
Article

Not peer-reviewed version

Distributed Jacobi-Proximal ADMM for

Consensus Convex Optimization

Xian-Hong Xiao , Hui Deng , Yang-Dong Xu

*

Posted Date: 31 January 2024

doi: 10.20944/preprints202401.2201.v1

Keywords: Consensus convex optimization problem; Distributed Jacobi-proximal ADMM; Multi-agent

system; Logistic regression

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1156461

Article

Distributed Jacobi-Proximal ADMM for Consensus
Convex Optimization

Xian-Hong Xiao, Hui Deng and Yang-Dong Xu *

Department of Mathematics, Chongqing University of Posts and Telecommunications, Chongqing, 400065,

China; E-mail addresses: xxh9809@126.com (Xian-Hong Xiao), dhS190602017@163.com (Hui Deng)

* Correspondence: xyd04010241@126.com (Yang-Dong Xu).

Abstract: In this paper, a distributed algorithm is proposed to solve a consensus convex optimization

problem. It is a Jacobi-proximal alternating direction method of multipliers with a damping parameter

γ in the iteration of multiplier. Compared with existing algorithms, it has the following nice properties:

(1) The restriction on proximal matrix is relaxed substantively, thus alleviating the weight of the

proximal term. Therefore, the algorithm has a faster convergence speed. (2) The convergence analysis

of the algorithm is established for any damping parameter γ ∈ (0, 2], which is larger ones in the

literature. In addition, some numerical experiments and an application to a logistic regression

problem are provided to validate the effectiveness and the characteristics of the proposed algorithm.

Keywords: consensus convex optimization problem; distributed Jacobi-proximal ADMM; multi-agent

system; logistic regression

1. Introduction

Consider the following consensus convex optimization problem:

min
y

n

∑
i=1

fi(y) (1.1)

where y ∈ R
m is the global optimization variable, n is the number of agents in the multi-agent system

and fi (i = 1, · · · , n) : Rm → R are convex functions. Each fi is known only by agent i and the agents

cooperatively solve the consensus optimization problem. Many problems encountered in machine

learning [1] and power network[2] can be posed in the model (1.1).

There are two types distributed algorithms to solve problem (1.1): continuous-time algorithms

[3–6] and discrete-time algorithms, among which, discrete-time algorithms can be divided into primal

algorithms and dual algorithms. In primal algorithms, each agent takes a (sub)gradient-related step

and averages its local solution with those of neighbors [7–9]. One great advantage of these methods is

their low computation burden. But slow convergence and low accuracy are two strikes against it. The

typical dual algorithms include augmented Lagrangian method [10] and alternating direction method

of multipliers (ADMM) [11–16], in which each agent needs to solve a subproblem at each iteration,

which is responsible for high computation burden. However, the characteristic that they can quickly

converge to exact optimal solutions can make up for it.

The ADMM algorithm has attracted significant research interests in recent years. With regard to

distributed ADMM algorithms, almost all developments begin with transforming problem (1.1) into

a equivalent form by introducing local copy xi for each agent i = 1, 2, ..., n, and enforcing consensus

x1 = x2 = ... = xn. For start networks, the reformulation of problem (1.1) can be shown as follows:

min
x

f (x) :=
n

∑
i=1

fi(xi)

subject to xi = x̄, ∀i,

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202401.2201.v1
http://creativecommons.org/licenses/by/4.0/

2 of 13

where x = [xT
1 , ..., xT

n]
T and x̄ is so-called consensus variable. Considerable attentions have been paid

to such formulation, which can be referred to [11,12] for details..

A central agent is required in the start network, and thus algorithms in [11,12] have high

communication burden and low fault tolerance. This leads to growing research interests in general

connected networks. For general connected networks, the consensus optimization problem (1.1) can

be rewritten in the following compact form:

min
x

f (x) :=
n

∑
i=1

fi(xi)

subject to Ax = 0 or Ax + Bz = 0,

where x = [xT
1 , ..., xT

n]
T , A, B are matrices related to network structure and z is the slack variable. For

this kind of problems, Wei and Ozdaglar [13] proposed a distributed Gauss-Seidel ADMM algorithm

and proved that its convergence rate was O(1/k), where the objective function fi (1 = 1, · · · , n) are

convex. Based on this algorithm, agents can only update in order. To save the waiting time of agents

in [13], Yan[14] raised a parallel ADMM algorithm, which adopts Jacobi iterate method. Besides,

some distributed ADMM algorithms for nonconvex but differentiable probelms are also established

in[15,16].

In addition to the algorithms in [11–16], several ADMM algorithms can also solve problem (1).

