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Article 

Info- Geometric Analysis of the Stable 𝑮/𝑮/𝟏 Queue 
Manifold Dynamics with 𝑮/𝑮/𝟏 Queue 
Applications to E-Health 

Ismail A Mageed 

School of Computer science, AI, and Electronics; University of Bradford, United Kingdom; 
drismailamageed@yahoo.com 

Abstract: Information geometry is a mathematical framework that analyses the structure of statistical models 

using concepts from differential geometry. It treats families of probability distributions as manifolds, where 

the parameters of each model determine the coordinate charts. By applying info-geometric tools, we can gain 

insights into the characteristics of these models. The approach involves characterizing the queueing system's 

manifold using information geometry and presenting the exponential of the information matrix. This 

integration of information geometry with queueing theory provides a novel perspective for analyzing the 

dynamics of queueing systems, incorporating relativistic and  Riemannian concepts. Some 𝐺/𝐺/1  

applications to E-health are highlighted. Finally,  closing remarks and the next phase of research.  

Keywords: stable 𝐺/𝐺/1  queue; service times (ST); service utilization (SU); fisher information 

matrix(FIM); FIM exponential matrix of the 𝑆𝑡𝑎𝑏𝑙𝑒 𝐺/𝐺/1 queue manifold (𝑒𝑆𝑡𝑎𝑏𝑙𝑒 𝐺/𝐺/1 𝑄𝑀 ) 
 

1. Introduction 

Information geometry (IG) is a field that applies differential geometry techniques to statistics. It 

aims to use non-Euclidean geometry methods to analyze probability distributions and stochastic 

processes. IG is a cutting-edge geometric methodology that analyses models and visualizes geometry 

from an IG perspective. IG has wide applicability in various domains, including machine learning. 

This approach offers new insights and tools for understanding complex data and improving 

modeling techniques[1]. What's more interesting is that statistical manifolds (SMs) were studied with 

IG. In Figure 1, the probability 𝑝(𝑥|𝜃) is coined each point in 𝑆𝑀(𝜃), 𝜃 ∈ ℝ𝑛[2] 

 

Figure 1. SM’s parametrization (c.f., [2]). 

A smooth statistical manifold is described mathematically by FIM from an info-geometric 

perspective. By quantifying the informative gap between measurements, FIM makes statistical data 

analysis and comparison possible. 
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Amari  and Dodson investigated a few exponential distributions and provided geometric 

structures [3]. An analogue of the regular exponential function for square matrices is the matrix 

exponential. Systems of linear differential equations are solved with it. Furthermore,  Lie groups are 

matrix exponential-based [4].  

The geometry of 𝑀/𝐷/1  queues has only been the subject of one research work was a 

motivation behind  starting this new to the knowledge analysis of queues, which connects 

information and matrix theories with differential geometry. 

Following Euclidean space, geodesics are straight lines' analogues and share many of their 

characteristics, see Figure 2. Objects move on a geodesic in curved space-time according to General 

Relativity (GR), extremizing exact timing within  locations. Thus, both space-time and curved spaces 

geometries are described by the same mathematics. Developing GR presented Einstein with its 

greatest mathematical challenge. In addition, a geodesic is a "straight line on a curved surface" that 

reduces the separation between two points. 

 

Figure 2. How curved surfaces’ geodesics are geometrically represented (c.f., [6]). 

In addition to measuring two distribution functions’ shape similarity, FIM also relates to how 

much information each distribution function has regarding the parameter of the statistical manifold's 

probability density function. 

This paper contributes to i) Obtaining the stable 𝐺/𝐺/1 queue manifold FIM and its inverse. ii) 𝑒𝑆𝑡𝑎𝑏𝑙𝑒 𝐺/𝐺/1 𝑄𝑀 is shown to solve  
𝑑𝑥 𝑑𝑡  = Ax.  

This is how the remainder of the paper is structured: A preliminary set of definitions related to 

information geometry is presented in Section 2. Section 3 introduces FIM, its inverse for a stable 𝐺/𝐺/1 QM. In Section 4, one can derive𝑒𝑆𝑡𝑎𝑏𝑙𝑒 𝐺/𝐺/1 𝑄𝑀 . Some S 𝐺/𝐺/1  applications to E-health are 

overviewed in section 5. Finally, Section 6 includes conclusions, some proposed open problems, and 

recommendations for further study. 

