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Abstract: Semi-continuous data are very common in the social science and economics. In this paper,
a Bayesian variable selection procedure is developed to assess the influence of exogenous factors
including observed and unobserved on the semi-continuous data. Our formulation is based on
the two-part latent variable model with polytomous response. We consider two schemes for the
penalties of regression coefficients and factor loadings: the Bayesian spike and slab bimodal prior
and the Bayesian lasso prior. Within the Bayesian framework, we implement Markov Chains Monte
Carlo sampling method to conduct posterior inference. To facilitate posterior sampling, we recast
the logistic model in part one as the norm-like mixture model. Gibbs sampler is designed to draw
observations from the posterior. Our empirical results show that with suitable hyper-parameters,
the spike and slab bimodal method slightly outperforms the Bayesian lasso in the current analysis.
Finally, a real example related to the China household finance survey is analyzed to illustrate the
application of the methodology.

Keywords: two-part latent variable model; spike and slab prior; Bayesian lasso, MCMC sampling;
CHFS
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1. Introduction

Semi-continuous data, characterized by excessive zeros, are very common in the fields of social
science and economics. A typical example is given by [1] in the analysis of medical expenditures,
in which the zeros correspond to a subpopulation of patients who do not use health services, while
the positive values describe the actual levels of expenditures in use among users. In understanding
such type of data structure, two-part model [2] is a widely appreciated statistical method. The
basic assumption on two-part model is that the overall model is consisted of two processes: one
binary process (Part one) and one continuous positive-valued process (Part two). The binary process,
usually formulated within the logistic or probit regression model, is used to indicate whether the
items are responded or not, while the continuous process, conditioning on the binary process, is used
to describe what the actual levels of responses are (see, e.g., [3]). By combining two processes into
one, two-part model provides a unified and flexible way in describing various relevance underlying
semi-continuous data. Now, two-part model has been widely used in the health service [4-6], the
medical expenditures [1,7-9], the household finance [10], the substance use study [11,12] and the
genome analysis [13].

The traditional two-part model usually formulates the exogenous explanatory factors as fixed
and observed. However, in the real applications especially in the social survey, many unobserved/latent
and random factors also have important impacts on the outcome variable. This fact is revealed by [14]
in the study of children’s aggressive behavior. [14] noted that two factors, the propensity to engage
in aggressive behavior and the propensity to have high aggressive activity levels, had significant
influence on the children’s aggressive behavior. They incorporated such two latent factors into analysis
and established a two-component-two-part mixture model to identify the heterogeneity of population;
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[15] noticed that in China, the finance literacy of a family had a nonignorable influence on the desire
to holding finance debts, and also affected the amount of finance debt being held. They suggested
conducting a joint analysis of latent factor and observed covariates in two-part regression model.
The latent factor is further manifested by multiple binary measurements via factor analysis model.
[16] incorporated two-part regression model into the general latent variable model framework and
analyzed the internal relationships between multiple factors longitudinally. These methods have
brought significant attention to the two-part model in behavioral science, economics, psychology, and
medicine in recent years, see for example, [13,17,18] and references therein for further developments
of two-part model.

In the analysis of semi-continuous data, an important issue is to determine which explanatory
factor is helpful in improving model fit. This issue is especially true when the number of exogenous
factors is large since the commonly used forward and backward regression procedure is extremely
time-consuming. Now, lasso and its extensions [19-26] have been the most commonly used methods
for the feature extraction. A typical feature of these methods is to put some suitable penalties on
the coefficients and shrink many coefficients to zero, thus performing variable selection. Recently,
these penalization/regularizatio approaches have been applied widely for prediction and prognosis
(see for example, [27,28]). Though more appealing, the lasso-type regularization also suffers some
limitations. For example, most contributions are developed within the frequency framework and
the performance heavily depends on the large sample theory. It also readily leads to computational
difficulty in the analysis of mixed data. An alternative for the variable selection is conducted within the
Bayesian framework. Statisticians have introduced hierarchical models with mixture spike-and-slab
priors that can adaptively determine the amount of shrinkage [29,30]. The spike-and-slab prior is
the fundamental basis for most Bayesian variable selection approaches, and has proved remarkably
successful [29-35]. Recently, Bayesian spike-and-slab priors have been applied to predictive modeling
and variable selection in large scale genomic studies, see [36] for a simple review. Nevertheless, model
selection has never been considered in the two-part regression model with latent variables. In this
study, we introduce spike and slab model and Bayesian lasso into two-part latent variable model,
which is the first attempt for this model.

Our formulation is more along with the lines of spike and slab bimodal prior in [33] and Bayesian
Lasso in [37]. We formulate the problem by specifying a normal distribution with mean zero to the
regression coefficient or factor loading of interest. The probability of a related variable being excluded
or included is governed by the variance. To model the shrinkage of coefficients properly, we consider
two schemes for the variance parameter: one is the two-point mixture model with one component
located at the point close to zero and the other component situated at the point far away zero. The
proportion is governed by a beta-distribution with suitable hyperparameters. Another scheme is
along with the Bayesian lasso in which the variance is specified via a gamma distribution scaled
by the penalty parameters. Two schemes are unified into a hierarchical mixture model. Within the
Bayes paradigm, we developed a fully Bayesian selection procedure for the two-part latent variable
model. We resort to the Markov Chains Monte Carlo sampling method. Gibbs sampler is used to draw
observations from the posterior. We obtained all full conditionals. Posterior analysis is carried out
based on the simulated observations. We investigate the performance of the proposed methods via
simulation study and a real example. Our empirical results show that two schemes results in similar
results in the variable selection but SS with suitable hyperparameters slightly outperforms over BaLsso
in the correct rate.

The remainder of this paper is organized as follows. Section 2 introduces the proposed model
for the semi-continuous data with latent variables. Section 3 develops the MCMC algorithm for
the proposed model. Bayesian inference procedures including parameters estimation and model
assessment are also presented in this section. In Section 4, we present the results of simulation study to
assess the performance of our proposed methodology and illustrate the practical value of our proposed
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model with household finance debt data. Section 5 concludes the paper with a discussion. Some
technical details are given in the Appendix.

2. Model description

In section 2.1, a basic formulation for analyzing semi-continuous data with latent variables is
presented. Section 2.2 presents a Bayesian procedure for the feature extraction.

