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Abstract: Semi-continuous data are very common in the social science and economics. In this paper,

a Bayesian variable selection procedure is developed to assess the influence of exogenous factors

including observed and unobserved on the semi-continuous data. Our formulation is based on

the two-part latent variable model with polytomous response. We consider two schemes for the

penalties of regression coefficients and factor loadings: the Bayesian spike and slab bimodal prior

and the Bayesian lasso prior. Within the Bayesian framework, we implement Markov Chains Monte

Carlo sampling method to conduct posterior inference. To facilitate posterior sampling, we recast

the logistic model in part one as the norm-like mixture model. Gibbs sampler is designed to draw

observations from the posterior. Our empirical results show that with suitable hyper-parameters,

the spike and slab bimodal method slightly outperforms the Bayesian lasso in the current analysis.

Finally, a real example related to the China household finance survey is analyzed to illustrate the

application of the methodology.

Keywords: two-part latent variable model; spike and slab prior; Bayesian lasso, MCMC sampling;

CHFS

MSC: 62H12; 62F15

1. Introduction

Semi-continuous data, characterized by excessive zeros, are very common in the fields of social

science and economics. A typical example is given by [1] in the analysis of medical expenditures,

in which the zeros correspond to a subpopulation of patients who do not use health services, while

the positive values describe the actual levels of expenditures in use among users. In understanding

such type of data structure, two-part model [2] is a widely appreciated statistical method. The

basic assumption on two-part model is that the overall model is consisted of two processes: one

binary process (Part one) and one continuous positive-valued process (Part two). The binary process,

usually formulated within the logistic or probit regression model, is used to indicate whether the

items are responded or not, while the continuous process, conditioning on the binary process, is used

to describe what the actual levels of responses are (see, e.g., [3]). By combining two processes into

one, two-part model provides a unified and flexible way in describing various relevance underlying

semi-continuous data. Now, two-part model has been widely used in the health service [4–6], the

medical expenditures [1,7–9], the household finance [10], the substance use study [11,12] and the

genome analysis [13].

The traditional two-part model usually formulates the exogenous explanatory factors as fixed

and observed. However, in the real applications especially in the social survey, many unobserved/latent

and random factors also have important impacts on the outcome variable. This fact is revealed by [14]

in the study of children’s aggressive behavior. [14] noted that two factors, the propensity to engage

in aggressive behavior and the propensity to have high aggressive activity levels, had significant

influence on the children’s aggressive behavior. They incorporated such two latent factors into analysis

and established a two-component-two-part mixture model to identify the heterogeneity of population;
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[15] noticed that in China, the finance literacy of a family had a nonignorable influence on the desire

to holding finance debts, and also affected the amount of finance debt being held. They suggested

conducting a joint analysis of latent factor and observed covariates in two-part regression model.

The latent factor is further manifested by multiple binary measurements via factor analysis model.

[16] incorporated two-part regression model into the general latent variable model framework and

analyzed the internal relationships between multiple factors longitudinally. These methods have

brought significant attention to the two-part model in behavioral science, economics, psychology, and

medicine in recent years, see for example, [13,17,18] and references therein for further developments

of two-part model.

In the analysis of semi-continuous data, an important issue is to determine which explanatory

factor is helpful in improving model fit. This issue is especially true when the number of exogenous

factors is large since the commonly used forward and backward regression procedure is extremely

time-consuming. Now, lasso and its extensions [19–26] have been the most commonly used methods

for the feature extraction. A typical feature of these methods is to put some suitable penalties on

the coefficients and shrink many coefficients to zero, thus performing variable selection. Recently,

these penalization/regularizatio approaches have been applied widely for prediction and prognosis

(see for example, [27,28]). Though more appealing, the lasso-type regularization also suffers some

limitations. For example, most contributions are developed within the frequency framework and

the performance heavily depends on the large sample theory. It also readily leads to computational

difficulty in the analysis of mixed data. An alternative for the variable selection is conducted within the

Bayesian framework. Statisticians have introduced hierarchical models with mixture spike-and-slab

priors that can adaptively determine the amount of shrinkage [29,30]. The spike-and-slab prior is

the fundamental basis for most Bayesian variable selection approaches, and has proved remarkably

successful [29–35]. Recently, Bayesian spike-and-slab priors have been applied to predictive modeling

and variable selection in large scale genomic studies, see [36] for a simple review. Nevertheless, model

selection has never been considered in the two-part regression model with latent variables. In this

study, we introduce spike and slab model and Bayesian lasso into two-part latent variable model,

which is the first attempt for this model.

Our formulation is more along with the lines of spike and slab bimodal prior in [33] and Bayesian

Lasso in [37]. We formulate the problem by specifying a normal distribution with mean zero to the

regression coefficient or factor loading of interest. The probability of a related variable being excluded

or included is governed by the variance. To model the shrinkage of coefficients properly, we consider

two schemes for the variance parameter: one is the two-point mixture model with one component

located at the point close to zero and the other component situated at the point far away zero. The

proportion is governed by a beta-distribution with suitable hyperparameters. Another scheme is

along with the Bayesian lasso in which the variance is specified via a gamma distribution scaled

by the penalty parameters. Two schemes are unified into a hierarchical mixture model. Within the

Bayes paradigm, we developed a fully Bayesian selection procedure for the two-part latent variable

model. We resort to the Markov Chains Monte Carlo sampling method. Gibbs sampler is used to draw

observations from the posterior. We obtained all full conditionals. Posterior analysis is carried out

based on the simulated observations. We investigate the performance of the proposed methods via

simulation study and a real example. Our empirical results show that two schemes results in similar

results in the variable selection but SS with suitable hyperparameters slightly outperforms over BaLsso

in the correct rate.

The remainder of this paper is organized as follows. Section 2 introduces the proposed model

for the semi-continuous data with latent variables. Section 3 develops the MCMC algorithm for

the proposed model. Bayesian inference procedures including parameters estimation and model

assessment are also presented in this section. In Section 4, we present the results of simulation study to

assess the performance of our proposed methodology and illustrate the practical value of our proposed
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model with household finance debt data. Section 5 concludes the paper with a discussion. Some

technical details are given in the Appendix.

2. Model description

In section 2.1, a basic formulation for analyzing semi-continuous data with latent variables is

presented. Section 2.2 presents a Bayesian procedure for the feature extraction.

2.1. Two-part latent variable model

Suppose that for i = 1, 2, . . . , n, si is a semicontinuous outcome variable which takes value in [0, ∞);

xi is a generic vector consisted of r fixed covariates representing the collection of observed explanatory

factors of interest. We assume that each xij in xi is standardized in the sense ∑
n
i=1 xij = 0 and

∑
n
i=1 x2

ij = 1 for j = 1, . . . , r. Moreover, we include m letent/unobserved variables ωi = (ωi1, . . . , ωim)
T

into analysis to account for unobserved heterogeneity of responses.Conceptually,these latent variables

can be the covariates that are not directly observed or the synthesization of some highly correlated

explanatory items suffering from the noisy. Inclusion of latent variables can improve model fits and

strengthen the power of model interpretation, see [38] for more discussions on the latent variables

in a general setting. To deal with the spike of si at zero, we follow the common routine in literature

(see for example, [9,11]) and identify si with two surrogate variables: ui = I{si > 0} and zi = log(s+i ),

where I(A) denotes the indicator function of set A and a+ represents the positive part of a. That is,

we separate the whole dataset into two parts: one part is the binary dataset which corresponds to the

response-to-nonresponse indicators of subject and the other part is the logarithm of positive values.

Our interest focuses on the exploration of effects of exogenous factors on two parts.