2. IG main definitions 

Definition 2.1 [7,8] 

1.We call 𝑀 = {𝑝(𝑥, 𝜃)|𝜃𝜖Θ} an SM and 𝑝(𝑥, 𝜃) is the probability density function.  

2. The potential function Ψ is given by 𝐶(𝑥) + ∑ 𝐹𝑖𝑖 −Ψ(θ) = 𝑙 𝑛(𝑝(𝑥; 𝜃)) = ℒ(𝑥; 𝜃)                                                                  (2.1) 𝑀 = {ℒ(𝑥; 𝜃)| 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛)𝜖ℝ𝑛}  an n-dimensional distribution manifold, with a coordinate 

system, namely (𝜃1, 𝜃2, … , 𝜃𝑛). 
Definition 2.2 [7,8]. Ψ(𝜃) of (2.1) is  the coordinates only part of (−ℒ(𝑥; 𝜃)) 
Definition 2.3 [7,8]. FIM, namely for  𝑖, 𝑗 = 1,2, … , 𝑛  [𝑔𝑖𝑗], reads as: [𝑔𝑖𝑗] = [ ∂2∂𝜃𝑖 ∂𝜃𝑗 (Ψ(𝜃))]                                                          (2.2) 

Definition 2.4[7,8]. For FIM,  the inverse matrix of [𝑔𝑖𝑗] reads as 

[𝑔𝑖𝑗]= ([𝑔 𝑖𝑗]) )−1 = 𝑎𝑑𝑗[𝑔𝑖𝑗]∆ , ∆= det[𝑔𝑖𝑗] =I, 𝑗 = 1,2, … , 𝑛.                    (2.3) 
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The FIM’s arc length representation reads as  (𝑑𝑠)2 = ∑ 𝑔𝑖𝑗𝑛𝑖,𝑗=1 (𝑑𝜃𝑖)(𝑑𝜃𝑗)                                                (2.4) 

Definition 2.6[9] 

(1) Observing  𝑑𝑥𝑑𝑡 = 𝐴𝑥                                     (2.14) 

The matrix exponential                                      𝑒𝐴  = ∑ 𝐴𝑖𝑖!∞𝑖=0 =  𝐼 + 𝐴 + 𝐴22! +⋯+ 𝐴𝑘𝑘!+....                             (2.15) 

solves (2.14). 

(2) Let Φ(𝛿) = det(A − δI)                                                                                                 (2.16) 

Assuming that Φ(𝛿) = (𝛿) = det(A − δI) = 0,                                                                                 (2.17) 𝛿  of (2.17) are referred to eigen values that correspond to 𝑥, such that: 𝐴𝑥 =  𝛿𝑥                                                                                                   (2.18) 

Another way to represent   𝑒𝐴   will be:     𝑒𝐴  = 𝑇  𝑒𝐷𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑇−1                                                                                                                        (2.19) 𝐷𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 defines 𝛿 −matrix diagonalization and T is matrix with only the obtained 𝛿 as columns. 

3. 𝑭𝑰𝑴 𝑮/𝑮/𝟏𝑸𝑴 

By [17], the stable 𝐺/𝐺/1 queue’s Shannonian optimization  reads 𝑝(𝑛) = {1 − 𝜌,                    𝑛 = 0(1 − 𝜌)𝑔𝑥𝑛,       𝑛 ≥ 1    ,                                                                                                   (3.1) 

𝑔 = 𝜌2(𝐿−𝜌)(1−𝜌) , 𝑥 =  𝐿−𝜌𝐿 , and 𝐿 = 𝜌2 (1 + 𝐶𝑎2+𝜌𝐶𝑠21−𝜌 ) (Mean queue length of 𝐺/𝐺/1 queue, 𝜌 defines SU 

and 𝐶𝑠2 denotes  ST’s squared coefficient of variation). 𝑝(𝑛) (c.f., (3.1)) will re-write to:                           𝑝(𝑛) =
{ 1 − 𝜌,                    𝑛 = 02𝜌(𝛾+𝜌𝛽1−𝜌 −1)𝑛−1((𝛾+𝜌𝛽1−𝜌 +1)𝑛 ,       𝑛 ≥ 1                                                                                                          (3.2) 

where 𝛾 = 𝐶𝑎2, 𝛽 =  𝐶𝑠2. 
The reader should note that  the case 𝛾 = 𝐶𝑎2 = 1 in (3.2), reduces to the special case of 𝑀/𝐺/1 QM 

[18].  