These algorithms were originally designed to solve multi-block separable problems, which can be can

be cast as

min
x

n

∑
i=1

fi(xi)

subject to A1x1 + ... + Anxn = c.

where x = [xT
1 , ..., xT

n]
T . A wide variety of the proximal ADMM algorithms were proposed for this

kind of formulation. The researches on these algorithms mainly focus on proximal matrix Pi and

damping parameter γ. Deng et al.[17] presented a parallel ADMM algorithm and the proximal matrix

Pi is required to satisfy Pi ≻ (n
2−γ − 1)AT

i Ai, where 0 < γ < 2. There are two specific choices for

the proximal matrix Pi in[18]: (1) Standard proximal matrix Pi = τi I; (2) Linearized proximal matrix

Pi = τi I − AT
i Ai. Therefore, the condition in [17] can be reduced to

Pi =

{

τi I, τi > (n
2−γ − 1)∥Ai∥2,

τi I − AT
i Ai, τi >

n
2−γ∥Ai∥2.

Afterwards, Sun and Sun[19] came up with an improved proximal ADMM algorithm with partially

parallel splitting, where Pi = τi I − AT
i Ai and a lower bound of the proximal parameter is given by

τi >
4+max{1−γ,γ2−γ}

5 (n− 1)∥Ai∥2, where 0 < γ <
1+
√

5
2 .

Inspired by the works in [13,14,17,19], this paper puts forward a distributed Jacobi-proximal

ADMM algorithm to solve the consensus convex optimization problem (1.1) over a general connected

network. Compared with the state-of-art ones, the proposed algorithm has the following outstanding

features.

(1) Compared with the algorithm in [13], the optimization variables of all agents can be updated

simultaneously. Hence, the waiting time is saved.

(2) Compared with [14], only half of dual variables are occupied in the proposed algorithm.

Therefore, the communication burden among agents and storage cost for each agent are reduced.

(3) The proximal matrix Pi of the presented algorithm is smaller than those in [17,19]. Thus, the

distributed Jacobi-proximal ADMM algorithm is favorable based on the general principle given by

Fazel et. al [20], that the proximal matrix Pi should be as small as possible. Besides, the value range of

damping parameter γ in the proposed algorithm is larger than that of [19].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

3 of 13

The rest of this paper is organized as follows. In Section 2, the equivalent form of the consensus

convex optimization problem (1.1) is introduced. In addition, based on this equivalent form, a

distributed Jacobi-proximal ADMM algorithm is proposed. Section 3 supplies the convergence analysis

of the algorithm. In Section 4, extensive numerical experiments are provided to verify the effectiveness

of the proposed algorithm. Moreover, the impacts of the penalty parameter, damping parameter and

connectivity ratio on the algorithm are investigated. In Section 5, the proposed algorithm is applied to

a logistic regression problem and its numerical results are compared with those in [17]. Finally, the

conclusions of this paper are presented in Section 6.

2. Problem Formulation and Distributed Jacobi-Proximal ADMM Algorithm

In this section, some notations related to the network are introduced, and the consensus convex

optimization problem (1.1) is represented so that it can be solved by ADMM.

The network topology of the multi-agent system is assumed to be a general undirected connected

graph, which is described as G = {V, E}, where V denotes the set of agents, E denotes the set of the

edges and |V| = n, |E| = l. These agents are arranged from 1 to n. The edge between agents i and

j with i < j is represented by (i, j) or eij and (i, j) ∈ E means that agents i and j can exchange data

with each other. The neighbors of agent i are denoted by N(i) := {j ∈ V | (i, j) ∈ E or (j, i) ∈ E} and

di = |N(i)|.
The edge-node incidence matrix of the network G is denoted by Ã ∈ R

l×n. The row in Ã that

corresponds to the edge eij is denote by [Ã]eij , which is defined by

[Ã]
eij

k =











1, if k = i,

−1, if k = j,

0, otherwise.

Here, the edges of the network are sorted by the order of their corresponding agents. For instance, the

edge-node incidence matrix of the network G in Fig. 1 is given by

Ã =















1 −1 0 0

1 0 −1 0

0 1 −1 0

0 1 0 −1

0 0 1 −1















.

Figure 1. An example of the network G.

According to the edge-node incidence matrix, the extended edge-node incidence matrix A of the

network G is given by

A := Ã⊗ Im =







ã11 Im · · · ã1n Im

...
. . .

...

ãl1 Im · · · ãln Im






∈ R

ml×mn,

where ⊗ denotes the Kronecker product. Obviously, A is a block matrix with l ∗ n blocks of m× m

matrix.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

4 of 13

By introducing separating decision variable xi for each agent i = 1, 2, ..., n, the consensus convex

optimization problem (1.1) has the following form:

min
x

f (x) :=
n

∑
i=1

fi(xi)

subject to xi = xj, ∀ (i, j) ∈ E,

(2.1)

where x = [xT
1 , xT

2 , ..., xT
n]

T ∈ R
nm×1. Clearly, the problem (2.1) is equivalent to problem (1.1) if G is

connected.

With the help of the extended edge-node incidence matrix A, the problem (2.1) can be rewritten

in the following compact form:

min
x

f (x)

subject to Ax = 0.
(2.2)

Dividing the neighbors N(i) of the agent i into two sets: predecessors P(i) := {j ∈ V | (j, i) ∈ E}
and successors S(i) := {j ∈ V | (i, j) ∈ E}. The distributed Jacobi-proximal ADMM (DJP-ADMM)

algorithm is described as Algorithm 1.

