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Abstract: In this paper, a distributed algorithm is proposed to solve a consensus convex optimization
problem. It is a Jacobi-proximal alternating direction method of multipliers with a damping parameter
7 in the iteration of multiplier. Compared with existing algorithms, it has the following nice properties:
(1) The restriction on proximal matrix is relaxed substantively, thus alleviating the weight of the
proximal term. Therefore, the algorithm has a faster convergence speed. (2) The convergence analysis
of the algorithm is established for any damping parameter 7y € (0,2], which is larger ones in the
literature. In addition, some numerical experiments and an application to a logistic regression
problem are provided to validate the effectiveness and the characteristics of the proposed algorithm.

Keywords: consensus convex optimization problem; distributed Jacobi-proximal ADMM; multi-agent
system; logistic regression

1. Introduction

Consider the following consensus convex optimization problem:
n
min Y fily) (1.1)
i=1

where y € R" is the global optimization variable, 7 is the number of agents in the multi-agent system
and f; i =1,---,n): R™ — R are convex functions. Each f; is known only by agent i and the agents
cooperatively solve the consensus optimization problem. Many problems encountered in machine
learning [1] and power network[2] can be posed in the model (1.1).

There are two types distributed algorithms to solve problem (1.1): continuous-time algorithms
[3-6] and discrete-time algorithms, among which, discrete-time algorithms can be divided into primal
algorithms and dual algorithms. In primal algorithms, each agent takes a (sub)gradient-related step
and averages its local solution with those of neighbors [7-9]. One great advantage of these methods is
their low computation burden. But slow convergence and low accuracy are two strikes against it. The
typical dual algorithms include augmented Lagrangian method [10] and alternating direction method
of multipliers (ADMM) [11-16], in which each agent needs to solve a subproblem at each iteration,
which is responsible for high computation burden. However, the characteristic that they can quickly
converge to exact optimal solutions can make up for it.

The ADMM algorithm has attracted significant research interests in recent years. With regard to
distributed ADMM algorithms, almost all developments begin with transforming problem (1.1) into
a equivalent form by introducing local copy x; for each agenti = 1,2, ..., n, and enforcing consensus
X1 = Xp = ... = Xy. For start networks, the reformulation of problem (1.1) can be shown as follows:

min f(2) = ¥ ix)

subject to x; =X, Vi,

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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where x = [xlT Ly x,f ]T and x is so-called consensus variable. Considerable attentions have been paid

to such formulation, which can be referred to [11,12] for details..

A central agent is required in the start network, and thus algorithms in [11,12] have high
communication burden and low fault tolerance. This leads to growing research interests in general
connected networks. For general connected networks, the consensus optimization problem (1.1) can
be rewritten in the following compact form:

n
min f(x) == }_ fi(x;)
i=1
subject to Ax =0 or Ax+ Bz =0,

where x = [xlT S e x,{ ]T, A, B are matrices related to network structure and z is the slack variable. For

this kind of problems, Wei and Ozdaglar [13] proposed a distributed Gauss-Seidel ADMM algorithm
and proved that its convergence rate was O(1/k), where the objective function f; (1 =1, -- ,n) are
convex. Based on this algorithm, agents can only update in order. To save the waiting time of agents
in [13], Yan[14] raised a parallel ADMM algorithm, which adopts Jacobi iterate method. Besides,
some distributed ADMM algorithms for nonconvex but differentiable probelms are also established
in[15,16].