2.1. Two-part latent variable model

Suppose thatfori = 1,2,...,n,s; is a semicontinuous outcome variable which takes value in [0, o);
x; is a generic vector consisted of r fixed covariates representing the collection of observed explanatory
factors of interest. We assume that each xjj in x; is standardized in the sense Y x;j = 0 and
" xizj =1forj=1,...,r. Moreover, we include m letent/unobserved variables w; = (wj, ..., wim)T
into analysis to account for unobserved heterogeneity of responses.Conceptually,these latent variables
can be the covariates that are not directly observed or the synthesization of some highly correlated
explanatory items suffering from the noisy. Inclusion of latent variables can improve model fits and
strengthen the power of model interpretation, see [38] for more discussions on the latent variables
in a general setting. To deal with the spike of s; at zero, we follow the common routine in literature
(see for example, [9,11]) and identify s; with two surrogate variables: u; = I{s; > 0} and z; = log(s;"),
where I(A) denotes the indicator function of set A and a™ represents the positive part of a. That is,
we separate the whole dataset into two parts: one part is the binary dataset which corresponds to the
response-to-nonresponse indicators of subject and the other part is the logarithm of positive values.
Our interest focuses on the exploration of effects of exogenous factors on two parts.
We assume that u; and z; satisfy the following sampling models:

exp(uin#
p(ui|xirwi) = 1—}-12(x1;1(71173)' (1)
i

n = w+ﬁ§xi+ﬁ£wi,
p(zilu; = 1,w;) = N(7},0?), 2)
=7+ P+ pLwi,

in which & and -y are the intercept parameters, B, and ¢, are the vectors of regression coefficients, and
B, and ¢, are the vectors of factor loadings; ¢ is the scale and ‘T" is the transpose operator of vector
or matrix; For compactness, we write 8 = (81, 87 )T and ¢ = (9T, ¢T)T and treat w; = (xI, w7 as
the complete explanatory variables.

The involvement of latent variables apparently complicates the model. It readily results in model
identification problem [39,40]. This is especially true when the dimension of w; is high. In this case,
any auxiliary information is required to manifest w; further. Among various-easy-constructs, we
consider latent variable (LV, [39,40]) approach. A basic assumption on LV approach is that there exist,
say p manifestations y; = (yi1,- -, yl-p)T, of which each y;; may be continuous, counted or categorical,
and assuming that they satisfy the following link equation

F(yir wi, ei/(P) == 0/ (3)

where F is a known and fixed link function, €; is the vector of errors used to identity the idiosyncratic
part of y; that can not be explained by w;, and ¢ is the vector of unknown parameters used to quantify
the uncertainty of model. The information about w; is manifested by y; via F. In this paper, in view
of the real applications, we consider p ordered categorical variable y; = (y;1,- - -, yip)T, of which y;;
takes value in {0,1,...,¢;}(c; > 1) and satisfies the following link model:

yij =4 if b0, <y < 64 4)
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where §jp < 3 <+ < (5]~Cj < 5]«,51.“ are the threshold parameters with Jjp = —co and 5]«,51.“ = +o00,
andy; = (v, -+, ]/?},)T is the vector of latent responses satisfying the factor analytic model:

yi =p+Aw; +¢, ®)

w; " Nu[0, @], €; ~ N,[0,1,], and w; L €, (©)

where p is a p-dimensional intercept vector, A is the p x m-dimensional factor loading matrix, and I,
is the identity matrix of order p. We assume that conditional upon w;, s; and y; are independent.

We refer to the model specified by (1), (2) and (4) associated with (5) as the two-part latent variable
model with polytomous responses. It provides a unified framework to explore the dependence of
binary, continuous and categorical data simultaneously. The dependence between them results from
the share of common factors or latent variables. If w; is degenerated at zeros or the factor loadings
are taken as zeros, the dependence among them disappears, and the overall model reduces to the
traditional two-part model and ordinal regression model.

To facilitate the efficient calculation, motivated by the key identity in [41] (see squation (2) in their
seminar paper), we express the logistics model (1) as the mixture model of form

exp(ui(a+ BT wj))
1+ exp(a+ B'w))

=2 expl(a+ 7)) [ exp { =5 o BT o, )

where x; = u; — 0.5, and ppg(u) is the standard Pélya-Gamma probability density function. Assuming
that we introduce auxiliary variables u} and augment them with u;, then equation (1) can be considered
as the marginal density of the joint distribution

u*
p(u;,ul | x;,w;) =2 Lexp {Kz‘ﬂi” - 21771”2} prc(u;). 8)

Note that the exponential part in the brackets is the kernel of normal density function with respect
to 17{'. Hence, it admits conjugate full-conditional distributions for all regression coefficients, factor
loadings and factor Variables, leading to a straightforward Bayesian computation.

Let U = {u;}!' |, Z = {z;}!' ;,and Y = {y;}! , be the sets of observed Varlables, We writeQ) =
{w;}!, for the collect of factor variables, and wrlte U = {u}, Vv ={of}l Y = {y}, for
the sets of latent response variables. The complete-data likelihood is given by

p(U,U*, Z,V*,Y,Y*,Q6)
=p(U, U*|Q,a, B)p(Z, VU, Q, 7, 9,0 p(Y|Y*, 8) p(Y*|Q, 1, A) p(Q| @)
n

1 .
exp {Kin — 5l F(n)? }PPG(“i 11,0)
1

i=

1 1
xgmgexp{ 7oa =172}
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where I = {i : u; = 1} is the set of indices, § = {j/} is the set of threshold parametes, and
0=A{w,B,7 ¢, o2, u, A, ®, 8} is the vector of unknown parameters. For the moment, we assume 6]- in
0 all are free.

2.2. Bayesian feature selection

Generally speaking, regression variables x; and factor variables w; may not have impacts on the u;
and z; simultaneously, and some redundant variables may exist. The presence of redundant variables
not only decreases the model fit but also weakens the power of model interpretation. Therefore, it
is necessary to determine which regression coefficient or factor loading is significantly away from
zero. In the context of frequency statistics, this issue is generally tackled out via stepwise regression,
in which each variable is decided to be exclude or included according to the model fit. However, the
situation becomes complex when the number of independent variables is large. In this paper, we
pursuit a Bayesian variable selection procedure. To this end, we follow [37] and assume

B ~ Ny(0,diag{vg}), ¥ ~ Ng(0,0*diag{vy}), ©)

in which we use diag{a;} to represent a diagonal matrix with the k" diagonal element a; and let
q = r 4+ m. That is, we assume that each S in B (yx is similar) is centered at zero (or equivalently each
wjy. is excluded from wy;) but with the probability governed by the variance 'Yék' If 'y‘;gk is close to zero,
then the probability of B taking zero increases, and wj; tends to be excluded; conversely, if 'Y/ZSk is large,
then the probability of By being zero is small and w;; tends to be maintained. As a result, the value of
'y%k plays a key role in determining whether wy, is relevant to be selected in Part one. With this in mind,

a reasonable assumption on 7/23k and 'yik is that:

ind.

’Y%k ~ (1 - wlg)(suﬁorygk(') + wﬁdqgk(')/ (10)
ind.
r)/ik = (1 - wl/})(svwr/ék () + wlp(sﬂék ()I (11)

where &, (-) is the Dirac measure concentrated at point a, wg is the random weight used to measure the
similarity between 7,25k and U,%k' and ’7/%% is the hyperparameter used to represent how far By is away
from zero or slab; vg is a previously specified small positive value used to identity the ‘spike’ of B at
zero. In other words, every W%k is assumed to be equal to 17%,< with probability wg and equal to 1//3017!231(
with probability 1 — wg. This is also true for wy, 17, and vyo. To model wg and wy properly, we assign
the following beta distributions to them

p(wglag, bg) = Beta(ag, bg), p(wylay,by) = Beta(ay, by), (12)

where ag, ay, bg and by are the hyperparameters used to control the shape of beta density, that is, to
determine the magnitude of weights in (0, 1). For example, if ag; in equation (12) is small and b, is
large, then equation (12) encourages wy to take small value with high probability. In contrast, it follows
from 1 — Beta(ag, bg) = Beta(bg, ag) that large ag; and small bg; encourage wpg to take large value in
(0,1). In the case that ag; = bg; = 1.0, equation (12) reduces to the uniform distributions on (0, 1). In
this case, every value in (0, 1) is possible for wg with the same probability. In the real applications, if
no information can be available, one can assign the values to them to ensure the beta distribution to be
inflated enough.

