen
at random between the original policy and the policy graph), HRD (each step, the action is chosen at
random between the original policy and purely random), and RND (each step, the action is chosen at
random from all valid actions). A successful policy reaches step 200. Please note that the random agent
(RND) cannot keep the pole straight and almost never reaches step 50, while the agents trained using
reinforcement learning (DQN) and the simplified agent (PGR) or combined (HEX, which is 50% DQN
and 50% PGR) almost always succeed (they reach step 200), esp. when avoiding failing during the first
steps.

Additionally, we conducted a correlation analysis (Spearman) involving three domain-specific
metrics: average cart movement, average pole velocity, and average pole rotation (as shown in Figure 3).
The most significant correlations regarding cart movement are observed between DQN and HEX (0.60,
p<0.001) and between PGR and HEX (0.53, p<0.001), which is logical given HEX being combination
of both policies. The correlation between DQN and PGR (0.26, p<0.001) is statistically significant
but relatively low. However, when examining the impact of actions on the pole, including velocity
and rotation, higher correlations are identified: DQN and PGR (0.55, p<0.001), DON and HEX (0.72,
p<0.001), and PGR and HEX (0.67, p<0.001).

Avg. cart movement Avg. pole velocity Avg. pole rotation

i
=
=
(=]

026 P60 0.12 - 100 g 023 0.00

026 053 012
060 053 0.14

024 001

055 ores 021 005
070 025 002

024 021 025 i 002

055 e 0.18 0.00
0.67 023 | 0.00

023 018 023 gk 001

012 014

[
DON PGR HEX HRD RND

000 000 000 001 e 001 005 0.02

RND HRD HEX PGR DON

[ [
DON PGR HEX HRD RND DON PGR  HEX HRD RND

Figure 3. Cross-correlations between cart movement, pole velocity and pole rotation, averaged by step

Our analysis suggested that the behaviors of the two agents yield similar outcomes, both in terms
of performance and their influence on the pole’s behavior, in an environment where there is only one
agent and therefore there are no actions from other agents to take into account. For further details
on the methodology and the results of the quantitative analysis for the Cartpole environment, please
refer to [9]. From now on in this paper we focus on the application of policy graphs to a multi-agent
scenario, in where we analyse the feasibility of using policy graphs to explain the behaviour of agents
in environments where the actions of other agents are relevant for the performance.
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3. Overcooked-Al: A Multi-Agent Cooperative Environment

In this paper, we have used the PantheonRL [23] package for training and testing an agent in
Overcooked-AlI [24]. Overcooked-Al is a benchmark environment for fully cooperative human-AI task
performance, based on the popular video game Overcooked>. The goal of the game is to deliver soups
as fast as possible. Each soup requires placing up to 3 ingredients in a pot, waiting for the soup to
cook, and then having an agent pick up the soup and delivering it. The agents should split up tasks on
the fly and coordinate effectively in order to achieve high rewards.

The environment has a sparse reward function. On the step that certain tasks of interest are
performed, the following rewards are given: 3 points if an agent places an onion in a pot or if it takes a
dish, 5 points if it takes a soup and 20 points if the soup is placed in a delivery area. The same reward
is delivered to both agents, without regard to which agent performed the task itself.

Here in this work, we have worked with five different layouts: simple, unident_s, random0, random1
and random3 (Figure 4).

At each timestep, the environment returns a list with the objects not owned by the agent present in
the layout and, for each player, the position, orientation, and object that it is holding and its information.
We can also get the location of the basic objects (dispensers, etc.) at the start of the game.

Figure 4. Overcooked layouts: simple (top left), unident_s, (top right), random1 (bottom left), random0
(bottom center), random3 (bottom right)

For example, the agent would receive the following data from the situation depicted in Figure 5:

¢ Player 1: Position (5, 1) - Facing (1, 0) - Holding Soup
¢ Player 2: Position (1, 3) - Facing (-1, 0) - Holding Onion
* Not owned objects: Soup at (4, 0) - with 1 onion and 0 cooking time.