Theorem 3.1. 𝐺/𝐺/1 QM satisfies:  

(i) [𝑔𝑖𝑗] is   

[𝑔𝑖𝑗] = [𝑎 𝑏 𝑐𝑏 𝑒 𝑑𝑐 𝑑 𝑓]                                                                                                                               (3.3) 

with 𝑎 = 1𝜌2 − (𝛾+𝛽)(−𝛾+𝛽+2−2𝜌(𝛽+1))((1−𝜌)(𝛾−1+𝜌(𝛽+1))2                         (3.4) 

𝑏 =  − (𝛽+1)(𝛾−1+𝜌(𝛽+1)2                                      (3.5) 
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𝑐 =  𝛾−1(𝛾−1+𝜌(𝛽+1)2                                   (3.6) 

𝑑 =  − (𝜌)(𝛾−1+𝜌(𝛽+1)2                                   (3.7) 

𝑒 = −1(𝛾−1+𝜌(𝛽+1)2                                    (3.8) 

𝑓 =  − 𝜌2(𝛾−1+𝜌(𝛽+1)2                                  (3.9) 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 are as  defined above and ∆ = (𝑎𝑒𝑓 + 2𝑐𝑏𝑑 − (𝑎𝑑2 + 𝑓𝑏2 + 𝑒𝑐2)) ≠ 0    (3.10)  

(ii) IFIM reads as: 

[𝑔𝑖𝑗] = ([𝑔𝑖𝑗]) )−1 = 𝑎𝑑𝑗[𝑔𝑖𝑗]∆  =[𝐴 𝐵 𝐶𝐵 𝐸 𝐷𝐶 𝐷 𝐹]  ,                 (3.11) 

with 

   𝐴 =  𝑒𝑓−(𝑑)2∆                                          (3.12) 

𝐵 =  𝑐𝑑−𝑏𝑓∆                                          (3.13) 

𝑪 =  𝑏𝑑−𝑒𝑐∆                                 (3.14) 

𝐸 =  𝑎𝑓−(𝑐)2∆                                    (3.15) 

𝐷 = 𝑏𝑐−𝑎𝑑∆                                            (3.16) 

𝐹 = 𝑎𝑒−(𝑏)2∆                                     (3.17) 

Proof 

(i) By (3.2), one gets 

(I) 𝑝(0) = 1 − 𝜌. Thus, 

   ℒ(𝑥; 𝜃) =  𝑙 𝑛(1 − 𝜌) , 𝜃 =  𝜃1 =  𝜌                                                                          (3.18) Ψ(𝜃) = −𝑙 𝑛(1 − 𝜌)                                                  (3.19) 

Hence, 𝜕1 = 𝜕Ψ𝜕𝜌 = 11−𝜌                             (3.20) 

𝜕1𝜕1 = 𝜕2Ψ𝜕𝜌2 = 1(1−𝜌)2                                                                          (3.21) 

Therefore, FIM reads: [𝑔𝑖𝑗] = [𝜕2Ψ𝜕𝜌2]= [ 1(1−𝜌)2]                                                                     (3.22) 

IFIM is: [𝑔𝑖𝑗] = [𝑔𝑖𝑗]−1 = [(1 − 𝜌)2]                     (3.23) 

Case II: when 𝑛 ≥ 1 , it follows that:  
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               ℒ(𝑥; 𝜃) = (𝑙𝑛2 + 𝑙 𝑛(𝜌) + (𝑛 − 1)𝑙 𝑛 (𝛾+𝜌𝛽1−𝜌 − 1) − 𝑛𝑙𝑛 (𝛾+𝜌𝛽1−𝜌 + 1),                                                   
(3.24)     𝜃 =  (𝜃1, 𝜃2, 𝜃3) = (𝜌, 𝛾, 𝛽)  Ψ(𝜃) =  𝑙 𝑛 (𝛾+𝜌𝛽1−𝜌 − 1) − 𝑙𝑛2 − 𝑙 𝑛(𝜌)                                                          (3.25) 