We assume that ui and zi satisfy the following sampling models:

p(ui|xi, ωi) =
exp(uiη

u
i )

1 + exp(ηu
i )

, (1)

ηu
i = α + βT

x xi + βT
ωωi,

p(zi|ui = 1, ωi) = N(ηz
i , σ2), (2)

ηz
i = γ + ψT

x xi + ψT
ωωi,

in which α and γ are the intercept parameters, βx and ψx are the vectors of regression coefficients, and

βω and ψω are the vectors of factor loadings; σ2 is the scale and ‘T’ is the transpose operator of vector

or matrix; For compactness, we write β = (βT
x , βT

ω)
T and ψ = (ψT

x , ψT
ω)

T and treat wi = (xT
i , ωT

i )
T as

the complete explanatory variables.

The involvement of latent variables apparently complicates the model. It readily results in model

identification problem [39,40]. This is especially true when the dimension of ωi is high. In this case,

any auxiliary information is required to manifest ωi further. Among various-easy-constructs, we

consider latent variable (LV, [39,40]) approach. A basic assumption on LV approach is that there exist,

say p manifestations yi = (yi1, · · · , yip)
T , of which each yij may be continuous, counted or categorical,

and assuming that they satisfy the following link equation

F(yi, ωi, ǫi,ϕ) = 0, (3)

where F is a known and fixed link function, ǫi is the vector of errors used to identity the idiosyncratic

part of yi that can not be explained by ωi, and ϕ is the vector of unknown parameters used to quantify

the uncertainty of model. The information about ωi is manifested by yi via F. In this paper, in view

of the real applications, we consider p ordered categorical variable yi = (yi1, · · · , yip)
T , of which yij

takes value in {0, 1, . . . , cj}(cj > 1) and satisfies the following link model:

yij = ℓj if δjℓj
< y∗ij ≤ δj,ℓj+1, (4)
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where δj0 < δj1 < · · · < δjcj
< δj,cj+1 are the threshold parameters with δj0 = −∞ and δj,cj+1 = +∞,

and y∗
i = (y∗i1, · · · , y∗ip)

T is the vector of latent responses satisfying the factor analytic model:

y∗
i = µ + Λωi + ǫi, (5)

ωi
iid.∼ Nm[0, Φ], ǫi ∼ Np[0, Ip], and ωi ⊥ ǫi, (6)

where µ is a p-dimensional intercept vector, Λ is the p × m-dimensional factor loading matrix, and Ip

is the identity matrix of order p. We assume that conditional upon ωi, si and yi are independent.

We refer to the model specified by (1), (2) and (4) associated with (5) as the two-part latent variable

model with polytomous responses. It provides a unified framework to explore the dependence of

binary, continuous and categorical data simultaneously. The dependence between them results from

the share of common factors or latent variables. If ωi is degenerated at zeros or the factor loadings

are taken as zeros, the dependence among them disappears, and the overall model reduces to the

traditional two-part model and ordinal regression model.

To facilitate the efficient calculation, motivated by the key identity in [41] (see squation (2) in their

seminar paper), we express the logistics model (1) as the mixture model of form

exp(ui(α + βTwi))

1 + exp(α + βTwi)

= 2−1 exp(κi(α + βTwi))
∫ ∞

0
exp

{
−u∗

i

2
(α + βTwi)

2

}
pPG(u

∗
i )du∗

i , (7)

where κi = ui − 0.5, and pPG(u) is the standard Pólya-Gamma probability density function. Assuming

that we introduce auxiliary variables u∗
i and augment them with ui, then equation (1) can be considered

as the marginal density of the joint distribution

p(ui, u∗
i | xi, ωi) = 2−1 exp

{
κiη

u
i − u∗

i

2
ηu2

i

}
pPG(u

∗
i ). (8)

Note that the exponential part in the brackets is the kernel of normal density function with respect

to ηu
i . Hence, it admits conjugate full-conditional distributions for all regression coefficients, factor

loadings and factor variables, leading to a straightforward Bayesian computation.

Let U = {ui}n
i=1, Z = {zi}n

i=1,and Y = {yi}n
i=1 be the sets of observed variables; We writeΩ =

{ωi}n
i=1 for the collect of factor variables, and write U∗ = {u∗

i }n
i=1, V∗ = {v∗i }n

i=1, Y∗ = {y∗
i }n

i=1 for

the sets of latent response variables. The complete-data likelihood is given by

p(U, U∗, Z, V∗, Y, Y∗, Ω|θ)
=p(U, U∗|Ω, α, β)p(Z, V∗|U, Ω, γ, ψ, σ2)p(Y|Y∗, δ)p(Y∗|Ω, µ, Λ)p(Ω|Φ)

=
n

∏
i=1

exp

{
κiη

u
i − 1

2
u∗

i (η
u
i )

2

}
pPG(u

∗
i |1, 0)

× ∏
i∈I

1√
2πσ

exp

{
− 1

2σ2
(zi − ηz

i )
2

}

×
n

∏
i=1

p

∏
j=1

cj

∑
ℓ=0

I{δjℓ < y∗ij ≤ δj,ℓ+1, yij = ℓ}

×
n

∏
i=1

p

∏
j=1

1√
2π

exp

{
− 1

2
(y∗ij − µj − Λ

T
j ωi)

2

}

×
n

∏
i=1

1

(
√

2π)m|Φ|1/2
exp

{
− 1

2
tr[Φ−1ωiω

T
i ]

}
.
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where I = {i : ui = 1} is the set of indices, δ = {δjℓ} is the set of threshold parametes, and

θ = {α, β, γ, ψ, σ2, µ, Λ, Φ, δ} is the vector of unknown parameters. For the moment, we assume θj in

θ all are free.

2.2. Bayesian feature selection

Generally speaking, regression variables xi and factor variables ωi may not have impacts on the ui

and zi simultaneously, and some redundant variables may exist. The presence of redundant variables

not only decreases the model fit but also weakens the power of model interpretation. Therefore, it

is necessary to determine which regression coefficient or factor loading is significantly away from

zero. In the context of frequency statistics, this issue is generally tackled out via stepwise regression,

in which each variable is decided to be exclude or included according to the model fit. However, the

situation becomes complex when the number of independent variables is large. In this paper, we

pursuit a Bayesian variable selection procedure. To this end, we follow [37] and assume

β ∼ Nq(0, diag{γ2
βk}), ψ ∼ Nq(0, σ2diag{γ2

ψk}), (9)

in which we use diag{ak} to represent a diagonal matrix with the kth diagonal element ak and let

q = r + m. That is, we assume that each βk in β (ψk is similar) is centered at zero (or equivalently each

wik is excluded from wi) but with the probability governed by the variance γ2
βk. If γ2

βk is close to zero,

then the probability of βk taking zero increases, and wik tends to be excluded; conversely, if γ2
βk is large,

then the probability of βk being zero is small and wik tends to be maintained. As a result, the value of

γ2
βk plays a key role in determining whether wk is relevant to be selected in Part one. With this in mind,

a reasonable assumption on γ2
βk and γ2

ψk is that:

γ2
βk

ind.∼ (1 − wβ)δνβ0η2
βk
(·) + wβδη2

βk
(·), (10)

γ2
ψk

ind.∼ (1 − wψ)δνψ0η2
ψk
(·) + wψδη2

ψk
(·), (11)

where δa(·) is the Dirac measure concentrated at point a, wβ is the random weight used to measure the

similarity between γ2
βk and η2

βk, and η2
βk is the hyperparameter used to represent how far βk is away

from zero or slab; νβ0 is a previously specified small positive value used to identity the ‘spike’ of βk at

zero. In other words, every γ2
βk is assumed to be equal to η2

βk with probability wβ and equal to νβ0η2
βk

with probability 1 − wβ. This is also true for wψ, ηψk and νψ0. To model wβ and wψ properly, we assign

the following beta distributions to them

p(wβ|aβ, bβ) = Beta(aβ, bβ), p(wψ|aψ, bψ) = Beta(aψ, bψ), (12)

where aβ, aψ, bβ and bψ are the hyperparameters used to control the shape of beta density, that is, to

determine the magnitude of weights in (0, 1). For example, if aβ1 in equation (12) is small and bβ1 is

large, then equation (12) encourages wβ to take small value with high probability. In contrast, it follows

from 1 − Beta(aβ, bβ) = Beta(bβ, aβ) that large aβ1 and small bβ1 encourage wβ to take large value in

(0, 1). In the case that aβ1 = bβ1 = 1.0, equation (12) reduces to the uniform distributions on (0, 1). In

this case, every value in (0, 1) is possible for wβ with the same probability. In the real applications, if

no information can be available, one can assign the values to them to ensure the beta distribution to be

inflated enough.