3 http:/ /www.ghosttowngames.com/overcooked
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An empty pot A pot with one onion Pl,ocation i

Orders: onion
Score: 0

Time Left: 19

Dish .
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.
Agent carrying
onion

Onion dispensers Food counters

Figure 5. Overcooked-Al game dynamics.

The environment layout can have a strong influence on the degree of cooperation and the strategy
agents must follow in order to win the game or to have an optimal behaviour. For instance, unindent_s
has enough elements at each side of the kitchen for each agent to serve soups by themselves without
the need of the other, so cooperation is not mandatory for winning, but desirable for optimality. On
the other hand, random0 has different elements at each side of the layout division so cooperation is
mandatory for winning. random1 and random3 require that agents are capable of not blocking each
other.

The aim of our work is not to solve the Overcooked game but rather to analyze the potential of
explainability in this cooperative setting. Therefore, we do not really care about what method is used
to train our agent. However, it is important that the agent performs reasonably well in order to verify
that we are explaining an agent with a reasonable policy. Thus, we train our agents using Proximal
Policy Optimization (PPO) [25] because it has achieved great results in Overcooked previously [24].
We use the Stable Baselines 3 [26] Python package to train all agents. Indeed, if we get good results
with PPO, we should also get good results with other methods since our explainability method is
independent from the training algorithms used. In our case, we have trained five different agents (one
for each layout) for 1M total timesteps and with an episode length of 400 steps. Training results can be
found in Table 2.

Table 2. Performance metrics of the trained agent pairs.

Layout | Meanreward Std.

simple 387.87 25.33
unident_s | 757.71 53.03
random0O | 395.01 54.43
random1 | 266.01 48.11

random3 | 62.5 5.00
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4. Building a Policy Graph for the Trained Agent

We have created a total of 10 predicates to represent each state. The first two predicates are held
and held_partner, which have 5 possible values depending on which object the agent and its partner,
respectively, are holding: O(nion), T(omato), D(ish), S(ervice) or * for nothing.

The third predicate is pot_state, which has 4 possible values depending on the state of each pot:

- “Of” (Off), when [pot.onions = 0].

- “Fi” (Finished), when [pot.onions = 3 A pot.timer > 20].
- “Co” (Cooking), when [pot.onions = 3 A pot.timer < 20].
- “Wa” (Waiting), when [pot.onions < 3.

To relate the actions of the agent with the relative position of the objects in the environment,
we introduce 6 more predicates: onion_pos(X), tomato_pos(X), dish_pos(X), pot_pos(X), service_pos(X)
and soup_pos(X). All of them can have the same 6 possible values depending on the next action to
perform to reach the corresponding object as quickly as possible: S(tay), R(ight), L(eft), T(op), B(ottom)
or I(nteract). The last predicate is partner_zone, intended to represent agents’ cooperation along with
held_partner. It has 8 possible values depending on which cardinal point the partner is located at (e.g.,
“NE” for “North East”).

As mentioned in Section 2, the aim of the policy graph algorithm is to apply the following method:
to record all the interactions of the original trained agent by executing it in a large set of random
environments and to build a graph relating predicate-based states seen in the environment with the
actions executed by the agents after each of those states.

An example can be found in Figure 6. In this graph, the state on the left side represents the state
{held(Dish), held_partner(Onion), pot_state(Finished), onion_pos(Interact), tomato_pos(Stay), dish_pos(Stay),
pot_pos(Top), service_pos(Right), soup_pos(Right), partner-_zone(South)}. The state on the right side
represents the state {held(Dish), held_partner(Onion), pot_state(Finished), onion_pos(Left), tomato_pos(Stay),
dish_pos(Stay), pot_pos(Left), service-_pos(Right), soup_pos(Top), partner_zone(South West)}. This policy
graph shows that, from the left state, there is a 20% probability for the agent to interact with the object
in front of them, in this case the onion (due to onion_pos having value Interact). In that case, the state
does not change due to the action not being effective: there are infinite onions available so it is still
possible to interact with them, but the agent is already holding a dish so there is no real effect. There is
a 80% probability for the agent to move right, which will cause a change of some values in the state: it
is not possible to interact with the onions in the new location, as the onions are now to the left of the
agent; the closest soup is now to the top instead of to the right, and the partner is to the southwest of
the agent instead of to the south.