Therefore,  𝜕1 = 𝜕Ψ𝜕𝜌 = − 1(𝜌)+  𝛾+𝛽(1−𝜌)(𝛾−1+𝜌(𝛽+1)                                                 (3.26) 

𝜕2 = 𝜕Ψ𝜕𝛾 = 1(𝛾−1+𝜌(𝛽+1)                                                                  (3.27) 

𝜕3 = 𝜕Ψ𝜕𝛽 = 𝜌(𝛾−1+𝜌(𝛽+1)                                                        (3.28) 

𝜕1𝜕2 = − (𝛽+1)(𝛾−1+𝜌(𝛽+1)2 = 𝜕2𝜕1                                       (3.29) 

𝜕1𝜕3 = (𝛾−1)(𝛾−1+𝜌(𝛽+1)2 = 𝜕3𝜕1                                                                              (3.30) 

𝜕1𝜕1 = 1𝜌2 − (𝛾+𝛽)(−𝛾+𝛽+2−2𝜌(𝛽+1))((1−𝜌)(𝛾−1+𝜌(𝛽+1))2                            (3.31) 

𝜕2𝜕2 = −1(𝛾−1+𝜌(𝛽+1)2                                            (3.32) 

𝜕2𝜕3 = − (𝜌)(𝛾−1+𝜌(𝛽+1)2 = 𝜕3𝜕2                                                                          (3.33) 

𝜕3𝜕3 = − 𝜌2(𝛾−1+𝜌(𝛽+1)2                                        (3.34) 

Hence, (i) follows. 

As 𝛾 = 1,  we have 𝑎 = 1(1−𝜌)2, 𝑏 =  − 1𝜌2(𝛽+1  ,  𝑐 =  0, 𝑑 =  − 1𝜌(𝛽+1)2  , 𝑒 = −1(𝜌(𝛽+1)2  , 𝑓 =  − 1(𝛽+1)2. 
(ii) The FIM’s determinant reads  ∆= det[𝑔𝑖𝑗] = ∆ = (𝑎𝑒𝑓 + 2𝑐𝑏𝑑 − (𝑎𝑑2 + 𝑓𝑏2 + 𝑒𝑐2)) ≠ 0. Hence, IFIM exists. 

The corresponding IFIM reads as  

[𝑔𝑖𝑗] = ([𝑔𝑖𝑗]) )−1 = 𝑎𝑑𝑗[𝑔𝑖𝑗]∆  = =  [𝐴 𝐵 𝐶𝐵 𝐸 𝐷𝐶 𝐷 𝐹]  ,                                        (3.35) 

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 are given above. This proves (ii). 

4. 𝒆𝑺𝒕𝒂𝒃𝒍𝒆 𝑮/𝑮/𝟏 𝑸𝑴  
Preliminary Theorem 4.1[10] 

The solution of the cubic equation  𝑎′𝑤3 + 𝑏′𝑤2 + 𝑐′𝑤 + 𝑑′ = 0                                                                                            (4.1) 

is characterized arbitrarily by 𝑦 = 𝑧 − 𝜎𝑧 ,                                           (4.2) 𝑤 = 𝑦 − 𝑏′3𝑎′,                                                                         (4.3) 
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𝑧 = √(− 𝜀12 ) ± √𝜀23 ,                                                              (4.4) 

𝜀1 = 2(𝑏′)327 + 𝑑′𝑎′ − 𝑏′𝑐′3(𝑎′)2,                                                       (4.5) 

𝜀2 = (𝜀1)24 + (𝜀3)327 ,                                                                  (4.6) 
where 𝜀3 is given by 𝜀3 = − (𝑏′)23(𝑎′)2 + 𝑐′𝑎′                         (4.7) 𝜀2 is called the discriminant of the cubic equation. 

Theorem 4.2. 𝒆𝑺𝒕𝒂𝒃𝒍𝒆 𝑮/𝑮/𝟏 𝑸𝑴   solves  
𝑑𝑥𝑑𝑡  =Ax. 