Finally, to measure the magnitudes of ‘slap’ in the distributions of By and 1, we specify gamma
distributions for 17&3 and ryl;kz, or equivalently,

” ”
MglapL ag2 =~ 1G(tp0,Cpo), Maglayr, aya ~ 1G(Ty0, Gyo), (13)
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where ‘IG(a,b)’ denotes the inverse-gamma distribution with mean b/(a — 1) for a > 1 and variance
b*/((a—1)%(a—2)) fora > 2; Tpo, Gpo, Tpo and Jyo are the hyperparameters which are treated to
fixed and known. Similarly, one can assign values to them to ensure (13) to be dispered enough. For
example, we can follow the routine in [33] in the ordinary regression analysis, and set 150 = Tyo = 1.0
and (o = Cyo = 0.05 to obtain dispersed priors.

Note that equations (10) and (11) can be formulated as hierarchy as follows: fork =1, ...,3,

Vo = Forllier Vor = FulTi
id.

f,gk|1/50, wp < (1- wﬁ)@;m(') + wlgél('), (14)
id.

Forlvgo, wy = (1= wy)duyg (-) + wpés (-), (15)

where fg and fy are the latent binary variables respectively. Such a formulation aims to separate ’7/23k

and nék from the distributions (10) and (11) to facilitate posterior sampling.
It is instructive to compare the proposed method to the Bayesian lasso [37], in which the variance
parameters '7?51( and 'yik in equation (9) are specified via exponential distributions as follows:

/\zk
p(vg | Af) = ;—[ 75 exp(—AgVE/2), (16)
=1
9 A2
PO | A3) = [T 5 exp(=A3rie/2), (17)
k=1

where A3 = (Afy,---, Ag,) " and A% = (Aj1s- -+, Ayg)TAYy are the shrinkage/penality parameters used
to control the amount of shrinkage of By and x toward zero.

Modeling 'Y%;k and 'yék like equations (16) and (17) lead to marginal distributions of B and y as
the laplace distributions with location zero and scale Ax. The penalty parameters A%k and A2 are rather
crucial in determining the amount of shrinkage of parameters. Figure 1 presents the plots of densities
of Laplace distribution LA(A)(A > 0) across various choices of A. It can be seen that the larger the
value of v, the more kurtosis the density, indicating more penalties on the regression coefficient.

0.05 0.5
0.04 0.4
0.03 0.3
0.02 0.2
0.01 0.1
[0] 0
-50 0 50 -20 -10 (o] 10 20
A=0.1 A=1
5 25
4 20
3 15
2 10
1 5
0 ]
-10 -5 0 5 10 -5 (0] 5
A=10 A=50

Figure 1. Plot of the densities of Laplace distribution across different choices of A.
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Due to their key role in equations (16 ) and (17), for A% and )\5,, we assign the following gamma

priors to them, i.e,,

q q
p(A}) = 1!:[1 p(Ag) = g Ga(ako, byo), (18)
q q
p(Ay) = TTr(A50) =TT Galcxo, dro), (19)
k=1 k=1

where ‘Ga(v, 1)’ denotes the gamma distribution with mean v/A. As the previous discussions, the
values of ay, byg, cxo and dig should be selected with care since they relate the shrinkages directly.
Similar to that in (13), one can set ayy = cg = 1, byg = diy = 0.05 to enhance the robustness of inference.
This routine is followed in our empirical study.

Let Fy = {fae}, Fy = {fu, v = {73} 75 = {viud 13 = (b, = {0} We treat vgo and
vyo as known hyperparameters. Note that 'yfg) and 'ylzp are totally determined by Fj, Fy, and 17’%, qlzp. In
the following, we abbreviate spike and slab bimodal prior to SS and Bayesian lasso to BaLsso.

3. Bayesian inference

3.1. Prior specification and MCMC sampling

In view of the model complexity, we consider Bayesian inference. Some priors are required to
specify for unknown parameters to complete Bayesian model specification. Based on the model
convention, it is naturally to assume that the parameters involved in the different models are
independent.

Firstly, for u#, A and ® , we consider the following conjugate priors:

p(#) = Np(po, Zo), (20)
4 4

p(A) =T p(Ax) =] ] Nm(Aor, Hr), (21)
k=1 k=1

p(®) = IW (0o, Ry "), 22)

where ‘IW(p, R)’ denotes the inverse Wishart distribution with degrees of freedom p and scale matrix R
[42]; Alf is the k' row vector of A; #o, Zo(p x p) >0, Aok, Hop(m x m) >0, pg > 0,and Ro(m x m) >0
are the hyperparameters which are treated to be fixed and known.

Secondly, for &, 7, 0% in part one and two, we assume they are mutually independent and satisfy

p(a) = No,029), p(7) = N(v0,0%), p(c—2) ~ Ga(ag, by), (23)

where ag, 02,, 70, 02

~0 and ag, by are the fixed hyperparameters.

Lastly, for threshold parameter J, without loss of generality, we assume that ¢;, the number
of categories of y;;, is invariant across the subscript j and equals to c. Moreover, we assume that
p(d) = Hle p(6;), where §; = (0 ) is the j" row vector of 8. In the following, we suppress the
subscript j in §j for notational simplicity and write ¢ for J;.

Let Fy(-) be any strictly monotonically increasing and differentiable function on R with Fy(+o0) =
1 and Fy(—o0) = 0. For example, one can take Fy = ®(-/19) for some 15 > 0 or student distribution
with degrees of freedom vy, where ®(-) is the standard normal distribution function. To specify a

prior for 6, we follow [43] and let p; = Fy(d;) — Fo(6j—1) forj =1,--- ,c. It is easily to show that the
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transformation is invertible with Jacobi determination unity. We first consider the following Dirichlet
distribution for p = (p1,---,pc)":

1 m-1 770 1 ) 1
7T — c+17
(r) B o™ E pe)

where B(n1, - ,fct1) = ]_[CJrl T(n;)/ F(Z]Cill 1) is the multivariate beta function evaluated at
M, Mev1, and 17 > 0. Then by the formula of inverse transformation, the joint distribution
of J is given by

1 _—
n(0) = g Pl plT (= p)” T [T I{er < - <4, 24
() B, - r’7c+l)pl ZW Hfo ) {61 ) (24)

where fy(x) is the derivative of Fy(x) with respect to x. We call (24) the transformed Dirichlet prior
and use it as the prior of §. An advantage of working with (24) is that conditional upon J; 1 and §;1,
the transformed distribution of 6; has the beta distribution given by