@ 0.2
0.8

sz D-O-Fi-I-8-S-T-R-R-S  D-O-Fi-L-S-S-L-R-T-SW
Figure 6. Extract of two states from a Stochastic policy graph generated from Overcooked.

Our work has followed two distinct approaches for building this graph:

doi:10.20944/preprints202401.1421.v1
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* Greedy Policy Graph: The output of the algorithm is a directed graph. For each state, the
agent takes the most probable action. Therefore, not all the agent interactions are present in the
graph, only the most probable action from each node. The determinism of this agent could be an
interesting approach from a explainability perspective, as it is intuitively more interpretable to
analyse a single action than a probability distribution.

¢ Stochastic Policy Graph: The output of the algorithm is a multi-directed graph. For each state,
the agent records the action probability for all actions. As such, each state has multiple possible
actions, each with its associated probability, as well as a different probability distributions for
future states, one for each action. This representation is much more representative of the original
agent, since the original agent may have been stochastic, or its behaviour may not be fully
translated to the ‘most probable action” whenever the discretiser does not capture all information
of the original state.

From the policy graphs we have built, we can create surrogate agents that base their behaviour
on sampling them: at each step, these agents receive the current state as an observation from the
environment and decide their next action by querying their policy graph for the most probable action
on the current state. This results in a transparent agent whose behaviour at any step can be directly
examined via querying its policy graph.

There is a consideration to be made, though. With our proposed discretisation, there exist a
total of 37,324,800 potential states, which means it is highly unlikely that the policy graph building
algorithm will have observed state transitions involving all of them. In consequence, we introduce a
state similarity metric diff: S X S — R to deal with previously unknown states, such that two states
si,Sj are similar if diff (s;, s j) < ¢, where ¢ € R s a defined threshold. In this work, we define diff as the
amount of different predicate values between them?*, and set ¢ to 1.

Let PG = (V,E, A) a policy graph. Given a certain discretised state s, we can distinguish 3 cases:

1. s € V: The surrogate agent picks an action using weights from the probability distribution of s in
the PG.

2. s ¢ VAT € V,diff(s,s') < 1: The agent picks an action using weights from the probability
distribution of s; in the PG.

3. s ¢ VAP’ € V,diff (s,s") < 1: The agent picks a random action with an uniform distribution.

Using these surrogate agents, we will analyse under which condition each of these approaches
offers better explainability in Section 6.

5. Explainability Algorithm

The following questions can be asked of a policy graph, which are a starting point to obtaining
explanations on agent behaviour:

1. What will you do when you are in state region® X?
2. When do you perform action a?
3. Why did you not perform action 7 in state s?

Each of these questions can be answered with custom algorithms that leverage the probability
distributions learnt by the policy graph. For our work, we borrow from and evolve upon the original
conceptualisation found in [8], with some changes described in the following subsections. In Section 5.4
we open a discussion regarding the validity and the limitations of this approach.

E.g. if we have the states s; = O-Co-S and s; = O-Co-N, then diff (s;, s;) = 1.

5 [E.g. all states where pot_state(Finished).
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5.1. What Will You Do When You Are in State Region X?

The answer to this question consists in aggregating the probabilities of possible actions in the
policy graph from all the input states that the user wants to check. Let PG = (V, E, A) be the computed
policy graph, X € S the target state region, and dist: P(S) x S — R a measure of distance between a
discretized state and a state region in S . Very similarly to the possible courses of action of a surrogate
agent defined in Section 4, there are three possible cases regarding the information available about the
state region X.

1. |X N V] > 0: The policy graph generation algorithm has seen one or more states s € X during
training, and it is likely that we can extract the probability of choosing among each of the
accessible actions from them.”

2. XNV = g, but one or more similar states are found (Is € V : dist(X,s) < ¢, € € R): the policy
graph has never seen any state in X so we rely on a measure of similarity to another state to
extrapolate (as in case 1).

3. XNV = & and no similar state is found: Returns a uniform probability distribution over all the
actions.

Algorithm 1 What will you do when you are in state region X?