Finally, to measure the magnitudes of ‘slap’ in the distributions of βk and ψk, we specify gamma

distributions for η−2
βk and η−2

ψk , or equivalently,

η2
βk|aβ1, aβ2

iid.∼ IG(τβ0, ζβ0), η2
ψk|aψ1, aψ2

iid.∼ IG(τψ0, ζψ0), (13)
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where ‘IG(a, b)’ denotes the inverse-gamma distribution with mean b/(a − 1) for a > 1 and variance

b2/((a − 1)2(a − 2)) for a > 2; τβ0, ζβ0, τψ0 and ζψ0 are the hyperparameters which are treated to

fixed and known. Similarly, one can assign values to them to ensure (13) to be dispered enough. For

example, we can follow the routine in [33] in the ordinary regression analysis, and set τβ0 = τψ0 = 1.0

and ζβ0 = ζψ0 = 0.05 to obtain dispersed priors.

Note that equations (10) and (11) can be formulated as hierarchy as follows: for k = 1, . . . , q,

γ2
βk

= fβkη2
βk, γ2

ψk = fψkη2
βk,

fβk|νβ0, ωβ
iid.∼ (1 − wβ)δvβ0

(·) + wβδ1(·), (14)

fψk|νψ0, wψ
iid.∼ (1 − wψ)δvψ0(·) + wψδ1(·), (15)

where fβk and fψk are the latent binary variables respectively. Such a formulation aims to separate η2
βk

and η2
ψk from the distributions (10) and (11) to facilitate posterior sampling.

It is instructive to compare the proposed method to the Bayesian lasso [37], in which the variance

parameters γ2
βk and γ2

ψk in equation (9) are specified via exponential distributions as follows:

p(γ2
β | λ2

β) =
q

∏
k=1

λ2
βk

2
exp(−λ2

βkγ2
βk/2), (16)

p(γ2
ψ | λ2

ψ) =
q

∏
k=1

λ2
ψk

2
exp(−λ2

ψkγ2
ψk/2), (17)

where λ2
β = (λ2

β1, . . . , λ2
βq)

T and λ2
ψ = (λ2

ψ1, . . . , λ2
ψq)

Tλ2
ψk are the shrinkage/penality parameters used

to control the amount of shrinkage of βk and ψk toward zero.

Modeling γ2
βk and γ2

ψk like equations (16) and (17) lead to marginal distributions of βk and ψk as

the laplace distributions with location zero and scale λk. The penalty parameters λ2
βk and λ2

ψk are rather

crucial in determining the amount of shrinkage of parameters. Figure 1 presents the plots of densities

of Laplace distribution LA(λ)(λ > 0) across various choices of λ. It can be seen that the larger the

value of γ, the more kurtosis the density, indicating more penalties on the regression coefficient.
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Figure 1. Plot of the densities of Laplace distribution across different choices of λ.
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Due to their key role in equations (16 ) and (17), for λ2
β and λ2

ψ, we assign the following gamma

priors to them, i.e.,

p(λ2
β) =

q

∏
k=1

p(λ2
βk) =

q

∏
k=1

Ga(ak0, bk0), (18)

p(λ2
ψ) =

q

∏
k=1

p(λ2
ψk) =

q

∏
k=1

Ga(ck0, dk0), (19)

where ‘Ga(ν, λ)’ denotes the gamma distribution with mean ν/λ. As the previous discussions, the

values of ak0, bk0, ck0 and dk0 should be selected with care since they relate the shrinkages directly.

Similar to that in (13), one can set ak0 = ck0 = 1, bk0 = dk0 = 0.05 to enhance the robustness of inference.

This routine is followed in our empirical study.

Let F∗
β = { fβk}, F∗

ψ = { fψk}, γ2
β = {γ2

βk}, γ2
ψ = {γ2

ψk}, η2
β = {η2

βk},η2
ψ = {η2

ψk}. We treat νβ0 and

νψ0 as known hyperparameters. Note that γ2
β and γ2

ψ are totally determined by F∗
β, F∗

ψ and η2
β, η2

ψ. In

the following, we abbreviate spike and slab bimodal prior to SS and Bayesian lasso to BaLsso.

3. Bayesian inference

3.1. Prior specification and MCMC sampling

In view of the model complexity, we consider Bayesian inference. Some priors are required to

specify for unknown parameters to complete Bayesian model specification. Based on the model

convention, it is naturally to assume that the parameters involved in the different models are

independent.

Firstly, for µ, Λ and Φ , we consider the following conjugate priors:

p(µ) = Np(µ0, Σ0), (20)

p(Λ) =
p

∏
k=1

p(Λk) =
p

∏
k=1

Nm(Λ0k, H0k), (21)

p(Φ) = IW(ρ0, R−1
0 ), (22)

where ‘IW(ρ, R)’ denotes the inverse Wishart distribution with degrees of freedom ρ and scale matrix R

[42]; Λ
T
k is the kth row vector of Λ; µ0, Σ0(p× p) > 0, Λ0k, H0k(m×m) > 0, ρ0 > 0, and R0(m×m) > 0

are the hyperparameters which are treated to be fixed and known.

Secondly, for α, γ, σ2 in part one and two, we assume they are mutually independent and satisfy

p(α) = N(α0, σ2
α0), p(γ) = N(γ0, σ2

γ0), p(σ−2) ∼ Ga(a0, b0), (23)

where α0, σ2
α0, γ0, σ2

γ0 and a0, b0 are the fixed hyperparameters.

Lastly, for threshold parameter δ, without loss of generality, we assume that cj, the number

of categories of yij, is invariant across the subscript j and equals to c. Moreover, we assume that

p(δ) = ∏
p
j=1 p(δj), where δj = (δjk) is the jth row vector of δ. In the following, we suppress the

subscript j in δjk for notational simplicity and write δ for δj.

Let F0(·) be any strictly monotonically increasing and differentiable function on R with F0(+∞) =

1 and F0(−∞) = 0. For example, one can take F0 = Φ(·/τ0) for some τ0 > 0 or student distribution

with degrees of freedom ν0, where Φ(·) is the standard normal distribution function. To specify a

prior for δ, we follow [43] and let pj = F0(δj)− F0(δj−1) for j = 1, · · · , c. It is easily to show that the
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transformation is invertible with Jacobi determination unity. We first consider the following Dirichlet

distribution for p = (p1, · · · , pc)T :

π(p) =
1

B(η1, · · · , ηc+1)
p

η1−1
1 · · · p

ηc−1
c (1 −

c

∑
ℓ=1

pℓ)
ηc+1−1

where B(η1, · · · , ηc+1) = ∏
c+1
j=1 Γ(ηj)/Γ(∑c+1

j=1 ηj) is the multivariate beta function evaluated at

η1, · · · , ηc+1, and ηj > 0. Then, by the formula of inverse transformation, the joint distribution

of δ is given by

π(δ) =
1

B(η1, · · · , ηc+1)
p

η1−1
1 · · · p

ηc−1
c (1 −

c

∑
ℓ=1

pℓ)
ηc+1−1

c

∏
j=1

f0(δj)I{δ1 < · · · < δc}, (24)

where f0(x) is the derivative of F0(x) with respect to x. We call (24) the transformed Dirichlet prior

and use it as the prior of δ. An advantage of working with (24) is that conditional upon δj−1 and δj+1,

the transformed distribution of δj has the beta distribution given by

F0(δj)− F0(δj−1)