Algorithm 1: Distributed Jacobi-proximal ADMM Algorithm (DJP-ADMM)

Initialization: : Choose appropriate Pi, ρ, γ, {x0
i }, {λ0

eji
} and {λ0

eij
}, i = 1, 2, ..., n.

1 0← k;
2 while some stop criteria are not met do
3 for i← 1 to n do

4 Update xk+1
i by

xk+1
i := arg min

xi

fi(xi)+
ρ

2 ∑
j∈P(i)

∥xk
j −xi−

1

ρ
λk

eji
∥2+

ρ

2 ∑
j∈S(i)

∥xi−xk
j −

1

ρ
λk

eij
∥2+

1

2
∥xi−xk

i ∥2
Pi

;

for j ∈ P(i) do

5 Update λk+1
eji

by

λk+1
eji

:= λk
eji
− γρ(xk+1

j − xk+1
i);

6 k← k + 1;

Remark 1. The parallel ADMM algorithm presented in [14] is shown as follows:

xk+1
i := arg min

xi

fi(xi) +
ρ

2 ∑
j∈N(i)

∥xk
j − xi −

1

ρ
λk

eji
∥2 +

ρ

2 ∑
j∈N(i)

∥xi − xk
j −

1

ρ
λk

eij
∥2,

λk+1
eji

:= λk
eji
− ρ(xk

j − xk+1
i), j ∈ N(i).

(2.3)

It is clear that the number of dual variables in (2.3) is twice that in DJP-ADMM. Thus, the

communication burden among agents and the storage cost for each agent in Algorithm 1 are smaller

than ones in [14].

3. Convergence Analysis

In this section, some important notations and technical lemmas are given. Then, the convergence

analysis of Algorithm 1 is investigated.

Let

L̃− = ÃT Ã ∈ R
n×n. (3.1)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

5 of 13

Remark 2. Hong et al. [16] have pointed out that L̃− is the sign Laplace matrix of the graph G.

The extended degree matrix and extended sign Laplace matrix of the network G are denoted by

D := D̃⊗ Im ∈ R
mn×mn, (3.2)

L− := L̃− ⊗ Im ∈ R
mn×mn, (3.3)

where D̃ is the degree matrix of the graph G.

To simplify the notation, let

H =







1
2 (P1 + PT

1)
. . .

1
2 (Pn + PT

n)






∈ R

mn×mn, (3.4)

and

Q = H + ρĀ⊗ Im, (3.5)

where Ā is the adjacency matrix of the graph G. To ensure the convergence of Algorithm 1, it is necessary

to make an assumption about the matrix Q, which is shown below.

Assumption 1. The matrix Q is a positive definite matrix.

Remark 3. If proximal matrices Pi (i = 1, · · · , n) are symmetric, then Assumption 1 can be reduced to

P + ρĀ⊗ Im is a positive definite matrix. Therefore, P = ρD = ρD̃⊗ Im is a feasible choice, where D̃

is the degree matrix of the graph G. In this case, Pi = ρdi Im.

Remark 4. By the definition of Q, the matrix Q is symmetric positive definite under Assumption 1,

and thus, there exists a matrix M such that

Q = MT M. (3.6)

According to the convexity of the objective function, we have following result.

Lemma 1. Assume that {(xk, λk)} is the sequence produced by Algorithm 1 for the problem (2.2), where

xk = [(xk
1)

T , (xk
2)

T , ..., (xk
n)

T]T and λk = [λk
eij
], eij ∈ E. Then one has

f (x)− f (xk+1)− (x− xk+1)T ATλk+1

+ (x− xk+1)TQ(xk+1 − xk)− ρ(γ− 1)(x− xk+1)T L−xk+1 ≥ 0, ∀x ∈ R
mn.

(3.7)

Proof. Define gi (i = 1, · · · , n) : Rm → R by

gk
i (xi) :=

ρ

2 ∑
j∈P(i)

∥xk
j − xi −

1

ρ
λk

eji
∥2 +

ρ

2 ∑
j∈S(i)

∥xi − xk
j −

1

ρ
λk

eij
∥2 +

1

2
∥xi − xk

i ∥2
Pi

.

Using the iteration of x in Algorithm 1, one can conclude that xk+1
i is the optimizer of fi + gk

i , i.e.,

xk+1
i := arg min

xi

fi(xi) + gk
i (xi).

Therefore, there exists a subgradient h(xk+1
i) ∈ ∂ fi(xk+1

i) such that h(xk+1
i) +∇gk

i (xk+1
i) = 0. Then

(xi − xk+1
i)T

(

h(xk+1
i) +∇gk

i (xk+1
i)

)

= 0, ∀xi ∈ R
m. (3.8)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

6 of 13

Due to the convexity of fi, we have

fi(xi) ≥ fi(xk+1
i) + (xi − xk+1

i)Th(xk+1
i).

This together with (3.8) implies that

fi(xi)− fi(xk+1
i) + (xi − xk+1

i)T∇gk
i (xk+1

i) ≥ 0.