Input: Policy Graph PG = (V,E, A), Action Set A, Set of states X, Distance threshold &
Output: Explanation of policy behavior in X per action

2% )Q% {v € leﬂldlst X,v) = mm dzst(X )} > The set of states in V closest to X
1Pz?'lgtgl§l (1‘11465'1
for al[l ae zﬁ Is)P(s)

ZSEX/ P( )

en deﬁd for

return P

A formal version of this procedure is shown in Algorithm 1.

For example, for the state region { {held(Service), pot_state(Waiting), onion_pos(Top), tomato_pos(Stay),
dish_pos(Stay), pot_pos(Left), service_pos(Interact), soup_pos(Left)}} (see Figure 7), the most probable
action is fo interact since the state shows us that the agent holds a soup and it is in front of the service.

This distance function can depend heavily on the environment and on the predicate set chosen. An in-depth analysis
of possible functions is out of the scope of this paper, but it is part of future work. For the sake of proof-of-concept, the
distance function we have chosen for the work presented in this paper consists in: lets € Sand X = {s,..} C S, we define
dist(X,s) = ming,ex diff (s, s), where diff is the function defined in Section 4. For example, this measure for the states in
Figure 6 would be dist({s}.s}, Syignt) = 4 as only four predicates change value between them.

This is only likely since a state s may have been visited very few times, and the estimation of probability may be little
informed, in which case we would consider the other options in the list.
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* What will I do when I am in state X7 * What will I do when I am in state X7
Possible predicates: Possible predicates:
+ held *x | 01l TIDIS + held *x | 01l TIDIS
+ pot_state_0 O0f | Fi | Co | Wa + pot_state_0 O0f | Fi | Co | Wa
+ onion_pos SIRILITIBII + onion_pos SIRILITIBII
+ tomato_pos SIRILITIBITI + tomato_pos SIRILITIBITI
+ dish_pos SIRILITIBITI + dish_pos SIRILITIBITI
+ pot_pos_0 SIRILITIBITI + pot_pos_0 SIRILITIBITI
+ service_pos S |R|LI|ITIBITI + service_pos S |R|ILI|ITIBI|TI
+ soup_pos SIRILITIBITI + soup_pos SIRILITIBITI
State: S-Wa-T-S-S-L-I-L State: S-Wa-T-S-S-L-I-L
I will take one of these actioms: I will take one of these actions:
-> Interact Prob: 94.05 % -> Interact Prob: 100 %
-> Bottom Prob: 2.31 %
-> Left Prob: 1.82 7
-> Right Prob: 1.33 %
-> Stay Prob: 0.49 7

Figure 7. Example output of the algorithm What will I do when I am in state region {s}? from policy
graphs generated for a PPO-trained agent. On the left, the result for the Stochastic Policy Graph; on the
right, the result for the Greedy Policy Graph.

5.2. When Do You Perform Action a?

The answer to such a question can be generated from an extensive list of all states that perform
such an action (i.e. when is it the most likely?), as formalised in Algorithm 2.

Algorithm 2 When do you perform action a?
Input: Policy Graph PG = (V,E, A), Target action a
Output: Set of target states Spgs where target a is the dominant action, Set of non-target states Sy

PGt < {}
e 1
5&’?311&%% 1%)195 P(als)
if a* = {tHe

SpGa — SIIIDGa Us;
else

dgﬁﬂ*\a — SPG*\” U S;

ende FOI'

return Spge, Spiia

For instance, when asking the policy graph of a trained agent for the Interact action, the list may
include the state {held(Nothing), pot_state(Cooking), onion_pos(Left), tomato_pos(Stay), dish_pos(Interact),
pot_pos(Left), service_pos(Right), soup_pos(Top)} (see Figure 8). The main predicates to analyse here
would be: (1) the agent is empty-handed, (2) the pot is cooking, and (3) we are in interact position with
the dish pile. This results in picking up a plate, which seems reasonable given a plate is necessary to
pick up soup from the pot once it finishes cooking.
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* When do you perform action X7 * When do you perform action X7
Possible actiomns: Possible actiomns:

+ Top + Top

+ Bottom + Bottom

+ Right + Right

+ Left + Left

+ Stay + Stay

+ Interact + Interact
When do you perform action: Interact When do you perform action: Interact
Most probable action in 159 states: Most probable action in 157 states:

-> *-Co-B-S-S-L-R-I -> *-Co-L-S-B-L-R-T

-> *-Co-B-8-S-R-R-I -> *-Co-L-8-I-L-R-T

-> *-Co-L-S-B-L-R-T -> *-Co-L-S-R-B-R-T

-> *-Co-L-S-I-L-R-T -> *-Co-L-S-R-I-R-R

Figure 8. Example output of the algorithm When do you perform action a? from policy graphs generated
for a PPO-trained agent. On the left, the result for the Stochastic Policy Graph; on the right, the result
for the Greedy Policy Graph.

An intuitive improvement over this version would be finding which subset of satisfied predicates
are sufficient to cause the action being picked. This would greatly reduce the complexity of analysis,
given that instead of outputting a large number of states, we would find a small set of partial predicates.

5.3. Why Did You Not Perform Action a in State s?

This question is a non-trivial counterfactual question, regarding a transition: doing action a in a
state s which potentially has never been sampled (hence the value in answering the question). To do
so, Algorithm 3 finds the neighbouring states (i.e. states within a distance threshold in the metric space
proposed in Section 5.1), and lists the difference in predicate sets between the regions where action a is
performed and where it is not. Much like before, we distinguish between 3 cases depending on the
characteristics of s:

Algorithm 3 Why did you not perform action  in state s,,?

Input: Policy Graph G = V, E, Target Action 4, Previous State s, Distance threshold Doyt
Output: Explanation of difference between current state and state region where a; is performed,
explanation of where 4, is performed locally.

s (S
o fli bt rediet Gebish) exech83_from(s)
Llse n_a?_ e Us;

dsff\” — ST{*\” Us;

encf%h

ected reg ion < descrzbf 5 *\u
rent cribe E

return 71 %(%xpecte _regio rrenf regzon expected_region;

1. s € V: The states within a distance threshold ¢ to s are gathered, and filtered to those where action
a is the most likely (Spga). The output is the list of differences Vv € Spga, preds(s) — preds(v). If
Spge = I, no explanation is given and it is suggested to increase the threshold.

2. s¢ Vbut3s' € V:dist({s},s') <e, € € R: the state s’ substitutes s in the algorithm above.

3. s ¢ V and no similar state is found: no explanation is given due to lack of information.

As an example, consider the answer to “why the agent did not take the top action in
state {held(Dish), pot_state(Cooking), onion_pos(Left), tomato_pos(Stay), dish_pos(Interact), pot_pos(Top),
service_pos(Bottom), soup_pos(Left)}?", as seen in Figure 9. This state is not part of the policy graph,
whereas the one where dish_pos(Stay) indeed is (the difference being whether the dish pile is in the
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agent’s interact position (s) or south (s'). The predominant action in state s’ is going to the left. This
algorithm’s output is the list of nearby states where the chosen action is top. For example, {held(Dish),
pot_state(Cooking), onion_pos(Left), tomato_pos(Stay), dish_pos(Stay), pot_pos(Right), service_pos(Right),
soup_pos(Top) }, where the nearest soup was on top. Seeing the difference a human interpreter may
understand that the agent has taken the action which brings him closer to the soup. The output of
the algorithm itself is arguably not an explanation, but it gives information which could be useful in
providing one.

* Why did not you perform X in Y state? * Why did not you perform X in Y state?

State: D-Co-L-S-S-T-B-L State: D-Co-L-S-S-T-B-L

I would have chosen: Actions.Left I would have chosen: Actions.Left

I would choose Top if: I would choose Top if:

+ D-Co-L-S-S-R-R-T + D-Co-L-S-S-R-R-T
pot_pos_ 0 = T -> pot_pos_0 =R dish_pos = I -> dish_pos = R
service_pos = B -> service_pos = R pot_pos_0 =T -> pot_pos_0O =R
soup_pos = L -> soup_pos = T service_pos = B -> service_pos = R

soup_pos = L -> soup_pos: T

Figure 9. Example output of the algorithm Why did you not perform action a in state s? from policy graphs
generated for a PPO-trained agent. On the left, the result for the Stochastic Policy Graph; on the right,
the result for the Greedy Policy Graph.