F0(δj+1)− F0(δj−1)
|(δj−1, δj+1) ∼ Beta(ηj, ηj+1), (j = 1, · · · , c). (25)

3.2. MCMC sampling

With the prior given above, the inference about θ is based on the posterior po(θ|U, Z, Y), which

has no closed form. Motivated by the key idea in [44], we treat latent quantities as the missing data

and argument them to the observed data to form the complete data. The statistical inference is carried

out based on the complete-data likelihood. For this end, apart from Ω, U∗ and Y∗ mentioned before,

we further let Q∗ be the collection of latent quantities involved in the specifications of β and ψ, i.e.,

Q∗ = {F∗
β, F∗

ψ, η2
β, η2

ψ, wβ, wψ} under SS and {λ2
β, λ2

ψ} under BaLsso. Rather than working with the

posterior po directly, we consider the following joint distribution

pjoint(Ω, U∗, Y∗, Q∗, θ|U, Z, Y), (26)

where po can be considered as the marginal of pjoint. We use Markov chain Monte Carlo(MCMC,

[45,46]) sampling method to simulate observations from this target distribution. In particular, Gibbs

sampler is implemented to draw observations iteratively from the full conditional distributions as

follows:

• draw Ω from p(Ω | U∗, Q∗, Y∗, θ, U, Z, V),
• draw U∗ from p(U∗ | Ω, Y∗, Q∗, θ, U, Z, V),
• draw Y∗ from p(Y∗ | Ω, U∗, Q∗, θ, U, Z, V),
• draw Q∗ from p(Q∗ | Ω, U∗, Y∗, θ, U, Z, V), and
• draw θ from p(θ | Ω, U∗, Y∗, Q∗, U, Z, V).

Upon convergence, the posterior is approximated by the empirical distribution of the simulated

observations. The convergence of algorithm can be monitored by plotting the traces of estimates under

different starting values or observing the values of EPSR [47] of unknown parameters. The technical

details on implementing MCMC sampling are given in Appendix.

Simulated observations obtained from the blocked Gibbs sampler can be used for statistical

inference via a straightforward analysis procedure. For example, the joint Bayesian estimates of

unknown parameters can be obtained via sample averaging as follows:

θ̂ = M−1
M

∑
m=1

θ(m),
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where {θ(m) : m = 1, · · · , M} are the simulated observations from the posterior. The consistent

estimates of covariance matrices of estimates can be obtained via sample covariance matrices.

The main purpose of introducing SS and BaLsso is to screen the variable in wi. Unlike that in

the frequency statistics, Bayesian variable selection does not produce the estimates β̂ and ψ̂ exactly

equal to zero, and hence it is necessary to determine which component can be treated as zero. This can

accomplished via posterior confidence intervals (PCI) of β j and ψj, given by

P(|β j| < cα/2|U, Z, Y) = 1 − α, P(|ψj| < dα/2|U, Z, Y) = 1 − α (27)

where α is any previously specified value in (0, 1). The calculation of PCI can be achieved via Monte

Carlo method. For example, let β
(k)
j : k = 1, . . . , K be the K observations generated from the posterior

distribution, then the PCI of β j with confidence level 100(1 − α)% is given by [β j,100(α/2),β j,100(1−α/2)],

where β j,k is the kth order statistics.

Another choice for variable determination in SS is based on the posterior probability of fβj = 1

and fψj = 1, which can be approximated by

f̂βj =
1

K

K

∑
k=1

I{ f
(k)
βj = 1}, f̂ψj =

1

K

K

∑
k=1

I{ f
(k)
ψj = 1}, (28)

where f
(k)
βj and f

(k)
ψj (k = 1, . . . , K) are the k observations drawn from the posterior distribution via

Gibbs sampler. The variable wj is selected in part one and two if f̂βj > 0.5 and f̂ψj > 0.5.

4. Simulation study

In this section, a simulation study is conducted to assess the performance of the proposed method.

The main objective is to assess the accuracy of estimates and the correct rate of variable selection. We

consider one semi-continuous variable si, two factor variables ωi1 and ωi2, and six categorical variables

yij(j = 1, . . . , 6). We assume that si, ωij and yij satisfy equations (1), (2) and (4) associated with (5),

respectively, in which the number of fixed covariates is set at five. We generate xi1 and xi2 from the

standard normal distribution, xi3 and xi4 from the binomial distribution with probability of success

0.3, and x5 from the uniform distribution on (0, 1). All covariates were standardize to unify the scales.

For ordered categorical variables, we take cj = c = 4, that is, each yij belongs to {0, 1, 2, 3, 4}.

The true values of population parameters are set as follows: α = γ = 0.7, β =

(0.7, 0.0, 0.7, 0.0, 0.7, 0.0, 0.8)T , γ = 0.7, ψ = (0.7, 0.0, 0.7, 0.0, 0.7, 0.8, 0.0)T , σ2 = 1.0, µ = 0.7 × 16,

in which 16 is a 6 × 1 vector with elements being unity. The factor loading matrix Λ and conviance

matrix Φ are taken as

Λ
T =

[
1.0 0.8 0.8 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.8 0.8

]
, Φ =

[
1.0 0.3

0.3 1.0

]
, (29)

in which ones and zeros in Λ are treated as fixed to identify model; the thresholds are set as δk =

(−1.5∗, 0.0, 1.2, 2.5∗)T for k = 1, . . . , 6, where the elements with an asterisk are treated as fixed for

model identification. Based on these setups, we generate data by first drawing latent factors from

N2(0, Φ), and then drawing latent responses Y∗ from (5). The ordered categorical responses Y, the

indicator responses U and the intensity responses Z are sequentially generated from (5), (1) and (2). To

investigate the effect of sample size on the estimates, we take n = 400 and 1000, respectively, which

represent small and large levels of sample size.

For Bayesian analysis, we consider the following inputs for hyperparameters: for the parameters

involved in the measurement model, we take µ0 = 06, and Σ0 = 100.0 × I6; the elements in Λ0

corresponding to the free parameters in Λ are set at zero, and H0k = I2 for k = 1, · · · , 6; ρ0 = 10.0,

and R−1
0 = 6.0 × I3; for the threshold parameters δ, we take η1 = · · · = η5 = 1.0, which denotes the
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uniform distribution of p on the simplex in R
5; for intercept parameters α, γ and σ2 in the two-part

model, we set α0 = γ0 = 0, σ2
α0 = σ2

γ0 = 100, and a0 = b0 = 2.0; the hyperparameters involved in the

formulation of β and ψ are set as before. Note that these values can ensure the priors inflated enough,

hence it could be expected to enhance the robust of inference. In addition, we set νβ0 = νψ0 = 0.001 in

equations (10) and (11) to guarantee βk and ψk clumping at zero sufficiently .

The MCMC algorithm described in Section 3 is implemented to obtain the estimates of unknown

parameters θ. Before formal implementation, a few test runs were conducted as pilots to monitor the

convergence of the Gibbs sampler. We plot the values of EPSR of unknown parameters against the

number of iterations under three different starting values. For SS, Figure 2 presents the plots of EPSR

of unknown parameters under three different starting value with sample size n = 400.
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Figure 2. Plot of the values of EPSR of unknown parameters under three different starting values:

simulation study and n = 400.

It can be found that the convergence of estimates is fast and all values of EPSR are less than 1.2

in about 300 iterations. To be conservative, we remove the first 2000 observations as burn-in phrase

and further collect 3000 observations for calculating the bias (BIAS), the root mean squares (RMS) and

the standard deviation (SD) of the estimate across 100 replications. The BIAS and RMS of the j-th

component θ̂j in estimates are defined as follows:

BIAS(θ̂j) = (θ̄j − θ0
j ), θ̄j =

1

100

100

∑
κ=1

θ̂
(κ)
j , RMS(θ̂j) =

√√√√ 1

100

100

∑
κ=1

(θ̂
(κ)
j − θ0

j )
2, (30)

where θ0
j is the j-th element of population parameters θ0. The summaries of estimates of main

parameters under two scenarios are reported in Tables 1 and 2, where the sums of SD and RMS across

the estimates are presented in the last rows.
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Table 1. Summary of the estimates of unknown parameters under SS and BaLsso: simulation study

and n = 400.