In addition to the algorithms in [11-16], several ADMM algorithms can also solve problem (1).
These algorithms were originally designed to solve multi-block separable problems, which can be can
be cast as

chinéfi(xi)

subject to Ajx;+ ...+ Auxy =c.

where x = [x],.., xI]T. A wide variety of the proximal ADMM algorithms were proposed for this

kind of formulation. The researches on these algorithms mainly focus on proximal matrix P; and
damping parameter y. Deng et al.[17] presented a parallel ADMM algorithm and the proximal matrix
P; is required to satisfy P; - (52 — 1)ATA;, where 0 < 7y < 2. There are two specific choices for
the proximal matrix P; in[18]: (1) Standard proximal matrix P; = 7;I; (2) Linearized proximal matrix
P, =7l — AiTAi. Therefore, the condition in [17] can be reduced to

p_ ) Tl T > (3% - DAl
! Tl — AlTAi, T > ﬁ”AZHZ

Afterwards, Sun and Sun[19] came up with an improved proximal ADMM algorithm with partially
parallel splitting, where P; = ;] — AT A; and a lower bound of the proximal parameter is given by
T > w(rz —1)||A;]|?, where 0 < y < %

Inspired by the works in [13,14,17,19], this paper puts forward a distributed Jacobi-proximal
ADMM algorithm to solve the consensus convex optimization problem (1.1) over a general connected
network. Compared with the state-of-art ones, the proposed algorithm has the following outstanding
features.

(1) Compared with the algorithm in [13], the optimization variables of all agents can be updated
simultaneously. Hence, the waiting time is saved.

(2) Compared with [14], only half of dual variables are occupied in the proposed algorithm.
Therefore, the communication burden among agents and storage cost for each agent are reduced.

(3) The proximal matrix P; of the presented algorithm is smaller than those in [17,19]. Thus, the
distributed Jacobi-proximal ADMM algorithm is favorable based on the general principle given by
Fazel et. al [20], that the proximal matrix P; should be as small as possible. Besides, the value range of
damping parameter - in the proposed algorithm is larger than that of [19].
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The rest of this paper is organized as follows. In Section 2, the equivalent form of the consensus
convex optimization problem (1.1) is introduced. In addition, based on this equivalent form, a
distributed Jacobi-proximal ADMM algorithm is proposed. Section 3 supplies the convergence analysis
of the algorithm. In Section 4, extensive numerical experiments are provided to verify the effectiveness
of the proposed algorithm. Moreover, the impacts of the penalty parameter, damping parameter and
connectivity ratio on the algorithm are investigated. In Section 5, the proposed algorithm is applied to
a logistic regression problem and its numerical results are compared with those in [17]. Finally, the
conclusions of this paper are presented in Section 6.

2. Problem Formulation and Distributed Jacobi-Proximal ADMM Algorithm

In this section, some notations related to the network are introduced, and the consensus convex
optimization problem (1.1) is represented so that it can be solved by ADMM.

The network topology of the multi-agent system is assumed to be a general undirected connected
graph, which is described as G = {V, E}, where V denotes the set of agents, E denotes the set of the
edges and |V| = n, |[E| = I. These agents are arranged from 1 to n. The edge between agents i and
j with i < jis represented by (i,]) or ¢;; and (i,j) € E means that agents i and j can exchange data
with each other. The neighbors of agent i are denoted by N(i) := {j € V| (i,j) € Eor (j,i) € E} and
d; = IN(i)].

The edge-node incidence matrix of the network G is denoted by A € R'*". The row in A that
corresponds to the edge ¢;; is denote by [A]¢7, which is defined by

) 1, ifk=1,
(A7 =4 -1, ifk=}j,
0, otherwise.

Here, the edges of the network are sorted by the order of their corresponding agents. For instance, the
edge-node incidence matrix of the network G in Fig. 1 is given by

1 -1 0 0
1 0 -1 0
A=10 1 -1 0
01 0 -1
0 0 1 -1

Figure 1. An example of the network G.

According to the edge-node incidence matrix, the extended edge-node incidence matrix A of the
network G is given by

il o+ A1pdm
A:A®Im: Elexmn,
anly - Gl

where @ denotes the Kronecker product. Obviously, A is a block matrix with [ * n blocks of m x m
matrix.
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By introducing separating decision variable x; for each agent i = 1,2, ..., 1, the consensus convex
optimization problem (1.1) has the following form:

min f(5) 1= ) f(x o
subject to x; = xj, V (z,])
where x = [x],x], ..., xI]T € R"*1.Clearly, the problem (2.1) is equivalent to problem (1.1) if G is

connected.