Fo(6;) — Fo(dj-1)
Fo(6j41) — Fo(j-1

)|(5j—1r5j+1) ~ Beta(yj,1j41), (j=1,--- ,c). (25)

3.2. MCMC sampling

With the prior given above, the inference about 6 is based on the posterior p°(0|U, Z,Y), which
has no closed form. Motivated by the key idea in [44], we treat latent quantities as the missing data
and argument them to the observed data to form the complete data. The statistical inference is carried
out based on the complete-data likelihood. For this end, apart from 3, U* and Y* mentioned before,
we further let Q* be the collection of latent quantities involved in the specifications of f and v, i.e.,
Q* = {F}, F; ’7[5' ’71/1' wg, wy } under SS and {A3, A2 ¢} under BaLsso. Rather than working with the
posterior p° dlrectly, we consider the following joint d1str1but1on

plont(Q,U%, Y*,Q%,8|U, Z,Y), (26)

where p° can be considered as the marginal of p/*". We use Markov chain Monte Carlo(MCMC,
[45,46]) sampling method to simulate observations from this target distribution. In particular, Gibbs
sampler is implemented to draw observations iteratively from the full conditional distributions as
follows:

draw Q from p(Q | U*,Q*,Y*,6,U,Z, V),
draw U* from p(U* | Q,Y*,Q*,6,U,Z, V),
draw Y* from p(Y* | Q,U*,Q*,0,U,Z,V),
draw Q* from p(Q* | Q,U*,Y*,0,U,Z, V), and
draw 6 from p(0 | Q,U*, Y*,Q*,U,Z,V).

Upon convergence, the posterior is approximated by the empirical distribution of the simulated
observations. The convergence of algorithm can be monitored by plotting the traces of estimates under
different starting values or observing the values of EPSR [47] of unknown parameters. The technical
details on implementing MCMC sampling are given in Appendix.

Simulated observations obtained from the blocked Gibbs sampler can be used for statistical
inference via a straightforward analysis procedure. For example, the joint Bayesian estimates of
unknown parameters can be obtained via sample averaging as follows:

doi:10.20944/preprints202401.2197.v2
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where {B(m) :m = 1,---,M} are the simulated observations from the posterior. The consistent
estimates of covariance matrices of estimates can be obtained via sample covariance matrices.

The main purpose of introducing SS and BaLsso is to screen the variable in w;. Unlike that in
the frequency statistics, Bayesian variable selection does not produce the estimates B and ¥ exactly
equal to zero, and hence it is necessary to determine which component can be treated as zero. This can
accomplished via posterior confidence intervals (PCI) of §; and ¥;, given by

P(|,B]| < Coc/2|UfoY) =1—q, P(|4’]| < dzx/2|UrZrY) =1-u (27)

where « is any previously specified value in (0,1). The calculation of PCI can be achieved via Monte
Carlo method. For example, let ,B](-k) :k=1,...,Kbe the K observations generated from the posterior
distribution, then the PCI of 8; with confidence level 100(1 — a)% is given by [/3]-,100(a /2)/Bj100(1-a )l
where B is the k" order statistics.

Another choice for variable determination in SS is based on the posterior probability of fz; =1
and fy; = 1, which can be approximated by

1 & 1 K
o= g LU =10 for =g L1y =11 @)

where flg() and flg]() (k =1,...,K) are the k observations drawn from the posterior distribution via

Gibbs sampler. The variable w; is selected in part one and two if f/gj > 0.5 and ﬁp]- > 0.5.

4. Simulation study

In this section, a simulation study is conducted to assess the performance of the proposed method.
The main objective is to assess the accuracy of estimates and the correct rate of variable selection. We
consider one semi-continuous variable s;, two factor variables w;; and w;, and six categorical variables
Yij (j=1,...,6). We assume that s;, w;j and y;; satisfy equations (1), (2) and (4) associated with (5),
respectively, in which the number of fixed covariates is set at five. We generate x;; and x;; from the
standard normal distribution, x;3 and x;4 from the binomial distribution with probability of success
0.3, and x5 from the uniform distribution on (0, 1). All covariates were standardize to unify the scales.
For ordered categorical variables, we take ci=c=4, that is, each Yij belongs to {0,1,2,3,4}.

The true values of population parameters are set as follows: a« = ¢ = 07, B =
(0.7,0.0,0.7,0.0,0.7,0.0,0.8)T, v = 0.7, ¢ = (0.7,0.0,0.7,0.0,0.7,0.8,0.0)T, ¢* = 1.0, u = 0.7 x 1,
in which 14 is a 6 x 1 vector with elements being unity. The factor loading matrix A and conviance
matrix ® are taken as

AT

[ 10 08 08 00 00 o.o]’ _[1.0 0.3]/ 29)

|1 00 00 00 1.0 0.8 08 103 1.0

in which ones and zeros in A are treated as fixed to identify model; the thresholds are set as J; =
(—=1.5%,0.0, 1.2,2.5*)T fork = 1,...,6, where the elements with an asterisk are treated as fixed for
model identification. Based on these setups, we generate data by first drawing latent factors from
N;(0, @), and then drawing latent responses Y* from (5). The ordered categorical responses Y, the
indicator responses U and the intensity responses Z are sequentially generated from (5), (1) and (2). To
investigate the effect of sample size on the estimates, we take n = 400 and 1000, respectively, which
represent small and large levels of sample size.

For Bayesian analysis, we consider the following inputs for hyperparameters: for the parameters
involved in the measurement model, we take p, = 0g, and Ly = 100.0 x Is; the elements in Ag
corresponding to the free parameters in A are set at zero, and Hoy = I, fork =1,---,6; po = 10.0,
and Ry 1 = 6.0 x I5; for the threshold parameters J, we take 77; = - - - = 515 = 1.0, which denotes the
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uniform distribution of p on the simplex in R?; for intercept parameters a, v and ¢ in the two-part
model, we set ag = 19 = 0, 0%, = 030 =100, and ag = by = 2.0; the hyperparameters involved in the
formulation of B and i are set as before. Note that these values can ensure the priors inflated enough,
hence it could be expected to enhance the robust of inference. In addition, we set vgy = vyo = 0.001 in
equations (10) and (11) to guarantee B; and ¢, clumping at zero sufficiently .

The MCMC algorithm described in Section 3 is implemented to obtain the estimates of unknown
parameters 6. Before formal implementation, a few test runs were conducted as pilots to monitor the
convergence of the Gibbs sampler. We plot the values of EPSR of unknown parameters against the
number of iterations under three different starting values. For SS, Figure 2 presents the plots of EPSR

of unknown parameters under three different starting value with sample size n = 400.

5.5

4.5 -

EPSR
w
I

1 1 1
500 1000 1500 2000 2500 3000
iteration

Figure 2. Plot of the values of EPSR of unknown parameters under three different starting values:
simulation study and n = 400.