Proof         

Recall that FIM of the stable 𝐺/𝐺/1 QM [𝑔𝑖𝑗], 𝑖, 𝑗 =  1,2,3 is given by 

                                                             [𝑔𝑖𝑗] = [𝑎 𝑏 𝑐𝑏 𝑒 𝑑𝑐 𝑑 𝑓] ,                                                                       (4.8) 

where 𝑎 = 1𝜌2 − (𝛾+𝛽)(−𝛾+𝛽+2−2𝜌(𝛽+1))((1−𝜌)(𝛾−1+𝜌(𝛽+1))2                                               (4.9) 

𝑏 =  − (𝛽+1)(𝛾−1+𝜌(𝛽+1)2                                                 (4.10) 

𝑐 =  𝛾−1(𝛾−1+𝜌(𝛽+1)2                                               (4.11) 

𝑑 =  − (𝜌)(𝛾−1+𝜌(𝛽+1)2                                                   (4.12) 

𝑒 = −1(𝛾−1+𝜌(𝛽+1)2                                              (4.13) 

𝑓 =  − 𝜌2(𝛾−1+𝜌(𝛽+1)2                              (4.14) 

Now, we have 

Φ(𝛿) = (𝛿) = det([𝑔𝑖𝑗] − δI) = det [𝑎 − 𝛿 𝑏 𝑐𝑏 𝑒 − 𝛿 𝑑𝑐 𝑑 𝑓 − 𝛿] = 0 . Hence, it holds that: 

(𝑎 − 𝛿)[(𝑒 − 𝛿)(𝑓 − 𝛿) − 𝑑2] − 𝑏[𝑏(𝑓 − 𝛿) − 𝑐𝑑] + 𝑐[𝑏𝑑 − 𝑐(𝑒 − 𝛿)] = 0  (4.15). Thus, it holds that               𝛿3 − (𝑎 + 𝑎(𝑒 + 𝑓) − 𝑑2)𝛿2 + (𝑎(𝑒 + 𝑓) − 𝑏2 − 𝑐2)𝛿 + (𝑏2𝑓 + 𝑐2𝑒 + 𝑎𝑑2 − 2𝑏𝑐𝑑)= 0.    (4.16)  

We have  𝑎′ = 1, 𝑏′ = −(𝑎 + 𝑎(𝑒 + 𝑓) − 𝑑2), 𝑐′ = (𝑎(𝑒 + 𝑓) − 𝑏2 − 𝑐2), 𝑑′ = (𝑏2𝑓 + 𝑐2𝑒 + 𝑎𝑑2 − 2𝑏𝑐𝑑)  (4.17) 

By the preliminary theorem (4.1), it is implied that 𝑦 = 𝑧 − 𝜀3𝑧  , 𝛿 = 𝑦 − 𝑏′3𝑎′  , 𝑧 = √(− 𝜀12 ) ± √𝜀23 , 𝜀1 = 2(𝑏′)327 + 𝑑′𝑎′ − 𝑏′𝑐′3(𝑎′)2 ,  𝜀2 = (𝜀1)24 + (𝜀3)327 , 𝜀3 = − (𝑏′)23(𝑎′)2 + 𝑐′𝑎′ 
We have 
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𝜀3 = − ((𝑎+𝑎(𝑒+𝑓)−𝑑2))23 + (𝑎(𝑒 + 𝑓) − 𝑏2 − 𝑐2)          (4.18) 

𝜀1 = − 2((𝑎+𝑎(𝑒+𝑓)−𝑑2))327 + (𝑏2𝑓 + 𝑐2𝑒 + 𝑎𝑑2 − 2𝑏𝑐𝑑) + (𝑎+𝑎(𝑒+𝑓)−𝑑2)(𝑎(𝑒+𝑓)−𝑏2−𝑐2) 3            (4.19) 

𝜀2 = (𝜀1)24 + (𝜀3)327
= ( (− 2((𝑎 + 𝑎(𝑒 + 𝑓) − 𝑑2))327 + (𝑏2𝑓 + 𝑐2𝑒 + 𝑎𝑑2 − 2𝑏𝑐𝑑) + (𝑎 + 𝑎(𝑒 + 𝑓) − 𝑑2)(𝑎(𝑒 + 𝑓) − 𝑏2 − 𝑐2),3 )24+ 