With the help of the extended edge-node incidence matrix A, the problem (2.1) can be rewritten
in the following compact form:

min f (x)

subject to Ax = 0.

2.2)

Dividing the neighbors N(i) of the agent i into two sets: predecessors P(i) := {j € V | (j,i) € E}
and successors S(i) := {j € V | (i,j) € E}. The distributed Jacobi-proximal ADMM (DJP-ADMM)
algorithm is described as Algorithm 1.

Algorithm 1: Distributed Jacobi-proximal ADMM Algorithm (DJP-ADMM)
Initialization:: Choose appropriate P, p, 7, {x}, {/\gji} and {Agl_j}, i=1,2,.,n
0« k;

while some stop criteria are not met do
fori <— 1tondo

Update xé‘“ by

= W N =

k“ —argmmfZ X))+ 2 ||x —xz—*)\k ||2 Z ||xl—x */\k Hz *IIxi—Xf-‘H%;
1

Eﬂ 31]
i ]GP ]eS
forj € P(i) do
5 Update A’e‘;l by

k+1 . k k+1 k+1y.
)‘eﬂ : /\e],_'YP(Xj — X )r

6 | k¥<—k+1;

Remark 1. The parallel ADMM algorithm presented in [14] is shown as follows:

= argmin fi(x) + 0 Y o A P40 Y - LAk,
% JEN(D) P 2 (NG P (2.3)
ATt = A8, —p(xf — 2T, j € N(D).
It is clear that the number of dual variables in (2.3) is twice that in DJP-ADMM. Thus, the
communication burden among agents and the storage cost for each agent in Algorithm 1 are smaller
than ones in [14].

3. Convergence Analysis

In this section, some important notations and technical lemmas are given. Then, the convergence
analysis of Algorithm 1 is investigated.

Let
L =ATA e ™", (3.1)
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Remark 2. Hong et al. [16] have pointed out that L_ is the sign Laplace matrix of the graph G.
The extended degree matrix and extended sign Laplace matrix of the network G are denoted by
D:=D®I, € R"™*™" (3.2)

L_:=1_®]I, € Rmxmn 3.3)

where D is the degree matrix of the graph G.
To simplify the notation, let

3(PL+P)
H — c Rmnxmn, (34)
3(Pu+PI)
and
Q=H+pA® Iy, (3.5)
where A is the adjacency matrix of the graph G. To ensure the convergence of Algorithm 1, it is necessary
to make an assumption about the matrix Q, which is shown below.

Assumption 1. The matrix Q is a positive definite matrix.

Remark 3. If proximal matrices P; (i =1, - - - , n) are symmetric, then Assumption 1 can be reduced to
P+ pA ® I, is a positive definite matrix. Therefore, P = pD = pD ® I, is a feasible choice, where D
is the degree matrix of the graph G. In this case, P; = pd; 1.

Remark 4. By the definition of Q, the matrix Q is symmetric positive definite under Assumption 1,
and thus, there exists a matrix M such that

Q=M"Mm. (3.6)
According to the convexity of the objective function, we have following result.

Lemma 1. Assume that {(x,\%)} is the sequence produced by Algorithm 1 for the problem (2.2), where
XK= 15T, ()T, ..., (xK)T]T and Ak = [AK ] ejj € E. Then one has
f(x) —f(ka) _ (x _ xk-l—l)TAT/\k-H

3.7)
+ (x _ xk+1)TQ(xk+l _ xk) _ P(’)’ _ 1)(x _ xk+1>TL_xk+1 >0, Vx € R™". (

Proof. Defineg;(i=1,---,n) : R" — Rby
k P k k
8 (x;) = Z B4 —Xz—*/\e],H2 Y llxi—xf —*/\el]||2 *||xi—xi||%v,--
]eP ]eS

k+1 s

Using the iteration of x in Algorithm 1, one can conclude that x; ™" is the optimizer of f; + gi.‘, ie,

= argmin f(x;) + ¢ (x;).