5.4. Can We Rely on These Explanations?

As we mentioned in Section 1, one of the objectives of this project is to test if we can get valid
explanations from an agent behaviour using the explainability method used in [9] in a multi-agent
cooperative environment. In this section, we have seen some examples of the explanations given by
our policy graphs.

We would like to emphasise the fact that not all the explanations given by the policy graph are so
easy to interpret or understand at first sight. For instance, in Figure 9, we have seen that we asked the
policy graph why the agent did not perform the fop action in the state {held(Dish), pot_state(Cooking),
onion_pos(Left), tomato_pos(Stay), dish_pos(Interact), pot_pos(Top), service_pos(Bottom), soup_pos(Left)}.
In this case, the algorithm answered that they would have chosen to go to the left, but the reason
behind this decision is not so clear here, at least at first sight. We could elaborate hypotheses about
the strategy that each agent was playing and maybe they could understand their decision. There is
also the possibility that, in this state, the agent is not choosing the more appropriate action. While
analysing these aspects in more depth is crucial for the objective of achieving better explainability, it is
out of the scope of this paper so we leave it for future work.

The policy graphs derived in the previous sections enable the generation of natural language
explanations. In [8], the explanations are validated by comparing the sentences generated by the
algorithm against sentences written by human experts. While this may be a valid qualitative approach
for validation, it relies on expert availability and on the nature of the specific domain.

Even though sometimes the explanations given by the method are not as illustrative as we
intended, at least we have an explanation. Namely, although at first glance we have not been able
to draw too many conclusions, this method is explaining to us what has to happen for the agent to
take said action. Therefore, it is one more tool to study and analyse the behaviour of these types of Al
models. For all the reasons mentioned above, we can say we have met the goal of extracting useful
explanations from the policy graph.

6. Validating the Policy Graph

To ensure that the policy graphs provide true explanations, we generate a policy graph for each
Overcooked layout based on the trajectories of 1500 episodes on different seeds, and we build surrogate
agents from them as explained in Section 4. In order to test these new surrogate agents, we run them
through the environment for a total of 500 different fixed seeds and track the obtained rewards, the
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amount of previously unknown states encountered, the amount of served soups per episode and the
mean log-likelihood —I = — ¥ log P(s’, a|s) of the original’s trajectories for each policy graph.

In order to gauge the effect of cooperative predicates, we build 4 policy graphs per Overcooked
layout, increasingly more expressive in relation to the state and actions of the agent’s partner. For each
of the 4 policy graphs, we use a different subset of the 10 predicates defined in Section 4. We give these
subsets of predicates the names D11 to D14 (Table 3).

As we saw in Section 4, we are testing 2 different policy graph generation algorithms. Therefore,
we have built 2 surrogate agents for each layout. We call an agent Greedy if its policy is generated
from a Greedy Policy Graph; analogously, we call an agent Stochastic if its policy is generated from a
Stochastic Policy Graph.

All experiment runs on the Overcooked environment have been performed using Python 3.7,
PantheonRL v0.0.1 [23] and Overcooked-AlI v0.0.18. All PPO agents have been trained with Stable
Baselines 3 v1.7.0 [26], while the policy graphs have been generated with NetworkX v2.6.3°

Single-agent

0

Q

Q
as}

held_partner
partner_zone

D11
D12
D13 X
D14 X X

Table 3. Sets of predicates used to generate policy graphs. Note that held_partner and partner_zone are

>

> < % x| object_pos

X X X x| held
X X % x| pot_state

the only cooperative predicates in the sets.

1. § € PG: Picks an action using weights from the probability distribution in the PG.
2. S ¢ PG, but a similar state is found: Same as case 1 but using the similar state.
3. S € PG and a similar state is not found: Pick a random action.