(−((𝑎+𝑎(𝑒+𝑓)−𝑑2))23 +(𝑎(𝑒+𝑓)−𝑏2−𝑐2))327 )                            (4.20) 

implies that  we can obtain the required values eigen values   𝛿1,2,3   for  (4.16). Therefore, the 

diagonal matrix 𝐷𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 is given by 

𝐷𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 =   [  𝛿1 0 00   𝛿2 00 0   𝛿3]                                   (4.21) 

The eigen vector 𝑥 𝛿1= 𝑐 corresponding to   𝛿1 satisfies  

[𝑎 −   𝛿1 𝑏 𝑐𝑏 𝑒 −   𝛿1 𝑑𝑐 𝑑 𝑓 −   𝛿1] (𝑥1𝑥2𝑥3)= (000)                   (4.22) 

This implies (𝑎 −    𝛿1) + (𝑏 −    𝛿1)𝑥2 + 𝑐𝑥3 = 0                           (4.23) 𝑏𝑥1 + (𝑒 −    𝛿1)𝑥2 + 𝑑𝑥3 = 0                                (4.24) 𝑐𝑥1 + 𝑑𝑥2 + (𝑓 −   𝛿1)𝑥3 = 0                               (4.25) 

By (4.24), 𝑥1 =  (  𝛿1−𝑒)𝑥2−𝑑𝑥3𝑏   (4.26). Consequently, by (4.25) and (4.23), it is implied that: 

𝑐((  𝛿1−𝑒)𝑥2−𝑑𝑥3𝑏 ) + 𝑑𝑥2 + (𝑓 −   𝛿1)𝑥3  = 0 (4.27). Therefore,  𝑥2 =  ((  𝛿1−𝑓)+𝑐𝑑𝑏 )𝑥3(𝑑+𝑐(  𝛿1−𝑒)𝑏 ) (4.28).  Similarly, we 

have  

 𝑥1 =  (𝑏(𝑓−  𝛿1)−𝑐(𝑑+1)𝑑+𝑐𝑏( 𝛿1−𝑓) −𝑐)𝑥3(𝑎−  𝛿1)                                      (4.29) 

Hence, it is implied that 

𝑥 𝛿1=(  
 (𝑏(𝑓−  𝛿1)−𝑐(𝑑+1)𝑑+𝑐𝑏( 𝛿1−𝑓) −𝑐)(𝑎−  𝛿1)((  𝛿1−𝑓)+𝑐𝑑𝑏 )(𝑑+𝑐(  𝛿1−𝑒)𝑏 )1 )  

 𝑥3 , 𝑥3 ≠ 0                                  (4.30) 

Also,  𝑥 𝛿2 corresponding to 𝛿2  reads 
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𝑥 𝛿2=(  
 (𝑏(𝑓−  𝛿2)−𝑐(𝑑+1)𝑑+𝑐𝑏( 𝛿2−𝑓) −𝑐)(𝑎−  𝛿2)((  𝛿2−𝑓)+𝑐𝑑𝑏 )(𝑑+𝑐(  𝛿2−𝑒)𝑏 )1 )  

 𝑥3, 𝑥3 ≠ 0                                     (4.31) 

And 𝑥 𝛿3=(  
 (𝑏(𝑓−  𝛿3)−𝑐(𝑑+1)𝑑+𝑐𝑏( 𝛿3−𝑓) −𝑐)(𝑎−  𝛿3)((  𝛿3−𝑓)+𝑐𝑑𝑏 )(𝑑+𝑐(  𝛿3−𝑒)𝑏 )1 )  

 𝑥3, 𝑥3 ≠ 0                  (4.32) 

Hence, the matrix T is determined by 𝑇 = [  𝑎1   𝑎2   𝑎3  𝑏1   𝑏2   𝑏31 1 1 ]                                               (4.33) 