Substituting the gradient ∇gk
i of the function gk

i into the above inequality, we have

fi(xi)− fi(xk+1
i) + (xi − xk+1

i)T

(

− ρ ∑
j∈P(i)

(xk
j − xk+1

i − 1

ρ
λk

eji
) + ρ ∑

j∈S(i)

(xk+1
i − xk

j −
1

ρ
λk

eij
) +

1

2
(Pi + PT

i)(xk+1
i − xk

i)
)

≥ 0.

From the iteration of the multipliers, one can obtain that

− ρ ∑
j∈P(i)

(xk
j − xk+1

i − 1

ρ
λk

eji
)

= ∑
j∈P(i)

(

λk
eji
− ρ(xk

j − xk+1
i)

)

= ∑
j∈P(i)

(

λk
eji
− γρ(xk+1

j − xk+1
i) + γρ(xk+1

j − xk+1
i)− ρ(xk

j − xk+1
i)

)

= ∑
j∈P(i)

(

λk+1
eji

+ γρ(xk+1
j − xk+1

i)− ρ(xk+1
j − xk+1

i) + ρ(xk+1
j − xk+1

i)− ρ(xk
j − xk+1

i)
)

= ∑
j∈P(i)

(

λk+1
eji

+ ρ(γ− 1)(xk+1
j − xk+1

i) + ρ(xk+1
j − xk

j)
)

.

Similarly,

ρ ∑
j∈S(i)

(xk+1
i − xk

j −
1

ρ
λk

eij
) = ∑

j∈S(i)

(

− λk+1
eij

+ ρ(γ− 1)(xk+1
j − xk+1

i) + ρ(xk+1
j − xk

j)
)

.

Hence,

fi(xi)− fi(xk+1
i) + (xi − xk+1

i)T(∑
j∈P(i)

λk+1
eji
− ∑

j∈S(i)

λk+1
eij

)

+ (xi − xk+1
i)T

(

ρ(γ− 1) ∑
j∈N(i)

(xk+1
j − xk+1

i) + ρ ∑
j∈N(i)

(xk+1
j − xk

j) +
1

2
(Pi + PT

i)(xk+1
i − xk

i)
)

≥ 0,

By the definition of the matrix A, we simplify the above inequality as follows:

fi(xi)− fi(xk+1
i)− (xi − xk+1

i)T [A]Ti λk+1

+ (xi − xk+1
i)T

(

ρ(γ− 1) ∑
j∈N(i)

(xk+1
j − xk+1

i) + ρ ∑
j∈N(i)

(xk+1
j − xk

j) +
1

2
(Pi + PT

i)(xk+1
i − xk

i)
)

≥ 0.

And then,

n

∑
i=1

fi(xi)−
n

∑
i=1

fi(xk+1
i)−

n

∑
i=1

(xi − xk+1
i)T [A]Ti λk+1

+
n

∑
i=1

(xi − xk+1
i)T

(

ρ(γ− 1) ∑
j∈N(i)

(xk+1
j − xk+1

i) + ρ ∑
j∈N(i)

(xk+1
j − xk

j) +
1

2
(Pi + PT

i)(xk+1
i − xk

i)
)

≥ 0.

(3.9)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

7 of 13

By the definition of matrices A and D, we have

−
n

∑
i=1

(xi − xk+1
i)T [A]Ti λk+1 = −(x− xk+1)T ATλk+1, (3.10)

di

n

∑
i=1

(xi − xk+1
i)Txk+1

i = (x− xk+1)T Dxk+1.

In addition,

n

∑
i=1

(

(xi − xk+1
i)T ∑

j∈N(i)

xk+1
j

)

= [(x1 − xk+1
1)T , ... , (xn − xk+1

n)T][∑
j∈N(1)

(xk+1
j)T , ... , ∑

j∈N(n)

(xk+1
j)T]T

= [(x1 − xk+1
1)T , ..., (xn − xk+1

n)T](Ā⊗ Im)xk+1

= (x− xk+1)T(Ā⊗ Im)xk+1,

where Ā is the adjacency matrix of the graph G. The above two relations indicate that

n

∑
i=1

(

(xi − xk+1
i)T(∑

j∈N(i)

xk+1
j − dix

k+1
i)

)

= −(x− xk+1)T(D− Ā⊗ Im)xk+1

Therefore, by the definition of the extended sign Laplace matrix L−, one can conclude that

n

∑
i=1

(

(xi − xk+1
i)T ∑

j∈N(i)

(xk+1
j − xk+1

i)
)

=
n

∑
i=1

(

(xi − xk+1
i)T(∑

j∈N(i)

xk+1
j − dix

k+1
i)

)

= −(x− xk+1)T L−xk+1.

(3.11)

Analogously,

n

∑
i=1

(

(xi − xk+1
i)T ∑

j∈N(i)

(xk+1
j − xk

j)
)

= (x− xk+1)T(Ā⊗ Im)(xk+1 − xk).

Besides, by the definition of matrix Q, we have

n

∑
i=1

[

(xi − xk+1
i)T

(1

2
(Pi + PT

i)(xk+1
i − xk

i) + ρ ∑
j∈N(i)

(xk+1
j − xk

j)
)]

= (x− xk+1)TQ(xk+1 − xk). (3.12)

Thus, recalling (3.9)-(3.12), inequality (3.7) holds.