SS BaLsso
PAR BIAS RMS SD BIAS RMS SD

α = 0.7 -0.015 0.097 0.129 0.028 0.150 0.134
β1 = 0.7 -0.056 0.143 0.142 -0.152 0.217 0.136
β2 = 0.0 -0.001 0.021 0.061 -0.019 0.042 0.079
β3 = 0.7 -0.144 0.216 0.145 -0.122 0.251 0.148
β4 = 0.0 0.005 0.030 0.064 -0.008 0.040 0.078
β5 = 0.7 -0.091 0.147 0.137 -0.045 0.135 0.137
β6 = 0.0 0.017 0.028 0.075 0.026 0.055 0.096
β7 = 0.8 -0.187 0.237 0.184 -0.126 0.209 0.184
γ = 0.7 0.010 0.079 0.084 0.008 0.063 0.085
ψ1 = 0.7 -0.035 0.079 0.077 -0.011 0.065 0.074
ψ2 = 0.0 0.005 0.032 0.051 -0.018 0.031 0.054
ψ3 = 0.7 -0.007 0.061 0.070 -0.021 0.085 0.069
ψ4 = 0.0 -0.007 0.029 0.049 -0.003 0.031 0.053
ψ5 = 0.7 -0.070 0.093 0.077 -0.018 0.082 0.075
ψ6 = 0.8 -0.040 0.086 0.089 -0.02 0.069 0.088
ψ7 = 0.0 -0.011 0.033 0.062 0.014 0.036 0.069
σ2 = 1.0 0.085 0.129 0.117 0.038 0.082 0.111
λ21 = 0.8 0.042 0.078 0.073 0.058 0.098 0.071
λ31 = 0.8 0.030 0.072 0.071 0.034 0.063 0.072
λ52 = 0.8 0.058 0.079 0.072 0.052 0.090 0.073
λ62 = 0.8 0.031 0.060 0.072 0.037 0.064 0.073
Φ12 = 0.3 0.014 0.041 0.074 0.018 0.058 0.076
Total - 1.870 1.975 - 2.016 2.035

Table 2. Summary of the estimates of unknown parameters under SS and BaLsso: simulation study

and n = 1000.

SS BaLsso
PAR BIAS RMS SD BIAS RMS SD

α = 0.7 0.052 0.096 0.087 0.009 0.092 0.087
β1 = 0.7 0.005 0.069 0.089 0.055 0.117 0.090
β2 = 0.0 0.003 0.048 0.058 0.032 0.052 0.060
β3 = 0.7 0.007 0.086 0.093 -0.045 0.076 0.091
β4 = 0.0 0.004 0.015 0.049 -0.020 0.043 0.060
β5 = 0.7 0.010 0.071 0.086 0.013 0.074 0.085
β6 = 0.0 -0.003 0.029 0.059 0.032 0.064 0.077
β7 = 0.8 0.002 0.102 0.120 -0.042 0.108 0.114
γ = 0.7 0.017 0.042 0.053 0.030 0.056 0.054
ψ1 = 0.7 -0.023 0.038 0.046 -0.016 0.039 0.047
ψ2 = 0.0 -0.007 0.019 0.033 -0.005 0.018 0.037
ψ3 = 0.7 -0.028 0.060 0.042 -0.014 0.026 0.043
ψ4 = 0.0 -0.007 0.023 0.033 0.000 0.018 0.036
ψ5 = 0.7 -0.005 0.035 0.046 0.003 0.043 0.047
ψ6 = 0.8 -0.031 0.058 0.053 -0.039 0.063 0.054
ψ7 = 0.0 -0.001 0.031 0.045 -0.025 0.081 0.053
σ2 = 1.0 0.018 0.049 0.068 0.041 0.053 0.071
λ21 = 0.8 0.021 0.041 0.045 0.033 0.038 0.045
λ31 = 0.8 0.016 0.049 0.045 0.028 0.038 0.045
λ52 = 0.8 0.032 0.049 0.045 0.054 0.057 0.045
λ62 = 0.8 0.043 0.059 0.046 0.043 0.054 0.046
Φ12 0.016 0.043 0.049 0.005 0.037 0.048
Total - 1.112 1.29 - 1.247 1.335
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Examinations of Tables 1 and 2 present the following findings: (i) Both methods produce

satisfactory results and the performance of SS are slightly superior to that of BaLsso. For n = 400, the

total RMS and SD are 1.870 and 1.975 respectively under SS, and amount to 2.016 and 2.035 respectively

under BaLsso; (ii) As expected, increasing the sample size improves the accuracy of the estimates both

for SS and BaLsso.

Another simulation is conducted to assess the performance of the proposed method in the variable

selection when the covariates and latent variables are correlated. In this setting, we generate covariates

and latent factors jointly from the multivariate normal distribution with mean zeros and covariance

matrix Σ(7 × 7) with Σjk = ρ|j−k|, where Σjk is the (j, k)th entry of Σ. We consider three scenarios for

ρ: (i) ρ = 0.1, (ii) ρ = 0.5 and (iii) ρ = 0.8, which represents respectively the weak, the mild and the

strong dependence among them. The values of β and ψ are taken as (1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0) and

(1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0) respectively, and the sample size is taken as n = 1000. The other model

setups are set as the same as before. We implement MCMC sampling and collect 3000 observations

after removing first 2000 observations for posterior inference. We follow [48] and treat a regression

coefficient to be zero if the absolute value of its estimate is less than 0.1. Table 3 gives the summary of

variable selection across 100 replications.

Table 3. Number of correctly selected variables in the two-part model on the simulated data sets.

SS BaLsso
PAR ρ = 0.1 ρ = 0.5 ρ = 0.8 ρ = 0.1 ρ = 0.5 ρ = 0.8

β1 = 1.0 100 100 100 100 100 100
β2 = 0.0 98 96 85 88 86 76
β3 = 1.0 100 100 100 100 100 100
β4 = 0.0 96 95 86 93 93 85
β5 = 1.0 100 100 100 100 100 100
β6 = 0.0 96 94 93 97 92 87
β7 = 1.0 100 100 100 100 100 100
ψ1 = 1.0 99 100 100 100 100 100
ψ2 = 0.0 100 99 95 100 98 93
ψ3 = 1.0 100 100 100 100 100 100
ψ4 = 0.0 100 100 97 98 100 91
ψ5 = 1.0 100 100 100 100 100 100
ψ6 = 1.0 100 100 100 100 100 100
ψ7 = 0.0 100 98 97 97 96 96

Based on Table 3, it can be found that (i) for nonzero regression coefficients, two methods exhibit

satisfactory performances, both with 100% correct rates across all situations; (ii) for zero regression

coefficients, there exist difference between two methods, and SS are uniformly outperforms BaLsso.

The underlying reason perhaps is that for SS, the variances of estimates are set to be small enough to

ensure the coefficients close to zero while for BaLsso, the variance of estimates are controlled by the

shrinkage parameters which may not be large enough to ensure this point; (iii) with the increase of the

strength of dependence, the correct rates of two methods decreases.

5. China Household Finance Survey data

To demonstrate the usefulness of the proposed methodology, in this section a small portion of

Chinese household finance debt data is analyzed. The dataset is collected from the China household

financial survey (CHFS), a non-profit institute organized by the Southeast University of Finance and

Economics. The survey covers a series of questions which touch on the information about various

aspects of the household’s financial situation. In this study, we only focus on the measurement ‘gross

debts per household (DEB)’, the amount of the secured debt and unsecured debt of a household under

investigation. We extracted them from the survey of Zhejiang Province in 2013. Due to some uncertain
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factors, some measurements in DEB are missing. The missing proportion is about 2.7%. We remove

the subjects with missing entries and the ultimate sample size is 884. A preliminary data analysis

shows that the measurements DEB contain excessive zeros and the proportion of zeros is about 72.58%.