  𝑎1 = (𝑏(𝑓−  𝛿1)−𝑐(𝑑+1)𝑑+𝑐𝑏( 𝛿1−𝑓) −𝑐)(𝑎−  𝛿1)  ,   𝑎2 = (𝑏(𝑓−  𝛿2)−𝑐(𝑑+1)𝑑+𝑐𝑏( 𝛿2−𝑓) −𝑐)(𝑎−  𝛿2) ,   𝑎3 = (𝑏(𝑓−  𝛿3)−𝑐(𝑑+1)𝑑+𝑐𝑏( 𝛿3−𝑓) −𝑐)(𝑎−  𝛿3) ,   𝑏1 = ((  𝛿1−𝑓)+𝑐𝑑𝑏 )(𝑑+𝑐(  𝛿1−𝑒)𝑏 ) ,   𝑏2 =
 ((  𝛿2−𝑓)+𝑐𝑑𝑏 )(𝑑+𝑐(  𝛿2−𝑒)𝑏 )  , 

  𝑏3 = 
((  𝛿3−𝑓)+𝑐𝑑𝑏 )(𝑑+𝑐(  𝛿3−𝑒)𝑏 )                                            (4.34) 

After some manipulation, it is implied that: △𝑇= det(𝑇) =  [ 𝑎1(  𝑏2 −   𝑏3) −   𝑎2(  𝑏1 −   𝑏3) +   𝑎3(  𝑏1 −   𝑏2)]  ≠ 0                                       (4.35) 

As a necessity that 𝑇−1 should exist. 

After some mathematical manipulation: 

 𝑇−1= 
1△𝑇 [  𝑏2 −   𝑏3   𝑎3 −   𝑎2   𝑎2 𝑏3 −   𝑎3  𝑏2  𝑏3 −   𝑏1   𝑎1 −   𝑎3   𝑎3 𝑏1 −   𝑎1  𝑏3  𝑏1 −   𝑏2   𝑎2 −   𝑎1   𝑎1 𝑏2 −   𝑎2  𝑏1]                                                   (4.36) 

Therefore,  𝑒𝑆𝑡𝑎𝑏𝑙𝑒 𝐺/𝐺/1 𝑄𝑀  reads 

𝑒𝐴 =  𝑇𝑒𝐷𝑇−1 =  𝑇−1 [𝑒  𝛿1 0 00 𝑒  𝛿2 00 0 𝑒  𝛿3] 𝑇                        (4.37) 

The achieved result in (4.37) presents a novel contribution , that is 𝑒𝑆𝑡𝑎𝑏𝑙𝑒 𝐺/𝐺/1 𝑄𝑀  is a solution to  𝑑𝑥𝑑𝑡  = Ax. 

5. How can  𝑮/𝑮/𝟏 queue advance  E-health. 

The advancementsin e-health applications bring about new challenges for designers and 

maintainers. These challenges include ensuring timely transmission of health information, 

addressing limitations in model building and training, navigating regulatory issues related to data 

sharing, and safeguarding the privacy and security of medical data. Additionally, the current COVID 

pandemic emphasizes the need for safety in both virtual and physical environments. In [11], the 

authors have developed a framework for creating secure, responsive, and intelligent e-health 

applications. The framework focuses on three main components: Analyze, Acquire, and 

Authenticate, which cover the entire data lifecycle in e-health applications. The goal is to address the 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2024                   doi:10.20944/preprints202401.1813.v1

https://doi.org/10.20944/preprints202401.1813.v1


 9 

 

challenges related to data security, privacy, and the need for reliable medical decision support in the 

context of e-health. This can be visualized by Figure 4 (c.f., [11]). 

 

Figure 4. The framework overview refers to a comprehensive approach for developing secure, 

responsive, and intelligent e-health applications. It addresses challenges related to data protection, 

regulatory compliance, and the evolving nature of hybrid systems. The framework focuses on three 

key components: Analyze, Acquire, and Authenticate, covering the entire data lifecycle in e-health 

applications, and offers flexibility by accommodating different paradigms and stages of application 

development. 

Regarding unrelated topics, discussed the traffic patterns of an IP network with multiple 

services, each of which has its distribution law. Specifically, it mentions the 𝐺/𝐺/1 analysis system, 

which is a mathematical model used to analyze single-server systems with arbitrary inter-arrival 

times and unspecified service time distributions. The analysis of such systems is considered complex 

due to the incomplete understanding of the process dispersion. However, the standard 𝐺/𝐺/1 

model does not provide such solutions, except for certain distributions like the exponential 

distribution. The authors have also noted the necessity for additional study to look into effective 

systems that may be utilized to take this research a step ahead. 