Figure 10 shows the rewards obtained by the different surrogate agents. We can see that in the
simple and unident_s scenarios, the greedy surrogate agents manage to consistently outperform the
original ones while the stochastic ones do not. We can also see how in random1, the greedy agents are
not able to function properly while the stochastic agents almost score as well as the originals. Note
how the addition of the partner_zone predicate to an agent clearly improves its median score or makes
it perform better more consistently in several cases. Examples include the greedy agents for simple,
random3 and random0 and the stochastic agents for simple, random1 and random3. It also can be seen that,
although they may improve performance, in most layouts it is not necessary to introduce cooperative
predicates to explain the surrogate agents’ behaviour. In the random0 scenario, though, the agents need
the predicate partner_zone to get good results.

https:/ /github.com/HumanCompatibleAl/overcooked_ai

https:/ /networkx.org/
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Figure 10. Obtained rewards by the original and surrogate agents in all layouts. Orig. stands for the
original agent, and G and S stand for the greedy and stochastic surrogate agents. G11 to G14 and S11
to D14 respectively refer to the subsets of predicates D11 to D14.

Regarding the encounter of previously unknown states (Table 4), we can see that most of the
greedy surrogate agents get to a very small amount of new states in relation to their policy graph’s
size (i.e. already seen states) and spend very little amount of steps in them in relation with the total
evaluation time. An exception is random_3, for which it appears that there still was a notable amount
of states to explore when building the policy graph. On the other hand, all the stochastic surrogate
agents can consistently arrive to unexplored states to a higher degree than their greedy counterparts.
This is to be expected, as the stochastic nature of the former inherently promotes exploration.

Table 4. Surrogate agent statistics. | PG| represents the size of the agent’s policy graph. NS means
amount of new states encountered, % | PG| represents the amount of new states as a proportion of the
size of the agent’s policy graph, and %steps indicates the percentage of steps during the evaluation
runs that the agent spent in new state. —I is the negative log-likelihood. Note that a previously
unknown state transition would make the log-likelihood go to Infinity, so instead we penalize it by
minpg log P(s',als).

Greedy Stochastic
—1 IPGl | NS %IPGI| %steps | NS %IPGl %steps
D11 | 880.1 475 0 0.0% 0.0% 70 14.7% 1.3%
D12 | 996.2 884 2 0.2% 0.0% 75 8.5% 0.6%
D13 | 1036.2 1045 5 0.5% 0.0% 94 9.0% 0.5%
D14 | 10420 1734 5 0.3% 0.0% 135 7.8% 0.3%

2

0

0

simple

D11 | 696.1 2663 0.1% 0.0% 197 7.4% 1.6%
D12 | 7314 5016 0.0% 0.0% 625 12.5% 3.2%
D13 | 828.2 5256 0.0% 0.0% 530 10.1% 2.3%
D14 | 827.8 8566 29 0.3% 0.3% 1260  14.7% 3.2%
D11 | 760.5 2195 31 1.4% 3.2% 177 8.1% 1.2%
D12 | 787.1 3613 54 1.5% 1.4% 419 11.6% 1.4%
D13 | 859.3 3536 92 2.6% 4.3% 595 16.8% 1.6%
D14 | 878.6 5436 | 161 3.0% 2.1% 827 15.2% 1.3%
D11 | 559.5 202 0.0% 0.0% 12 5.9% 0.2%
D12 | 673.8 464 0.0% 0.0% 49 10.6% 0.1%
D13 | 743.0 422 0.2% 0.0% 19 4.5% 0.0%
D14 | 7774 900 0.6% 0.0% 70 7.8% 0.1%
D11 | 650.5 1793 0.2% 0.3% 133 7.4% 1.6%
D12 | 693.6 3089 1.2% 30.6% 268 8.7% 2.1%
D13 | 7109 2696 0.2% 0.0% 181 6.7% 1.2%
D14 | 7455 4392 0.8% 0.3% 285 6.5% 1.7%

random0 | unident_s| random_3| random_1

@ o @
KoY wur—reoo
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Also on Table 4, we can observe that the episode trajectories achieved by the original agents have
a better mean log-likelihood with the D11 policy graphs than the others. This stems from the fact that
the policy graphs built with D11 have a simpler world representation than those built with D12-14, as
D11 is the smallest subset of predicates in use. As a result, these policy graphs have less entropy.