Naturally, we treat this variable as the outcome variable si, and identify it with ui and zi. Figure 3

presents the histogram of DEB as well as the logarithms of positive values. It can be seen clearly

that dataset illustrates strong heterogeneity. The skewness and kurtosis of DEB are 1.1042 and 2.3361,

respectively, which indicates that single parametric model for DEB may be unappreciated.
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Figure 3. Histograms of DEB and the logarithms of their positive values: China household finance

survey data. Left panel corresponding the DEB and right panel corresponding to log(DEB|DEB > 0).

We include the following measurements as the potential explanatory factors to interpret the

variability in DEB: gender (x1), age (x2), marital status (x3), health condition(x4), educational experience

(x5), employment status of the household head (x6), the number of family members (aged over 16, x7),

and the household annual income (x8). Table 4 gives the descriptive summary of the measurements

under consideration. To unify the scale, all covariates were standardized.

Table 4. Descriptive statistics of explanatory variables: CHFS data .

Variable. Description. Mean. Max. Min. SD

Gender (x1) =1, male; =0, otherwise 0.756 1 0 0.430
Age (x2) 51.81 91 19 14.931
Marital status (x3) =1, married; 0, otherwise 0.863 1 0 0.344
Health condition (x4) =1, good; 0, otherwise 0.833 1 0 0.373
Education degree (x5) =1, high school or above;

=0, otherwise 0.352 1 0 0.478
Employment (x6) =1, yes; 0, otherwise 0.092 1 0 0.290
No. of adults (x7) 3.002 3 0 1.301

Annual Income (CYN)(x8)
∗ 9.3764 8.0605 0 4.2494

* Note: Superscripts are used to indicate values raised to the power 10 (thus ab = a × 10b).The measurement is taken

as the middle value of the range in the questionnaire.

Besides the observed factors mentioned above, we also include family culture η, a latent factor

into current analysis. It is well-known that China is an ancient civilization country with a long history,

and Confucian culture has deeply rooted in the social development. Economic activity or social

development can not be independent of cultural development. Hence, it is of practical interest to

investigate how the family culture affect the behaviour of the household finance debt. Based on the

design of the questionnaire, we select the following three measurements as manifestations for η:(i)

boys’s preference (BP,y1). This is a three-category measurement coded by 0, 1 and 2, which corresponds

to the attitude ‘oppositive’, ‘does’t matter’ and ‘strongly support’; (ii) attitude toward to the single of

children (SC), coded by 0, 1 and 2, according to the leve of support; (iii) importance of a household

head in a family.This measurement is originally coded in point 0 to 5 according to the support level.

However, in view of that the frequencies in the last three groups are small, we group them into three
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categories and recode them by 0 (does not matter), 1(important) and 2 (very important). In addition,

due to that some manifestations are missing, we treat missing data as missing random and ignorable

[49], and ignore the specific missing mechanic that results in missing data.

Let U = {ui}, Z = {zi}, and Y = {Yobs, Ymis}, where Yobs is the collectionn of observed data

and Ymis is the set of missing data. We formulate U, Z and Y within equations (1), (2) and (5), and

assume that ηi, iid. ∼ N(0, 1). The inputs of hyperparameters in the priors are taken as follows:

Λj0 = 0.0, Hj0 = 1 and ηj1 = ηj2 = ηj3 = 2.0. The values of other hyperparameters are taken as

the same as those in the simulation study. To implement MCMC sampling algorithm, we need to

impute the missing data in Y. This is just to do by drawing yij,mis from the conditional distribution

p(yij,mis|θ, Yobs) = N(µj,mis + Λj,misηi, 1), where µj,mis and Λj,mis are the components of µ and Λ

respectively which corresponds to the missing entry yij,mis in yi. In addition, to identify the model

and scale the factor, we set Λ1 = 1. We also adopt the method in [50] in the context of latent variable

model with polytomous data and fix δj1 at Φ−1( f j1/nj), where nj is the size of yobs,ij equal to 1, and f j1

is the observed frequency of 0 in yobs,ij. To assess the convergence of the algorithm, for SS, we plot the

traces of estimates under three different initial values (see Figure 4). It can be seen that the algorithm

converges at about 3000 iterations. To be conservative, we collect 6000 observations after deleting the

initial 4000 observations for calculating the estimates and the standard deviations.
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Figure 4. Trace plots of the estimates of unknown parameters against the number of iteration under SS

prior: CHFS data.

Table 6 gives the summary of the estimates of unknown parameters in two parts and factor

loadings. Examinations of Table 6 show that most estimates are very close but there exists differences

in the estimates of β4, β5, β7, β8, ψ2, ψ7 and ψ8. For example, the estimates of β4, β5 and β7 under

SS are 0.428, 0.577, 0.747 with standard deviations 0.062, 0.070 and 0.072 respectively, while equal to

0.072, 0.082 and 0.092 with standard deviations 0.07, 0.081 and 0.092 under BaLsso. These differences

reflect the fact that two methods impose different penalties on the regression coefficients in the variable

selection.
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Table 5. Estimates and standard deviations estimates of unknown parameters under SS and BaLsso:

CHFS data.

SS BaLsso SS BaLsso
Par Est. SD Est. SD Par Est. SD Est. SD

α -0.835 0.078 -0.838 0.080 γ 9.782 0.152 9.670 0.125
β1 0.050 0.063 0.076 0.070 ψ1 -0.137 0.103 -0.107 0.088
β2 -0.750 0.099 -0.757 0.102 ψ2 -0.147 0.141 -0.015 0.081
β3 0.107 0.085 0.147 0.088 ψ3 -0.022 0.065 -0.006 0.075
β4 0.428 0.062 0.072 0.070 ψ4 -0.019 0.060 -0.029 0.069
β5 0.577 0.070 0.082 0.081 ψ5 0.259 0.123 0.322 0.107
β6 0.004 0.040 0.005 0.052 ψ6 0.035 0.058 0.053 0.067
β7 0.118 0.079 0.130 0.079 ψ7 0.043 0.072 0.281 0.113
β8 0.747 0.073 0.092 0.077 ψ8 0.384 0.132 0.188 0.118
βη -0.059 0.112 -0.039 0.092 ψη 1.205 0.106 1.910 0.104
σ2 0.312 0.150 0.300 0.152

λ21 -0.791 0.062 -0.714 0.057
λ31 -0.865 0.067 -0.625 0.068

To see more clearly, Table 4 gives the resulting selected variables according to SS and BaLsso. It

can be seen that (i) for part one, both methods give the same results for the selection of factors ‘gender’,

‘age’, ‘material status’, ‘employment’, ‘number of adults’ and ‘family culture’. Two methods favor that

‘age’,‘material status’, and ‘number of adults’ can be helpful in improving model fits while ‘gender’

and ‘family culture’ have less impacts on the probabilities of being held finance debt. However, there

exist contradictory conclusion in selecting ‘health condition’, ‘education’ and ‘income’; (ii) for part two,

except the factors ‘age’ and ‘number of adults’, two methods give the same results. In particular, both

methods support that ‘family culture’ is relevant to the amount of household finance debts being held.

This fact is also revealed by [17] in the analysis of CHFS by using two-part nonlinear latent variable

model. The further interpretation is omitted for saving spaces.

Table 6. The selected variables in the CHFS data: 0: exclude and 1: included.