Systems service’s arrival process descriptions are usually constrained to a small number of 

significant moments that define their distributions. Statistical metrics such as the coefficient of 

random variation or the root-mean-square deviation are used to express these moments, which are 

often the first two. Nonetheless, the irregular flow of incoming requests alters the working 

characteristics and makes it difficult to determine the precise result of the system's performance. 

Although the influence of higher-order moments decreases with increasing order number, the 

average delay is still dependent on the first two moments.The variabilityof the request service 

duration and the variability of the intervals between requests are represented by the squared 

coefficient of variation (CV). In these computations, the average values of the service rate, service 

time distribution mean, and request flow intensity (arrival rate) are used. 

Figure 3 provides a visual representation of the relationships involved in estimating the quality 

and time parameters of network traffic service units. As demonstrated in [12], the variation 

coefficient—which is established by the root-mean-square deviation—determines the system’s  

perceived time delay. This suggests that online traffic, like video-on-demand and Internet Protocol 

Television (IPTV), which have high variation coefficients, should be buffered to mitigate delays. 

During the transfer of data in communication networks for E-health applications, small packet losses 

are considered acceptable. Packet losses due to errors in communication channels with FOCL (Fibre 

Optic Cable Lines) deployment are possible, however they are not very significant. Figure 5's results 

demonstrate that the communication network data's properties are thought to be appropriate for use 

in e-health applications. 
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Figure 3. A Stable G/G/1 queue. 

 

Figure 5. The correlation between packet arrival intensity and delay time in a network. It shows that 

the delay time grows together with the intensity of packet arrival. In terms of qualitative and temporal 

aspects, this information is critical for comprehending and calculating the network traffic service unit. 

Figure 6 (c.f., [12]) illustrates the relationship between CPU overloading and packet loss 

likelihood. In E-health applications, where load capacity is usually not substantial and seldom 

reaches its maximum, the figure shows that lowering the load capacity improves packet loss 

performance. 

 

Figure 6. The relationship between packet loss probability and processor overloading in a 

communication network. It states that as the load capacity applied to the processor decreases, the 

packet loss probability improves. This information is relevant for applications like E-health, where 

low packet loss is desirable, as the load capacity in medical applications is typically not significant. 
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The proposed work of  conducted a comprehensive analysis of the MSSN (Multi-Service 

Switched Network) for its application in E-health. The analysis focuses on using the 𝐺/𝐺/1 

mathematical model to evaluate the system's capacity, considering a single-channel system with 

general flow and request characteristics. The goal is to understand the system's performance and 

suitability for E-health applications based on factors like service duration and distribution. 

The authors address the likelihood of packet loss (Ploss) in a network in the context of [12], 

which is based on the quantity of dropped packets over a particular amount of time. The total of the 

waiting time in the buffer, packet processing time, and other variables is known as the packet service 

delay. Using the 𝐺/𝐺/1 mathematical model, the authors hope to analyse a multi-service network 

for E-health applications while taking into account variables such as packet loss probability, latency, 

and jitter. In this instance, the authorsmeasured the network development qualitatively for their 

suggested model and contrasted it with methods that are frequently employed in E-health 

applications. In accordance with the Norros methodology, they also assessed the buffer space size to 

provide adequate service quality[13]. Additionally, they formulated a service quality algorithm for 

multi-service telecommunication networks, considering various mechanisms for queue formation 

and overloading control. 

6. Conclusions and Future Work 

In summary,  this study reveals both FIM and IFIM  for the 𝐺/𝐺/1 QM. Finally, it has been 

proven that 𝐹𝐼𝑀 𝐺/𝐺/1𝑄𝑀  solves 

 
𝑑𝑥 𝑑𝑡= Ax. Notably, the strength of 𝐺/𝐺/1 queue to advance E-health is highlighted. Next phase 

of research includes the  determination of the IG structure of the Service Model manifold (c.f., [14]), 

the derivation of the information geometric structure of the Generalized Feller Pareto manifold(c.f., 

[15]), and IG powerful tools to geometrically interpret photon statistics and other unexplored 

phenomena in physics. 
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