It can be found that the convergence of estimates is fast and all values of EPSR are less than 1.2
in about 300 iterations. To be conservative, we remove the first 2000 observations as burn-in phrase
and further collect 3000 observations for calculating the bias (BIAS), the root mean squares (RMS) and
the standard deviation (SD) of the estimate across 100 replications. The BIAS and RMS of the j-th
component 5] in estimates are defined as follows:

R ) 100 110
BIAS(6;) = (6, — 6),0; = 10029 ), RMS(8)) = 1002(9 —07)2, (30)

where 9? is the j-th element of population parameters 8°. The summaries of estimates of main
parameters under two scenarios are reported in Tables 1 and 2, where the sums of SD and RMS across
the estimates are presented in the last rows.
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Table 1. Summary of the estimates of unknown parameters under SS and BaLsso: simulation study

and n = 400.

SS BaLsso

PAR BIAS RMS SD BIAS RMS SD

a=0.7 -0.015 0.097 0.129 0.028 0.150 0.134
B1 =07 -0.056 0.143 0.142 -0.152 0217 0.136
B> =0.0 -0.001 0.021 0.061 -0.019 0.042 0.079
B3 =07 -0.144 0.216 0.145 -0.122  0.251 0.148
Bs=0.0 0.005 0.030 0.064 -0.008 0.040 0.078
Bs = 0.7 -0.091 0.147 0.137 -0.045 0.135 0.137
Be = 0.0 0.017  0.028 0.075 0.026  0.055 0.096
B7 =08 -0.187 0.237 0.184 -0.126 0209 0.184
v=07 0.010 0.079 0.084 0.008 0.063 0.085
P =07 -0.035 0.079 0.077 -0.011  0.065 0.074
P = 0.0 0.005 0.032 0.051 -0.018 0.031 0.054
3 =07 -0.007 0.061 0.070 -0.021 0.085 0.069
Py = 0.0 -0.007 0.029 0.049 -0.003 0.031 0.053
5 =0.7 -0.070 0.093 0.077 -0.018 0.082 0.075
s = 0.8 -0.040 0.086 0.089 -0.02 0.069 0.088
7 = 0.0 -0.011  0.033 0.062 0.014 0.036 0.069
02 =10 0.085 0.129 0.117 0.038 0.082 0.111
Ay =08 0.042 0.078 0.073 0.058 0.098 0.071
Az3 =08 0.030 0.072 0.071 0.034 0.063 0.072
Asp =08 0.058 0.079 0.072 0.052  0.090 0.073
A =08 0.031 0.060 0.072 0.037 0.064 0.073
®, =03 0.014 0.041 0.074 0.018 0.058 0.076
Total - 1.870 1.975 - 2.016 2.035

Table 2. Summary of the estimates of unknown parameters under SS and BaLsso: simulation study

and n = 1000.

SS BaLsso

PAR BIAS RMS SD BIAS RMS SD

a =07 0.052 0.096 0.087 0.009 0.092 0.087
g1 =07 0.005 0.069 0.089 0.055 0.117 0.090
B2 =0.0 0.003 0.048 0.058 0.032 0.052 0.060
B3z =07 0.007 0.086 0.093 -0.045 0.076 0.091
Bs=0.0 0.004 0.015 0.049 -0.020 0.043 0.060
Bs =07 0.010 0.071 0.086 0.013 0.074 0.085
Be=0.0 -0.003 0.029 0.059 0.032 0.064 0.077
B7 =028 0.002 0.102 0.120 -0.042 0.108 0.114
v=0.7 0.017 0.042 0.053 0.030 0.056 0.054
P =07 -0.023 0.038 0.046 -0.016 0.039 0.047
¥, =0.0 -0.007 0.019 0.033 -0.005 0.018 0.037
3 =07 -0.028 0.060 0.042 -0.014 0.026 0.043
Py =0.0 -0.007 0.023 0.033 0.000 0.018 0.036
P5 =0.7 -0.005 0.035 0.046 0.003 0.043 0.047
s =08 -0.031 0.058 0.053 -0.039 0.063 0.054
7 =0.0 -0.001 0.031 0.045 -0.025 0.081 0.053
02=1.0 0.018 0.049 0.068 0.041 0.053 0.071
A1 =08 0.021 0.041 0.045 0.033 0.038 0.045
A31 =08 0.016 0.049 0.045 0.028 0.038 0.045
As; =08  0.032 0.049 0.045 0.054 0.057 0.045
A =08 0.043 0.059 0.046 0.043 0.054 0.046
D1n 0.016 0.043 0.049 0.005 0.037 0.048
Total - 1.112  1.29 - 1.247 1.335
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Examinations of Tables 1 and 2 present the following findings: (i) Both methods produce
satisfactory results and the performance of SS are slightly superior to that of BaLsso. For n = 400, the
total RMS and SD are 1.870 and 1.975 respectively under SS, and amount to 2.016 and 2.035 respectively
under BaLsso; (ii) As expected, increasing the sample size improves the accuracy of the estimates both
for SS and BaLsso.

Another simulation is conducted to assess the performance of the proposed method in the variable
selection when the covariates and latent variables are correlated. In this setting, we generate covariates
and latent factors jointly from the multivariate normal distribution with mean zeros and covariance
matrix (7 x 7) with Xy = pli=Kl, where L is the (j, k)™ entry of .. We consider three scenarios for
p: (i) p = 0.1, (ii) p = 0.5 and (iii) p = 0.8, which represents respectively the weak, the mild and the
strong dependence among them. The values of B and ¢ are taken as (1.0,0.0,1.0,0.0,1.0,0.0,1.0) and
(1.0,0.0,1.0,0.0,1.0,1.0,0.0) respectively, and the sample size is taken as n = 1000. The other model
setups are set as the same as before. We implement MCMC sampling and collect 3000 observations
after removing first 2000 observations for posterior inference. We follow [48] and treat a regression
coefficient to be zero if the absolute value of its estimate is less than 0.1. Table 3 gives the summary of
variable selection across 100 replications.

Table 3. Number of correctly selected variables in the two-part model on the simulated data sets.

SS BaLsso
PAR p=01 p=05 p=08 p=01 p=05 p=08
g1 =10 100 100 100 100 100 100
B2 =0.0 98 96 85 88 86 76
Bz =10 100 100 100 100 100 100
Bs=0.0 96 95 86 93 93 85
Bs =1.0 100 100 100 100 100 100
Be = 0.0 96 94 93 97 92 87
Bz =1.0 100 100 100 100 100 100
P =1.0 99 100 100 100 100 100
P =0.0 100 99 95 100 98 93
3 =1.0 100 100 100 100 100 100
g = 0.0 100 100 97 98 100 91
5 =1.0 100 100 100 100 100 100
P = 1.0 100 100 100 100 100 100
7 = 0.0 100 98 97 97 96 96

Based on Table 3, it can be found that (i) for nonzero regression coefficients, two methods exhibit
satisfactory performances, both with 100% correct rates across all situations; (ii) for zero regression
coefficients, there exist difference between two methods, and SS are uniformly outperforms BaLsso.
The underlying reason perhaps is that for SS, the variances of estimates are set to be small enough to
ensure the coefficients close to zero while for BaLsso, the variance of estimates are controlled by the
shrinkage parameters which may not be large enough to ensure this point; (iii) with the increase of the
strength of dependence, the correct rates of two methods decreases.