The non-negative property of the norm is very important in the subsequent analysis of

convergence. To this end, certain items in Lemma 1 will be concerted into norm form. To simplify

some expressions in the proof of the following lemmas, Vk is denoted by

Vk =
1

2ργ
∥λk∥2 +

1

2
∥M(xk − x∗)∥2, (3.13)

where M is defined in (3.6).

Under Assumption 1, we can get the following lemma.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

8 of 13

Lemma 2. Assume that {(xk, λk)} is the sequence produced by Algorithm 1 for the problem (2.2), where

xk = [(xk
1)

T , (xk
2)

T , ..., (xk
n)

T]T and λk = [λk
eij
], eij ∈ E. Then under Assumption 1, one has the following

equality

(xk+1)T ATλk+1 + (x∗ − xk+1)TQ(xk+1 − xk) = Vk −Vk+1 − ργ

2
∥Axk+1∥2 − 1

2
∥M(xk+1 − xk)∥2,

(3.14)

where Q = MT M.

Proof. To prove (3.14), we firstly claim that

(xk+1)T ATλk+1 =
1

2ργ
(∥λk∥2 − ∥λk+1∥2)− ργ

2
∥Axk+1∥2, (3.15)

(x∗ − xk+1)TQ(xk+1 − xk) =
1

2
(∥M(xk − x∗)∥2 − ∥M(xk+1 − x∗)∥2)− 1

2
∥M(xk+1 − xk)∥2. (3.16)

Indeed, by the iteration of the multiplier: λk+1 = λk − γρAxk+1, we know

(xk+1)T ATλk+1 = (xk+1)T ATλk − ργ∥Axk+1∥2, (3.17)

and
1

2ργ
(∥λk∥2 − ∥λk+1∥2) = (xk+1)T ATλk − ργ

2
∥Axk+1∥2. (3.18)

Therefore, equality (3.17) and (3.18) indicate that equality (3.15) is valid. In addition, by distorting

some of the terms, we obtain

∥M(xk − x∗)∥2 − ∥M(xk+1 − x∗)∥2 = ∥Mxk∥2 − ∥Mxk+1∥2 + 2(Mx∗)T M(xk+1 − xk),

and

2(x∗ − xk+1)T(MT M)(xk+1 − xk) = 2(Mx∗)T M(xk+1 − xk)− 2∥Mxk+1∥2 + 2(Mxk)T Mxk+1.

Combining the above two equalities, we yield

2(x∗ − xk+1)T(MT M)(xk+1 − xk)

= ∥M(xk − x∗)∥2 − ∥M(xk+1 − x∗)∥2 + 2(Mxk)T Mxk+1 − (∥Mxk∥2 + ∥Mxk+1∥2)

= ∥M(xk − x∗)∥2 − ∥M(xk+1 − x∗)∥2 − ∥M(xk+1 − xk)∥2.

Taking into account Q = MT M, we can get the equality (3.16). Consequently, by (3.15) and (3.16), the

equality (3.14) holds.

With the help of the proceeding two lemmas, the convergence result of Algorithm 1 can be

established.

Theorem 1. Assume that {(xs, λs)} is the sequence produced by Algorithm 1, where

xs = [(xs
1)

T , (xs
2)

T , ..., (xs
n)

T]T and λs = [λs
eij
], eij ∈ E. Let yk = 1

k ∑
k−1
s=0 xs+1 be the ergodic average of xs

from step 1 to k. x∗ is the optimal solution of the problem (2.2). Then under Assumption 1, the following relation

holds for any k ≥ 1 and for 0 < γ ≤ 2

0 ≤ f (yk)− f (x∗) ≤ V0

k
. (3.19)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

9 of 13

where V0 given in (3.13) is a non-negative term. Furthermore,

lim
k→+∞

(

f (yk)− f (x∗)
)

= 0, (3.20)

with the rate of O(1/k).

Proof. It follows from the optimality of x∗ that the first inequality in (3.19) is clearly true. Let x = x∗

in inequality (3.7), then one has

f (x∗)− f (xs+1)− (x∗ − xs+1)T ATλs+1 + (x∗ − xs+1)TQ(xs+1 − xs)− ρ(γ− 1)(x∗ − xs+1)T L−xs+1 ≥ 0.

Take into consideration that L− = AT A and Ax∗ = 0, the above inequality can be rewritten as:

f (x∗)− f (xs+1) + (xs+1)T ATλs+1 + (x∗ − xs+1)TQ(xs+1 − xs)− ρ(1− γ)∥Axs+1∥2 ≥ 0.

By Lemma 4.2, one has

f (x∗)− f (xs+1) + Vs ≥ Vs+1 +
ργ

2
∥Axs+1∥2 + ρ(1− γ)∥Axs+1∥2 +

1

2
∥M(xs+1 − xs)∥2,

and then

k f (x∗)−
k−1

∑
s=0

f (xs+1) + V0 ≥ Vk +
1

2

k−1

∑
s=0

∥M(xs+1 − xs)∥2 +
ρ

2
(2− γ)

k−1

∑
s=0

∥Axs+1∥2.