Part one Part two
VAR SS BaLsso SS BaLsso

Gender 0 0 1 1
Age 1 1 1 0
Material status 1 1 0 0
Health condition 1 0 0 0
Education 1 0 1 1
Employment 0 0 0 0
No. of Adults 1 1 0 1
Income 1 0 1 1
Family culture 0 0 1 1

6. Discussion

Two-part latent variable model can be considered as an extension of traditional two-part model

to the situations where the latent variables are included to identify the unobserved heterogeneity of

population resulting from the absence of the observed covariates. When analyzing such a model, an

important issue is to determine which factor is relevant to the outcome variable. This is especially

true when the number of exogenous factors is high because the usual model selection/comparison

procedure is extremely time-consuming. In this paper, we restor to the Bayesian variable selection

method and developed a fully Bayesian variable selection procedure for the semi-continuous data.
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Our formulation is along the lines with the spike and slab bimodal prior and recast the distribution

of regression coefficients and factor loadings as hierarchy of priors over the parameter and model

space. The selected variables is identified with high posterior probability of occurrence. We also

consider a adaptive Bayesian lasso (BaLsso) for reference. To facilitate the computation, we recast

the logistic regression model in part one as the flavor of normal mixture model by introducing latent

Polya-gamma variables. which admits the conjugate conjugate full-conditional distributions for all

regression coefficients, factor loadings and factor variables.

Although the Bayesian variable selection has its unique advantage, there are still some limitations

that need to be considered with care. First, its computational complexity is high. Bayes SSL requires

Monte Carlo sampling to estimate the posterior distribution, which can lead to slower calculation

speed, especially when working with high-dimensional data sets. Secondly, the method is sensitive

to hyperparameter and data distribution assumptions. The selection of the hyperparameters of the

prior distribution, such as the ratio of spike to slab, lasso penalty parameters, and data distribution

assumptions, will have a great impact on the results. When the data does not conform to the model

convention, the performance of the model is poor. Therefore, these issues need to be carefully

considered in practical application to ensure that the Bayesian SS method can be effectively applied to

specific data sets.

The existing applications of the proposed methodology can be applied to more general latent

variable models that include the the multilevel SEMs [50] and longitudinal dynamic variable models

[16,51] with discrete variables. These extensions are left for further study.
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Abbreviations

The following abbreviations are used in this manuscript:

TPM Two-part model

TPLVM Two-part latent variable model

SS Spike and slab bimodal prior

BaLsso Bayesian lasso

MCMC Markov Chains Monte Carlo

CHFS China household finance survey

Appendix A

In this section, we will present some technical details on the full conditionals in the MCMC

sampling. For ease of exposition, for any scalar or vector x, we use p(x| · · · ) to denote the conditional

distribution of x given ‘· · · ’. Note that under the scenarios SS and BaLsso, the full conditionals of Ω,

U∗, Y∗ and θ are exactly the same. The following derivations are mainly based on the Bayes theorem.

1. Full conditional of p(Ω| · · · )
It follows from (8), (2) and (5) that

p(Ω| · · · ) =
n

∏
i=1

p(ωi| · · · ),

where

p(ωi| · · · ) ∝ p(ui, u∗
i |ωi, α, β)p(zi|ui, ωi, γ, ψ, σ2)p(y∗

i |ωi, µ, Λ)p(ωi|Φ).
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Let κ∗i = κi − u∗
i (γ + xT

i βx), z∗i = zi − γ − xT
i ψx. By some algebra, it can be shown that

p(ωi| · · · ) D
= Nm(µ̂ωi, Σ̂ωi), (A1)

where

µ̂ωi = Σ̂ωi

[
βωκ∗i + ψωuiz

∗
i /σ2 + Λ

T(y∗
i − µ)

]
,

Σ̂ωi =
[

βω βT
ωu∗

i + ψωψT
ωui/σ2 + Λ

T
Λ + Φ

−1
]−1

.

Hence, draw of Ω can be obtained by simulating ωi independently from the normal distribution (A1).

2. Full conditional of p(U∗| · · · )
Following the similar derivation in [41], it can be shown that given U, Ω and θ, U∗ is the entilted

Polya-Gamma distribution given by

p(U∗ | · · · ) =
n

∏
i=1

PG(u∗
i |1, ηi) (A2)

where ηi = α + βTwi. Drawing ui from this distribution can be achieved via rejection sampling, see

[41] or [52] for more details on this issue.

3. Full of conditional of p(Y∗| · · · )
Note that

p(Y∗| · · · ) ∝ p(Y|Y∗, δ)p(Y∗|Ω, µ, Λ)

=
n

∏
i=1

p

∏
k=1

(
c

∑
ℓ=0

I{yik = ℓ, δkℓ < y∗ik ≤ δkℓ+1}
)
× 1√

2π
exp

{
−1

2
(y∗ik − µk − Λ

T
k ωi)

2

}
.

Hence, given Ω, the full conditional of Y∗ only depends on µ, Λ, Y and Ω, and is given by

p(Y∗| · · · ) =
n

∏
i=1

p

∏
k=1

p(y∗ik|ωi, θ, yik),

p(y∗ik|ωi, θ, yik) = N(µk + Λ
T
k ωi, 1)I{δk,yik

< y∗ik ≤ δk,yik+1}. (A3)

This is the truncated normal distribution and its draw can be obtained via inverse distribution sampling

method, see for example, [53].

4. Full conditional of p(θ| · · · )
Recall that θ is consisted of α, β, γ, ψ, σ2, µ, Λ, Φ and δ. Hence, draw of θ can be accomplished

by (i) drawing α from p(α| · · · ), (ii) drawing β from p(β| · · · ), (iii) drawing γ from p(γ| · · · ), (iv)

drawing (ψ, σ2) from p(ψ, σ2| · · · ), (v) drawing µ from p(µ| · · · ), (vi) drawing Λ from p(α| · · · ), (vii)

drawing Φ form p(Φ| · · · ), and (viii) drawing δ from p(δ| · · · ) sequentially. Note that given U∗, Y∗

and Ω, the models (8), (2) and (5) reduce to the ordinary regression models, and hence most of full

conditionals, similar to that of the regression coefficients and variance/covariance in the Bayesian

regression analysis, are the standard distributions such as normal, gamma, inverse gamma and wishart

distributions. As a matter of fact, by some tedious but non-trivial calculations, it can be shown that

p(α| · · · ) = N(µ̂β, σ̂2
β), p(β| · · · ) = Nq(µ̂β, Σ̂β), (A4)

p(γ| · · · ) = N(µ̂γ, σ̂2
γ), p(ψ, σ2| · · · ) = IG(α̂σ, β̂σ)× Nq(µ̂ψ, σ2

Σ̂ψ), (A5)

p(µ|Ω, Λ, Y∗) = Np(m̂µ, Σ̂µ), p(Λ| · · · ) =
p

∏
k=1

p(Λk| · · · ) =
p

∏
k=1

Nm(Λ̂k, Ĥk), (A6)

p(Φ−1| · · · ) = Wm(ρ + n, R̂), (A7)
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in which

µ̂α = σ̂2
α

n

∑
i=1

(κi − u∗
i βTwi), σ̂2

α = (
n

∑
i=1

u∗
i + σ−2

α0 )−1,

µ̂β = Σ̂β

n

∑
i=1

wi(κi − αu∗
i ), Σ̂

−1
β =

n

∑
i=1

u∗
i wiwi + diag{γ−2

β },

µ̂γ = σ̂2
γ

n

∑
i=1

ui(zi − ψTwi)/σ2, σ̂2
γ = (

n

∑
i=1

ui/σ2 + σ−2
γ0 )

−1,

µ̂ψ = Σ̂ψ

n

∑
i=1

wi(zi − γ)ui/σ2, Σ̂
−1
ψ =

n

∑
i=1

uiwiwi + diag{γ−2
ψ },

α̂σ = a0 + |I|/2,

β̂σ = b0 +
1

2
(

n

∑
i=1

uiz
2
i − µ̂T

ψΣ̂
−1
ψ µ̂ψ + Λ

T
0kH−1

0k Λ0k),

m̂µ = Σ̂µ(Σ
−1
0 µ0 + n(Ȳ∗ − ΛΩ̄)), Σ̂

−1
µ = nIp + Σ

−1
0 ,

Λ̂k = Ĥk(H
−1
0k Λ0k + Ω

TY∗∗
[k]), Ĥ−1

k = nΦ
−1 + Ω

T
Ω,

R̂−1 = R−1
0 + Ω

T
Ω,

where Y∗∗ is the n × p matrix with the ith row y∗T
i − µT , Y∗∗

[k] is the kth column of Y∗∗, and Ω is the

n × m matrix with the ith row ωi; Ȳ∗ =
n

∑
i=1

y∗
i /n, Ω̄ =

n

∑
i=1

ωi/n. are the sample means of Y∗ and Ω

and |I| denotes the size of I = {ui = 1}.