5. China Household Finance Survey data

To demonstrate the usefulness of the proposed methodology, in this section a small portion of
Chinese household finance debt data is analyzed. The dataset is collected from the China household
financial survey (CHFS), a non-profit institute organized by the Southeast University of Finance and
Economics. The survey covers a series of questions which touch on the information about various
aspects of the household’s financial situation. In this study, we only focus on the measurement ‘gross
debts per household (DEB)’, the amount of the secured debt and unsecured debt of a household under
investigation. We extracted them from the survey of Zhejiang Province in 2013. Due to some uncertain
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factors, some measurements in DEB are missing. The missing proportion is about 2.7%. We remove
the subjects with missing entries and the ultimate sample size is 884. A preliminary data analysis
shows that the measurements DEB contain excessive zeros and the proportion of zeros is about 72.58%.
Naturally, we treat this variable as the outcome variable s;, and identify it with u; and z;. Figure 3
presents the histogram of DEB as well as the logarithms of positive values. It can be seen clearly
that dataset illustrates strong heterogeneity. The skewness and kurtosis of DEB are 1.1042 and 2.3361,
respectively, which indicates that single parametric model for DEB may be unappreciated.

1 0.25
0.8 0.2
> >
& 06 g 0.15
(<5 (<5}
=] =]
g g
= 0.4 r 0.1
0.2 0.05
0 [l
0.62.073.451.83%.217.58.970.361 . 7(8.11 5 10 15

DEB log DEB|DEB>0

x 10°

Figure 3. Histograms of DEB and the logarithms of their positive values: China household finance
survey data. Left panel corresponding the DEB and right panel corresponding to log(DEB|DEB > 0).

We include the following measurements as the potential explanatory factors to interpret the
variability in DEB: gender (x1), age (x2), marital status (x3), health condition(x4), educational experience
(x5), employment status of the household head (x¢), the number of family members (aged over 16, x7),
and the household annual income (xg). Table 4 gives the descriptive summary of the measurements
under consideration. To unify the scale, all covariates were standardized.

Table 4. Descriptive statistics of explanatory variables: CHFS data .

Variable. Description. Mean. Max. Min. SD
Gender (x7) =1, male; =0, otherwise 0.756 1 0 0.430
Age (x2) 51.81 91 19 14.931
Marital status (x3) =1, married; 0, otherwise  0.863 1 0 0.344
Health condition (x4) =1, good; 0, otherwise 0.833 1 0 0.373
Education degree (x5) =1, high school or above;

=0, otherwise 0.352 1 0 0.478
Employment (x¢) =1, yes; 0, otherwise 0.092 1 0 0.290
No. of adults (x7) 3.002 3 0 1.301
Annual Income (CYN)(xg)* 9.376* 8.060° 0  4.249*

* Note: Superscripts are used to indicate values raised to the power 10 (thus a? = a x 10?).The measurement is taken
as the middle value of the range in the questionnaire.

Besides the observed factors mentioned above, we also include family culture 7, a latent factor
into current analysis. It is well-known that China is an ancient civilization country with a long history,
and Confucian culture has deeply rooted in the social development. Economic activity or social
development can not be independent of cultural development. Hence, it is of practical interest to
investigate how the family culture affect the behaviour of the household finance debt. Based on the
design of the questionnaire, we select the following three measurements as manifestations for #:(i)
boys’s preference (BPy;). This is a three-category measurement coded by 0, 1 and 2, which corresponds
to the attitude ‘oppositive’, ‘does’t matter” and ‘strongly support’; (ii) attitude toward to the single of
children (5C), coded by 0, 1 and 2, according to the leve of support; (iii) importance of a household
head in a family.This measurement is originally coded in point 0 to 5 according to the support level.
However, in view of that the frequencies in the last three groups are small, we group them into three
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categories and recode them by 0 (does not matter), 1(important) and 2 (very important). In addition,
due to that some manifestations are missing, we treat missing data as missing random and ignorable
[49], and ignore the specific missing mechanic that results in missing data.

Let U = {u;}, Z = {z;}, and Y = {Y,ps, Yimis}, where Y, is the collectionn of observed data
and Y,,;s is the set of missing data. We formulate U, Z and Y within equations (1), (2) and (5), and
assume that #;,iid. ~ N(0,1). The inputs of hyperparameters in the priors are taken as follows:
Ajo = 0.0, Hp = 1and 571 = 572 = 17;3 = 2.0. The values of other hyperparameters are taken as
the same as those in the simulation study. To implement MCMC sampling algorithm, we need to
impute the missing data in Y. This is just to do by drawing y;; ;s from the conditional distribution
P (Yijmis|0, Yobs) = N(pjmis + Njmishi, 1), where p;is and A; ;s are the components of # and A
respectively which corresponds to the missing entry y;j ;s in y;. In addition, to identify the model
and scale the factor, we set A; = 1. We also adopt the method in [50] in the context of latent variable
model with polytomous data and fix J;; at R fj1/nj), where n; is the size of y,,;j equal to 1, and f;
is the observed frequency of 0 in y/ps ;. To assess the convergence of the algorithm, for SS, we plot the
traces of estimates under three different initial values (see Figure 4). It can be seen that the algorithm
converges at about 3000 iterations. To be conservative, we collect 6000 observations after deleting the
initial 4000 observations for calculating the estimates and the standard deviations.
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Figure 4. Trace plots of the estimates of unknown parameters against the number of iteration under SS
prior: CHFS data.

Table 6 gives the summary of the estimates of unknown parameters in two parts and factor
loadings. Examinations of Table 6 show that most estimates are very close but there exists differences
in the estimates of B4, B5, B7, Bs, P2, P7 and ¢Pg. For example, the estimates of B4, B5 and By under
SS are 0.428, 0.577, 0.747 with standard deviations 0.062, 0.070 and 0.072 respectively, while equal to
0.072, 0.082 and 0.092 with standard deviations 0.07, 0.081 and 0.092 under BaLsso. These differences
reflect the fact that two methods impose different penalties on the regression coefficients in the variable
selection.
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Table 5. Estimates and standard deviations estimates of unknown parameters under SS and BaLsso:

CHEFS data.
SS BaLsso SS BaLsso

Par Est. SD Est. SD Par Est. SD Est. SD
a -0.835 0.078 -0.838  0.080 v 9782 0.152 9.670 0.125
B 0.050 0.063 0.076  0.070 P -0.137 0.103 -0.107 0.088
B2 -0.750 0.099 -0.757 0.102 Py -0.147 0.141 -0.015 0.081
Bz 0107 0.085 0.147 0.088 P -0.022  0.065 -0.006 0.075
Bs 0428 0.062 0.072 0.070 Py -0.019 0.060 -0.029  0.069
Bs 0577 0.070 0.082 0.081 Ps 0259 0.123 0.322 0.107
Bs 0.004 0.040 0.005 0.052 P  0.035 0.058 0.053 0.067
By 0.118 0.079 0.130 0.079 p;  0.043 0.072 0.281 0.113
Bs 0747 0.073 0.092 0.077 ps  0.384 0.132 0.188 0.118
,BZ -0.059 0.112 -0.039  0.092 Py 1.205 0.106 1.910 0.104

o 0.312 0.150 0.300 0.152

Arxy -0.791  0.062 -0.714  0.057

Az1 -0.865 0.067 -0.625 0.068

To see more clearly, Table 4 gives the resulting selected variables according to SS and BaLsso. It
can be seen that (i) for part one, both methods give the same results for the selection of factors ‘gender’,
‘age’, ‘material status’, ‘employment’, ‘number of adults’ and ‘family culture’. Two methods favor that
‘age’,'material status’, and ‘number of adults’ can be helpful in improving model fits while ‘gender’
and ‘family culture” have less impacts on the probabilities of being held finance debt. However, there
exist contradictory conclusion in selecting ‘health condition’, ‘education” and ‘income’; (ii) for part two,
except the factors ‘age” and ‘number of adults’, two methods give the same results. In particular, both
methods support that ‘family culture’ is relevant to the amount of household finance debts being held.
This fact is also revealed by [17] in the analysis of CHFS by using two-part nonlinear latent variable
model. The further interpretation is omitted for saving spaces.

Table 6. The selected variables in the CHFS data: 0: exclude and 1: included.

Part one Part two
VAR SS  Balsso SS  Balsso
Gender 0 0 1 1
Age 1 1 1 0
Material status 1 1 0 0
Health condition 1 0 0 0
Education 1 0 1 1
Employment 0 0 0 0
No. of Adults 1 1 0 1
Income 1 0 1 1
Family culture 0 0 1 1

6. Discussion

Two-part latent variable model can be considered as an extension of traditional two-part model
to the situations where the latent variables are included to identify the unobserved heterogeneity of
population resulting from the absence of the observed covariates. When analyzing such a model, an
important issue is to determine which factor is relevant to the outcome variable. This is especially
true when the number of exogenous factors is high because the usual model selection/comparison
procedure is extremely time-consuming. In this paper, we restor to the Bayesian variable selection
method and developed a fully Bayesian variable selection procedure for the semi-continuous data.
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Our formulation is along the lines with the spike and slab bimodal prior and recast the distribution
of regression coefficients and factor loadings as hierarchy of priors over the parameter and model
space. The selected variables is identified with high posterior probability of occurrence. We also
consider a adaptive Bayesian lasso (BaLsso) for reference. To facilitate the computation, we recast
the logistic regression model in part one as the flavor of normal mixture model by introducing latent
Polya-gamma variables. which admits the conjugate conjugate full-conditional distributions for all
regression coefficients, factor loadings and factor variables.

Although the Bayesian variable selection has its unique advantage, there are still some limitations
that need to be considered with care. First, its computational complexity is high. Bayes SSL requires
Monte Carlo sampling to estimate the posterior distribution, which can lead to slower calculation
speed, especially when working with high-dimensional data sets. Secondly, the method is sensitive
to hyperparameter and data distribution assumptions. The selection of the hyperparameters of the
prior distribution, such as the ratio of spike to slab, lasso penalty parameters, and data distribution
assumptions, will have a great impact on the results. When the data does not conform to the model
convention, the performance of the model is poor. Therefore, these issues need to be carefully
considered in practical application to ensure that the Bayesian SS method can be effectively applied to
specific data sets.

The existing applications of the proposed methodology can be applied to more general latent
variable models that include the the multilevel SEMs [50] and longitudinal dynamic variable models
[16,51] with discrete variables. These extensions are left for further study.
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Abbreviations

The following abbreviations are used in this manuscript:

TPM Two-part model

TPLVM  Two-part latent variable model
SS Spike and slab bimodal prior
BaLsso  Bayesian lasso

MCMC  Markov Chains Monte Carlo
CHEFS China household finance survey

Appendix A

In this section, we will present some technical details on the full conditionals in the MCMC
sampling. For ease of exposition, for any scalar or vector x, we use p(x| - - - ) to denote the conditional
distribution of x given ‘- - -’. Note that under the scenarios SS and BaLsso, the full conditionals of (2,
U*, Y* and 0 are exactly the same. The following derivations are mainly based on the Bayes theorem.
1. Full conditional of p(Q}| - - -)

It follows from (8), (2) and (5) that

where

pwi| ) & plus,uf|w;, a, B)p(zi|ui, wi, v, 9,0 p(y; |wi, 1, A) p(w;|®).


https://doi.org/10.20944/preprints202401.2197.v2

Preprints.org (Wwww.preprints.org) | NOT PEER-REVIEWED | Posted: 1 February 2024 doi:10.20944/preprints202401.2197.v2

17 of 23

T

Let «f = x; — u} (v +x] B,), zf = z; — v — x] .. By some algebra, it can be shown that

p(wil ) 2 Nu(fii Zaoi), (A1)

where

ot = St [Buri + $ouzi /0% + AT (v = )],
S -1
Eui = [BuBloti + $ 9lui/? + ATA+ 71|

Hence, draw of Q) can be obtained by simulating w; independently from the normal distribution (A1).
2. Full conditional of p(U*|---)

Following the similar derivation in [41], it can be shown that given U, (2 and 0, U* is the entilted
Polya-Gamma distribution given by

n

p(U" | --) =[TPG(ui[1,7:) (A2)
i=1

where 7; = a + BTw;. Drawing u; from this distribution can be achieved via rejection sampling, see
[41] or [52] for more details on this issue.
3. Full of conditional of p(Y*|---)

Note that

p(Y*[-- ) e p(Y[Y", 8)p(Y|Q,p, A)
n

< . 1 1,
= H <Z Hyix = 4,000 < yjp < 5kl+1}> X mexp{_z(yik_ﬂk_Alzwi)z}-

i=1k=1 \/¢=0

Hence, given ), the full conditional of Y* only depends on g, A, Y and , and is given by

n p
p(Y ) =TTI1rWilwi 6 i),

i=Tk=1
p(vilwi, 0, yic) = N(ux + Af wi, ) I{0y, < vk < Skypr1)- (A3)

This is the truncated normal distribution and its draw can be obtained via inverse distribution sampling
method, see for example, [53].
4. Full conditional of p(6] - - -)

Recall that 0 is consisted of «, 8, 7, ¥, a2, #, A, ® and §. Hence, draw of 0 can be accomplished
by (i) drawing « from p(«|---), (ii) drawing B from p(B|---), (iii) drawing v from p(7y|---), (iv)
drawing (¢, 0?) from p(,0?|- - -), (v) drawing u from p(pu| - - - ), (vi) drawing A from p(a| - - ), (vii)
drawing ® form p(®|- - - ), and (viii) drawing J from p(J| - - - ) sequentially. Note that given U*, Y*
and ), the models (8), (2) and (5) reduce to the ordinary regression models, and hence most of full
conditionals, similar to that of the regression coefficients and variance/covariance in the Bayesian
regression analysis, are the standard distributions such as normal, gamma, inverse gamma and wishart
distributions. As a matter of fact, by some tedious but non-trivial calculations, it can be shown that

p(al---) = N(jig,53), p(Bl-) = Ny(iig Zp), (A4)

p(rl-) = N(jiy, 7). p(9,0%| ) = IG (8o, Bo) X Ny(fiy 0°Zy), (A5)

p(ulQ A YY) = Np(my, 2y), p(A]---) = IH p(Arl---) = ;—[ N (i, H), (A6)
=1 =1

p(@7'--+) = Wul(p+nR), (A7)
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in which
5 n
W= aZ(Ki—ul’fﬂ w;), Zu +0 ,