Due to Vk ≥ 0 for any k, the following inequality holds for 0 < γ ≤ 2

k f (x∗)−
k−1

∑
s=0

f (xs+1) + V0 ≥ 0. (3.21)

Since the function f is convex, ∑
k−1
s=0 f (xs+1) ≥ k f (1

k ∑
k−1
s=0 xs+1), and then using yk = 1

k ∑
k−1
s=0 xs+1, we

have

k f (x∗)− k f (yk) + V0 ≥ 0,

i.e.,

f (yk)− f (x∗) ≤ V0

k
. (3.22)

Therefore, inequality (3.19) stands. Furthermore, inequality (3.22) implies that

lim
k→+∞

(

f (yk)− f (x∗)
)

≤ 0.

On the other hand, from the optimality of x∗, we have

lim
k→+∞

(

f (yk)− f (x∗)
)

≥ 0.

As a result, limk→+∞

(

f (yk)− f (x∗)
)

= 0 and the proof is completed.

Remark 5. Theorem 1 gives the theoretical upper bound for f (yk)− f ∗, which provides the error

estimates for the optimal value f ∗ at each iteration k. The upper bound is consist of two additive items.

Both of them approach to zero at the rate O(1/k). In addition, Theorem 1 implies that f (xk) converges

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

10 of 13

to the optimal value f ∗ asymptotically. Furthermore, if at least one function fi is strongly convex, then

the optimal solution x∗ is unique, and thus xk asymptotically approaches to x∗.

Remark 6. When solving the consensus optimization problem (1.1), the convergence condition of

Algorithm 1 has less conservative than that in [17], wherein, the convergence of Algorithm 1 can be

guaranteed if Pi is symmetric and Pi ≻ ρdi Im according to Remark 4.2, while algorithm in [17] requires

that Pi is a symmetric positive semi-definite matrix and Pi ≻ (n
2−γ − 1)ρAT

i Ai = (n
2−γ − 1)ρdi Im (0 <

γ < 2).

4. Numerical Experiments

In this section, some numerical experiments are provided to show the validity of Algorithm 1.

First, the convergence property of Algorithm 1 is verified. Then the impacts of penalty parameter ρ,

damping parameter γ and connectivity ratio d on Algorithm 1 are investigated.

In this section, each edge of the connected network G is generated randomly. The connectivity

ratio of the network G is denoted by d = 2l
n(n−1)

. Consider the following consensus optimization

problem given in [21]:

min
y

1

2

n

∑
i=1

(y− θi)
2, (4.1)

where y ∈ R. Apparently, the optimal solution of this problem is y∗ = θ̄ = 1
n ∑

n
i=1 θi. The consensus

optimization problem (4.1) can be reformulated into a distributed version:

min
x

f (x) =
1

2

n

∑
i=1

(xi − θi)
2,

subject to xi = xj, ∀(i, j) ∈ E,

(4.2)

where x = [x1, x2, ..., xn]T ∈ R
n and f is convex. Therefore, Algorithm 1 can be used to solve the

consensus optimization problem. For the consensus optimization problem (4.2), each θi is randomly

generated by a normal distribution N(0, 1).

The proximal matrix of Algorithm 1 is set by Pi = ρdi I. In this case, the iteration of x has a

closed-form solution, which is shown as follows:

xk+1
i =

ρdix
k
i + ρ ∑j∈N(i) xk

j + ∑j∈S(i) λk
ij −∑j∈P(i) λk

ji + θi

1 + 2ρdi
,

where di is the number of neighbors of the agent i.

A. Convergence Property

To illustrate the convergence property of Algorithm 1 for the consensus optimization problem

(4.2), ten networks are generated. Each network has n = 50 agents and the connectivity ratio of these

networks are set as d = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, respectively. The algorithm

parameters are set as ρ = 1 and γ = 1. The algorithm will be stopped once ∥xk − x∗∥ reaches to 10−16

or the number of iterations k reaches to 3500, where x∗ is the optimal solution of problem (4.1).

Fig. 2 and Fig. 3 respectively depict how the relative error ∥x
k−x∗∥
∥x∗∥ and constraint violation ∥Axk∥

vary with iteration k. One can find that Algorithm 1 has high accuracy since the relative error can

achieve 10−13 and the constraint violation can achieve 10−16.

Figure 2. Relative error versus iteration.

Figure 3. Constraint violation versus iteration.

B. Algorithm Parameters ρ and γ

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

11 of 13

In this part, the impacts of algorithm parameters ρ and γ on the convergence speed of Algorithm 1

are discussed. The networks are generated in the same way as Part A. In order to explore the influences

of parameters ρ and γ on Algorithm 1, the convergence speed is denoted by ξε0 = 1/k0, where ε0 > 0

and k0 is the number of iterations required to achieve ∥xk0 − x∗∥ ≤ ε0. Here, the accuracy is set as

ε0 = 10−6.