However, for δ, we note that

p(δ| · · · ) =
p

∏
k=1

p(δk|Y∗
[k], Y[k]), and

p(δk|Y∗
[k], Y[k]) ∝ p(δk)

n

∏
i=1

c

∏
ℓ=0

I{yik = ℓ, δkℓ < y∗ik ≤ δk,ℓ+1}.

Hence, drawing δ can be obtained by drawing δk from p(δk| · · · ) independently. Moreover, under

prior (24), it can be shown that

p(δkℓ|δk,(−ℓ), Y∗
[k], Y[k]) ∝ p(δkℓ, δk,(−ℓ))I{ max

yik=ℓ−1
{y∗ik},≤ δkℓ < min

yik=ℓ
{y∗ik}}.

where δk,(−ℓ) is the vector of δk with δkℓ removed. Let hk,ℓ = max{δk,ℓ−1, maxyik=ℓ−1{y∗ik}}, gk,ℓ =

min{δk,ℓ+1, minyik=ℓ{y∗ik}}. It follows from (25) that

F0(δkℓ)− F0(δk,ℓ−1)

F0(δk,ℓ+1)− F0(δk,ℓ−1)
|δk,−ℓ, Y∗

[k], Y[k] ∼ Beta(ηk,ℓ, ηk,ℓ+1)I{(sk,ℓ, tk,ℓ)}, (A8)

where

sk,ℓ =
F0(hk,ℓ)− F0(δk,ℓ−1)

F0(δk,ℓ+1)− F0(δk,ℓ−1)
, tk,ℓ =

F0(gk,ℓ)− F0(δk,ℓ−1)

F0(δk,ℓ+1)− F0(δk,ℓ−1)
.

As a result, we can draw δkℓ by first generating a δ∗kℓ from the truncated beta distribution

(A8) and then transform it to the δkl via inverse-transformation by setting F−1
0 (δ∗kℓ[F0(δk,ℓ+1) −

F0(δk,ℓ−1)] + F0(δk,ℓ−1)). A draw of truncated beta distribution can be obtained by implementing

inverse-distribution sampling method.

4. Full conditional of p(Q∗| · · · )
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First of all, it is noted that Q∗ is consisted of Fβ, Fψ, wβ, wψ, η−2
β , and η−2

ψ under SS, and formed

by γ2
β, γ2

ψ, λ2
β and λ2

ψ under BaLsso. Similar to that of θ, we update Q∗ by drawing observations from

their full conditionals per component sequentially.

Firstly, it is noted that

p(Fβ| · · · ) ∝

q

∏
k=1

p(βk| fβk, η2
βk
)p( fβk

|wβ),

p(Fψ| · · · ) ∝

q

∏
k=1

p(ψk|σ2, fψk, η2
ψk
)p( fψk

|wψ),

which indicates that the components in the posteriors of Fβ and Fψ are independent. Further, it follows

easily from (12) that

p( fβk|wβ, η2
βk, βk) = (1 − q̂βk)δνβ0

(·) + q̂βkδ1(·),
p( fψk|wψ, η2

ψk, βk) = (1 − q̂ψk)δνψ0(·) + q̂ψkδ1(·),

where

q̂βk =
wβφ(βk/ηβk)

(1 − wβ)φ(βk/(
√

νβ0ηβk)/
√

νβ0 + wβφ(βk/ηβk)
,

q̂ψk =
wψφ(ψk/(σηψk)

(1 − wψ)φ(ψk/(σ
√

νψ0ηψk)/
√

νψ0 + wψφ(ψk/(σηψk))
,

and φ(·) is the standard normal probability density function.

Secondly, it is noted that

p(wβ|Fβ) ∝ p(wβ)p(Fβ|wβ) = p(wβ)
q

∏
k=1

p( fβk|wβ)

= cw
aβ−1

β (1 − wβ)
bβ−1

q

∏
k=1

w
I{ fβk=1}
p (1 − wβ)

I{ fβk=νβ0},

p(wψ|Fψ) ∝ p(wψ)p(Fψ|wψ) = p(wψ)
q

∏
k=1

p( fψk|wψ)

= cw
aψ−1
p (1 − wβ)

bψ−1
q

∏
k=1

w
I{ fψk=1}
ψ (1 − wψ)

I{ fψk=νψ0}.

Hence,

p(wβ| · · · ) = Beta(cβ1 + |{ fβk = 1}|, cβ2 + |{ fβk = νβ0}|), (A9)

p(wψ| · · · ) = Beta(cψ1 + |{ fψk = 1}|, cψ2 + |{ fψk = νψ0}|), (A10)

where |A|, as before, is the size of set A.
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Lastly, it follows from

p(η−2
β |Fβ, β) ∝ p(β|Fβ, η−2

β )p(η−2
β )

=
q

∏
k=1

(η−2
βk )

1/2 exp

{
−1

2
η−2

βk β2
k/ fβk

}
(η−2

βk )
aβ1−1 exp{−aβ2η−2

βk },

p(η−2
ψ |Fψ, ψ) ∝ p(ψ|Fψ, η−2

ψ )p(η−2
ψ )

=
q

∏
k=1

(η−2
ψk )

1/2 exp

{
−1

2
η−2

ψk ψ2
k / fψk

}
(η−2

ψk )
aψ1−1 exp{−aβ2η−2

ψk }

that

p(η−2
β |Fβ, β) =

q

∏
k=1

p(η−2
βk | fβk, βk) =

q

∏
k=1

Ga(τ̂βk, ζ̂βk),

p(η−2
ψ |Fψ, ψ) =

q

∏
k=1

p(η−2
ψk | fψk, ψk)

q

∏
k=1

Ga(τ̂ψk, ζ̂ψk),

where

τ̂βk = τβ0 + 1/2, ζ̂βk = ζβ0 + β2
k/(2 fβk),

τ̂ψk = τψ0 + 1/2, ζ̂ψk = ζψ2 + ψ2
k /(2 fψk).

For BaLasso, we follow the practice in [37]) and can show

p(γ−2
β | · · · ) =

q

∏
k=1

p(γ−2
βk | · · · ) =

q

∏
k=1

IG(µ̂β, λ̂β),

p(γ−2
ψ | · · · ) =

q

∏
k=1

p(γ−2
ψk | · · · ) =

q

∏
k=1

IG(µ̂ψ, λ̂ψ),

in which

µ̂β =
√

λ̂β/β2
j , λ̂β = λ2

βk,

µ̂ψ =
√

σ2λ̂ψ/β2
j , λ̂ψ = λ2

ψk,

where IG(µ, λ) is the inverse-gaussian distribution with density
√

λ/(2π)x−3/2 exp{−λ(x −
µ)2/(2µ2x)}(x > 0) [54].

Similarly,

p(λ2
β| · · · ) =

q

∏
k=1

p(λ2
βk| · · · ) =

q

∏
k=1

Ga(âβk, b̂βk),

p(λ2
ψ| · · · ) =

q

∏
k=1

p(λ2
ψk| · · · ) =

q

∏
k=1

Ga(ĉψk, d̂ψk),

in which

âβk = ak0 + 1.0, b̂βk = bk0 + 0.5γ2
βk,

ĉψk = ck0 + 1.0, d̂ψk = dk0 + 0.5γ2
ψk.
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