To summarise, the stochastic policy graphs provide stable surrogate agents that mirror the
original agent’s behaviour consistently. However, greedy policy graphs are a double edged sword:
their surrogate agents can act like distilled versions of the original’s behaviour that remove noise, or
stop functioning because their deterministic nature did not capture fundamental parts of the original’s
behaviour. Thus, stochastic policy graphs are the more reliable choice from an XRL point of view and
should be the one used for producing explanations.

We have also seen that although there are scenarios where it is not necessary to introduce
cooperative predicates to explain the agent’s behaviour, there are others — particularly those that
promote the need for cooperation — where this information is crucial.

7. Conclusions

Explainability in artificial intelligence is a research area that has been rapidly growing in recent
years, due to the need to understand and justify the decisions made by Als, especially in the field of RL.
All the research made in this area can be key not only to study the quality of an agent’s decision but
also to help people rely on Al, especially in situations where humans and machines have to cooperate,
and it is becoming necessary to be able to give explanations about their decisions. There are already
some proposals in the literature to provide them, and it is important to test their effectiveness in
practice.

In this paper, we have presented the procedure and the experimental results of applying
an explainability method, based on the construction of a policy graph by discretising the state
representation into predicates, into a cooperative MARL environment (Overcooked). We have proposed
two different algorithms to generate the policy graph and we have used them to generate explanations
that, following [8], can be transformed into human language expressions. In principle, the quality of
these explanations can be qualitatively validated by human experts with domain-specific knowledge.
Our contribution to this respect is a quantitative validation of the generated policy graphs by applying a
method previously employed into a single-agent environment (Cartpole) [9], automatically generating
policies based on these explanations in order to build agents that represent their original behaviour.
Finally, we have analysed the behaviour of agents following these new policies in terms of their
explainability capabilities, depending on the environmental conditions and we have shown that
relevant predicates for cooperation become also important for the explanations when the environmental
conditions influence the need for such cooperation.

The contributions presented in this paper are part of ongoing research, by testing among different
environments, types of agent policy, and explainability methods. Therefore, several important points
can be explored to complement and advance our work. For example, policy graphs are rarely complete
as seen in Section 6. It would be very interesting to be able to produce a domain-agnostic distance
function that enables a reliable detection of similar states for different environments.

There should also be a more general and comprehensive analysis of the question-answering
capabilities of policy graphs, as this can help quantifying the understandability of the explanations
produced. One way can be via the exploration and creation of new algorithms, adding to the ones
explored in this paper, in order to attend to other modalities that the receivers of explanations might
find important. Additionally, a more thorough study of when and why the policy graphs adjust better
to the original agent, regardless of the specific domain — in terms of, for instance, whether the policy is
greedy or stochastic, or what the relationship between each subset of predicates and the performance
is.

Finally, other environments should be explored. Specifically, Overcooked-Al requires cooperation
in some layouts but this cooperation is not explicitly reflected in the policy but emerging from the
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behaviour. It would be interesting to explore an application of policy graphs in an environment where
there are explicit mechanisms such as communication or cooperative planning. In competitive or
mixed-motive environments, such as StarCraft II [27], Neural MMO [28], Google Research Football!?,
or Multi-Agent Particle [29], there also exists potential in using policy graphs to create a model of the
behaviour of opponent agents based on observations. The resulting graph could be leveraged by an
agent using Graph Neural Networks (GNN) [30] to change its own behaviour with the purpose of
increasing performance against specific strategies previously encountered.
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The following abbreviations are used in this manuscript:

XAI Explainable Artificial Intelligence
GDPR  General Data Protection Regulation

RL Reinforcement Learning
XRL Explainable Reinforcement Learning
PG Policy Graph

MARL  Multi-Agent Reinforcement Learning

SFT Soft Decision Tree

LIME  Local Interpretable Model-agnostic Explanations
SHAP  SHapley Additive exPlanations

PPO Proximal Policy Optimization

TL Transferred Learning
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