Choosing damping parameter γ = 1 and selecting different penalty parameters to solve the

problem (4.2), one can get the relationship between the convergence speed ξε0 and parameter ρ, which

is displayed in Fig. 4. Obviously, if the penalty parameter ρ is too large or too small, the convergence

speed of the algorithm is slow. The penalty parameter ρ can be selected from (0.01, 2). In general,

a smaller connectivity ratio leads to larger actual optimal parameter ρ∗. As a consequence, when

the network is sparse, it is better to select a larger penalty parameter and when it is dense, a smaller

penalty parameter will be a nice choice.

Figure 4. Convergence speed versus ρ.

In order to explore the influence of parameter γ on Algorithm 1, the penalty parameter is set as

ρ = 1 and the damping parameter is set to 60 different values. The numerical results are shown in Fig.

5. Obviously, the convergence speed of Algorithm 1 increases with the damping parameter, and then

remains constant. Therefore, γ = 2 is a great choice.

Figure 5. Convergence speed versus γ.

C. Connectivity Ratio

In this part, the effect of connectivity ratio d on the convergence speed of Algorithm 1 is explored.

From Fig. 4, one can find that when penalty parameter ρ takes different values, the impact of

connectivity ratio on convergence speed is different. Therefore, the penalty parameter is set to six

different values ρ = 0.005, 0.01, 0.05, 0.1, 1 and 2, respectively.

We generate 30 networks with n = 50 agents, whose connectivity ratio are set to 30 different

values : 1
30 , 2

30 , ..., 1. From Fig. 6, one can find that when the penalty parameter takes a smaller value,

such as ρ = 0.005, 0.01 or 0.05, the convergence speed of Algorithm 1 generally slows down with the

increase of connectivity ratio, and the opposite is true when the penalty argument takes a bigger value,

such as ρ = 0.1, 1 or 2 from Fig. 7. It is worth noting that when the network is very sparse, for example

d = 0.05, no matter what the penalty parameter value is, the convergence speed is slow. Therefore,

on the premise of ensuring network connectivity, few edges can be added to increase information

exchange between agents.

Figure 6. Convergence speed versus d.

Figure 7. Convergence speed versus d.

5. Application to A Logistic Regression Problem

In this section, the proposed distributed Jacobi-proximal ADMM algorithm is applied to a logistic

regression problem, which is a widely used machine learning model[22,23].

The network G = {V, E} is generated with n = 50 agents. The connectivity ratio is set as d = 0.3

and the edges are generated randomly. The network generated is given in Fig. 8. Each agent has ni

training samples, which denoted by {wij, yij}ni
j=1, where wij ∈ R

p and yij ∈ {1,−1}.

Figure 8. The network of problem (5.1).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

12 of 13

The distributed logistic regression problem is described as follows:

min
x

f (x) =
1

2
∥x∥2 +

1

N

n

∑
i=1

ni

∑
j=1

log(1 + e
−yijw

T
ijx), (5.1)

where N = ∑
n
i=1 ni is the total number of samples. The dimension of feature is set as p = 3, the number

of samples ni is generated by a uniform distribution U(1, 20), and the parameter wij is generated by a

normal distribution N(0, 1). The generation rule of the label yij is shown as follows:

yij =

{

1, if uij ≥ 0.5,

−1, if uij < 0.5,

where uij is generated by a uniform distribution U(0, 1).

The distributed logistic regression problem (5.1) can be formulated as

min
x

f (x) =
n

∑
i=1

fi(xi),

subject to xi = xj, ∀(i, j) ∈ E,

(5.2)

where x = [xT
1 , xT

2 , ..., xT
n]

T and fi(xi) =
1

2n∥xi∥2 + 1
N ∑

ni
j=1 log(1 + e

−yijw
T
ijxi). Obviously, problem (5.2)

can be solved by Algorithm 1.

The convergence path of Algorithm 1 is compared with the Jocobi-Proximal ADMM (JP-ADMM)

algorithm in [17]. To investigate the performances of the two algorithms, the penalty parameter is

set to ρ =0.01, 0.1 and 1, respectively. In addition, the damping parameter is set to two different

values γ = 1 and 3
2 . The proximal matrix of Algorithm 1 and algorithm in [17] are set as Pi = ρdi I and

Pi = [(n
2−γ − 1)ρdi + 1]I, respectively. Every algorithm is stopped once ∥xk − xk−1∥ reaches to 10−5 or

the number of iterations k reaches to 1000. One can find that the convergence speed of Algorithm 1 is

significantly faster than that in [17] from Fig. 9 and Fig. 10.

Figure 9. Objective value f k (γ = 1
2).

Figure 10. Objective value f k (γ = 3
2).

6. Conclusions

In this paper, a distributed ADMM algorithm is put forward to solve a consensus convex

optimization problem over a connected network. The proposed algorithm is a Jacobi-proximal ADMM

algorithm and the proximal matrix is smaller than existing algorithms. The convergence of the

algorithm is proved and its convergence rate is O(1/k). Extensive numerical experiments are provided

to verify the convergence of the algorithm. Besides, the impacts of penalty parameter, damping

parameter and connectivity ratio on the proposed algorithm are investigated. Finally, an application

of the proposed algorithm to a logistic regression problem is implemented and its performance is

compared with that of another ADMM algorithm in [17].