ﬁﬁ — flg Zwi(xi —au;), f‘.; = Z u; wiw; + diag{'yﬁ_z},
i=1 i=1

n n
fly =05 ) uilzi — pTwy) /0%, 05 = (Z; i/ +og)7,
=

PO a1 ¢ . _
"llp = z”/’ 1_21 Wi(zi - ')’)ui/o'zl le = 1_21 UiWiW; + dlug{'hbz}/

Ny = ag + |I|/2
~Ta— 1A _
Br =bo + Z iz; F£Z¢ By + AgcHpy! Aok,

. S v ~ el -
my, = Z,(Z) ' we+n(Y —AQ)), £, =nl, + X7,
Ap = Hy(Hy! A + QTY[), B = n@7' + 070,
R =R, +070Q,
where Y** is the n x p matrix with the i row y:T — yT Yi‘k*j is the k" column of Y**, and Q is the

n x m matrix with the i’ row w;; Y* = Z yi/n, 0= Z w;/n. are the sample means of Y* and ()

and |Z| denotes the size of Z = {u; = 1}
However, for §, we note that

p
=]1Ir (kY Ygy), and
k=1

p (0¥ Yiy) o p(0k) Hnl{yzk—€5ke<%k<5kz+1}
i=1{=

Hence, drawing § can be obtained by drawing Jy from p(Ji|- - - ) independently. Moreover, under
prior (24), it can be shown that

P (Oke|Ox 0y, Y1 Yirg) o< p(Okes O~ )1{ max X ik}, < 0 < mm{%k}}

where &y (_y) is the vector of 5y with J removed. Let iy = max{dy 1, maxy,—¢ 1{yji }}, Ske =
min{d ¢4 1, min,, —¢{yj;}}. It follows from (25) that

Fo(0ke) — Fo(Oke-1)
Fo(0ke41) — Fo(ke—1)

|0k, Y[ Y1) ~ Beta(i,e, o) I (S b (A8)

where

S = Fo(hye) — Fo(dke—1) . Fo(8ke) — Fo(ke—1)
© Fo(Oke1) — Fo(dke—1)" ™" Fo(dke+1) — Fo(dre—1)

As a result, we can draw Jiy by first generating a 4, from the truncated beta distribution
(A8) and then transform it to the Jy; via inverse-transformation by setting F; 1(5;& [Fo(Oke41) —
Fo(0k—1)] + Fo(dke—1)). A draw of truncated beta distribution can be obtained by implementing
inverse-distribution sampling method.

4. Full conditional of p(Q*|---)

doi:10.20944/preprints202401.2197.v2
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First of all, it is noted that Q* is consisted of Fg, Fy, wg, wy, 11;2, and 111; 2 under SS, and formed

by 7/25, 'yé, Aé and }Lé under BaLsso. Similar to that of 8, we update Q* by drawing observations from
their full conditionals per component sequentially.
Firstly, it is noted that
d 2
p(Egl---) o< T T p(Brelfpr 115, )P (flw0p),

k=1

q
p(Fl/" U ) & ]}jl P(l/)k|0'2;f¢k/ ﬂi:k)p(f¢k|wlli)/

which indicates that the components in the posteriors of Fz and Fy are independent. Further, it follows

easily from (12) that
p(Forlwp, 1E B) = (1= Gpi)dug () + i (),
P(fyrlwy, g Br) = (1= Gy )ugo (-) + Fy01 (),
where
Toe = wpp(Br/1pk)
P (U —wp)(Be/ (o) / /70 + wp(Brc/mpe)”
wyp(Wrc/ (oyk)

W= = w0p) (i) (0 STg01gk) / /70 + g (B (0700))”

and ¢(-) is the standard normal probability density function.
Secondly, it is noted that

q
p(wg|Fp) o< p(wg)p(Fglwg) = P(wﬁ)gp(fﬁkmﬁ)

_ q _
— cwzﬁ 1(1 — wﬁ)hﬁfl Hw;{f‘gk B (1- wﬁ)l{fﬁk:‘/ﬁo},
k=1
q
p(wy|Fy) o< p(wy)p(Fylwy) = p(wy) [ T p(fyrlwy)
k=1
q _
— cw;w71(1 — wﬁ)blﬁ*l H w;{f‘pkfl}(l — wlp)l{f‘Pk:WO}.
k=1

Hence,

p(wg|---) = Beta(cg1 + [{for = 1}, cp2 + [{for = vpo} ), (A9)
p(wy|---) = Beta(cyr + [{ fyk = 1}, cya + [{ fyr = vyo}|), (A10)

where | A|, as before, is the size of set A.
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Lastly, it follows from
-2 =2y (=2
p(ng~|Fp, B) < p(BIFg,115")p(115”)
9 1 B B
= IH Wﬁk )1/2 exp {_2775_]3,372‘/](5"} (,7ﬁ—k2)a/31 1 eXp{—aﬁzﬂﬁkZ}l
p(1y*|Fy, ) & p($[Fy, 1,7 p(1,”)

1 1 - _
= H i)'/ exp {—2n¢5¢%/f¢k} (150) 0~  exp{—agan,, £}

k=
that
2 L 2 L ~ 7
p(ug*Fp, B) = [T p(ng | for Br) = T T Ga(Tpx, Cpi).
k=1 k=1
q q R
P12 [Fy, ) = [T pOry e ) T GalTyr Ty,
k=1 k=1
where

Toe = Tpo + 1/2, Zpr = Cpo + P/ (2f i),
Tok = Tyo +1/2, Tyk = Lyo + P2/ 2f )

For BaLasso, we follow the practice in [37]) and can show

9 q
plrg?l ) =T1pCrgtl ) H (7, Ap),
k=1 k=1
q ~
p(y =[1r(r,2l-) = H 1G(fiy, Ay),
k=1 k=1

in which

fip=\/As/B}  Ap =
ﬁl[i = 1/02/A\¢/‘B-]2/ le — Alzl)k’

where IG(y,A) is the inverse-gaussian distribution with density /A/(27m)x~3/2exp{—A(x —
W2/ (2p22) } (x > 0) [54],

Similarly,
2 d 2 i ~
p(N3]---) = TTp(A%l ) = [ Galape, b,
k=1 k=1
5 q , q A
P(Alp| ) = HP()\WJ ) = H Ga(c¢k,d¢k),
k=1 k=1
in which

Zi/gk = iy + 1.0, Eﬁk = ka + 05’)’/25k,
apk = cxo + 1.0, ti:/,k =dy+ 0.5’)@,{.
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