Acknowledgments: This research was supported by the National Natural Science Foundation of China (Grant
number: 11801051) and the Natural Science Foundation of Chongqing (Grant number: cstc2019jcyj-msxmX0075).

References

1. Y.L. Pan, Distributed optimization and statistical learning for large-scale penalized expectile regression, J.

Korean Stat. Soc. 50 (2021) 290-314.

2. G. Chen, J.Y. Li, A fully distributed ADMM-based dispatch approach for virtual power plant problems, Appl.

Math. Model. 58 (2018) 300-312.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

13 of 13

3. G. Droge, H. Kawashima, M.B. Egerstedt, Continuous-time proportional-integral distributed optimisation

for networked systems, J. Control Decis. 1 (2014) 191-213.

4. B. Gharesifard, J. Cortés, Continuous-time distributed convex optimization on weight-balanced digraphs,

IEEE Trans. Autom. Control 59 (2014) 781-786.

5. Y.N. Zhu, W.W. Yu, G.H. Wen, G.R. Chen, W. Ren, Continuous-time distributed subgradient algorithm for

convex optimization with general constraints, IEEE Trans. Autom. Control 64 (2019) 1694-1701.

6. W. Zhu, H.B. Tian, Distributed convex optimization via proportional-integral-differential algorithm, Meas.

Control 55 (2021) 13-20.

7. A. Nedic, A. Ozdaglar, Distributed subgradient methods for multi-agent optimization, IEEE Trans. Autom.

Control 54 (2009) 48-61.

8. C. Xi, U.A. Khan, Distributed subgradient projection algorithm over directed graphs, IEEE Trans. Autom.

Control 62 (2017) 3986-3992.

9. S. Liu, Z.R. Zhang, L.H. Xie, Convergence rate analysis of distributed optimization with projected subgradient

algorithm, Automatic 83 (2017) 162-169.

10. D. Jakovetić, J. Xavier, J.M.F. Moura, Cooperative convex optimization in networked systems: augmented

Lagrangian algorithms with directed gossip communication, IEEE Trans. Signal Process. 59 (2011) 3889-3902.

11. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the

alternating direction method of multipliers, Found. Trends Mach. Learn. 3 (2010) 1-122.

12. R. Zhang, J.T. Kwok, Asynchronous distributed ADMM for consensus optimization, in: Proceedings of the

31st International Conference on Machine Learning, 2014, pp. 3689-3697.

13. E. Wei, A. Ozdaglar, Distributed alternating direction method of multipliers, in: Proceedings of the IEEE

Conference on Decision and Control, 2012, pp. 5445-5450.

14. J.Q. Yan, F.H. Guo, C.Y. Wen, G.Q. Li, Parallel alternating direction method of multipliers, Inf. Sci. 507 (2020)

185-196.

15. W. Shi, Q. Ling, K. Yuan, G. Wu, W. Yin, On the linear convergence of the ADMM in decentralized consensus

optimization, IEEE Trans. Signal Process. 62 (2014) 1750-1761.

16. M. Hong, H. Davood, M. Zhao, Prox-PDA: The proximal primal-dual algorithm for fast distributed

nonconvex optimization and learning over networks, in: Proceedings of the 34th International Conference

on Machine Learning, 2017, pp. 2402-2433.

17. W. Deng, M.J. Lai, Z.M. Peng, W.T. Yin, Parallel multi-block ADMM with o(1/k) convergence, J. Sci. Comput.

71 (2017) 712-736.

18. W. Deng, W.T. Yin, On the global and linear convergence of the generalized alternating direction method of

multipliers, J. Sci. Comput. 66 (2016) 889-916.

19. M. Sun, H.C. Sun, Improved proximal ADMM with partially parallel splitting for multi-block separable

convex programming, Appl. Math. Comput. 58 (2018) 151-181.

20. M. Fazel, T.K. Pong, D.F. Sun, P. Tseng, Hankel matrix rank minimization with applications to system

identification and realization, SIAM J. Matrix Anal. Appl. 34 (2013) 946-977.

21. M. Rabbat, R. Nowak, Distributed optimization in sensor networks, in: Proceedings of the third International

Symposium on Information Processing in Sensor Networks, 2004, pp. 20-27.

22. L.J. Wang, M. Guo, K. Sawada, J. Lin, J.C. Zhang, A comparative study of landslide susceptibility maps

using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network,

Geosci. J. 20 (2016) 117-236.

23. B.Y. Kim, S.J. Shin, Principal weighted logistic regression for sufficient dimension reduction in binary

classification, J. Korean Stat. Soc. 48 (2019) 194-206.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2201.v1

https://doi.org/10.20944/preprints202401.2201.v1

	Introduction
	Problem Formulation and Distributed Jacobi-Proximal ADMM Algorithm
	 Convergence Analysis
	Numerical Experiments
	Application to A Logistic Regression Problem
	Conclusions
	References