Xi

Therefore, there exists a subgradient h(ka) € dfi(x k+1) such that h(x k+1) + Vgk(x k+1) = 0. Then

(xi = AT (1) + Vek () =0, Wi € R (3.8)

doi:10.20944/preprints202401.2201.v1
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Due to the convexity of f;, we have
filxi) = fi(ef ) + (i = 2D ().
This together with (3.8) implies that
filxi) = fixf ) + (i = 1TV () > 0.
Substituting the gradient V gi.‘ of the function gff into the above inequality, we have
fi(xi)*fi(ka)Jr(xi* KT
1
(—p T GF-ad=2ab)4p & b= 22k )+ (B P - 2) 20
jeP(i) P jes() P
From the iteration of the multipliers, one can obtain that
k_ k1 Lok
o ¥ ook
jEP(i) P
= (A —pleb = x) = T (A, e = 1) qp (T ) - p(ak - 2
jEP(i) JEP(i)
_ (Al;;rl +'yp(x;-€+1 _ xi'(H) _p(x;f+1 _ xi;+1) _I_p(x;c—i-l _ xi-‘“) _ P(x}( _ xﬁ‘“))
jeP(i)
= ¥ (A p(y = (T =) 4 p(b T — b))
jEP(i)
Similarly,
1
p X (e ) = T (Al 1 et ),
jes(i) P jes(i)
Hence,
f( ) fl( k+1> . k+l Z Ak+l Z Al;Jrl
jeP(i) jes(i) !
+(xi—xf+1)T(p(7—1) y (x;chl K4 Y (x k+1 xj) 1(P + PT)(xk 1 xf)) >0,
jEN(i) JEN(I)

By the definition of the matrix A, we simplify the above inequality as follows:
filxi) = fi(xF ) — (x; — XD T[A]T AR

Fl= T (ply 1) T T ) 4o ¥ () 4 (R BN - o) 20
JEN() JEN()

And then,

3 i) = ) = G — AT AR

1 1
+ Y= (p(r—1) L (T - 4o B - 4 S+ P ) >0
i=1 JEN(i) JEN(i)
(3.9)

doi:10.20944/preprints202401.2201.v1


https://doi.org/10.20944/preprints202401.2201.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024

7 of 13

By the definition of matrices A and D, we have

B Z k+l [AITARHY = —(x — )T AT AR (3.10)

n
d; Z(xi _ xfy+l)Txi§+1 _ (x _ xk+1)Tka+1‘
i=1

In addition,

i«xi_xi;ﬂ)T y x;;ﬂ)

=1 jeN(i)

= [(x1 =T, =TI (DT Y fYT]T

jEN(1) J jEN(n)
= [(x1 = 2™, (0 = ) T](A® L) !
—_ (x o xk+l) (A ® Im)xk+1,

where A is the adjacency matrix of the graph G. The above two relations indicate that
n
) ((xi—xf“) ) x dix;“rl)) = —(x—x"*HT(D - A® L)1
i=1 JEN(D)

Therefore, by the definition of the extended sign Laplace matrix L_, one can conclude that

n
Z( k+1 Z (x}(-‘rl k+1 ) Z ( . k+1 )T( Z x;‘H —dixfﬂ)) = (x — )Tk,
i=1 JEN(i) i=1 JEN(i)

(3.11)
Analogously,

n
2 ( k+l Z (x;chl _ x}‘)) = (x— xk+l)T(A ® Im)(xk+1 _ xk)'
i=1 JEN(D)

Besides, by the definition of matrix Q, we have

n

1

Y@= T (3R +PDEE =) 1o B (T =2))] = (= FTQE ). )

i=1 JEN(i)
Thus, recalling (3.9)-(3.12), inequality (3.7) holds. [

The non-negative property of the norm is very important in the subsequent analysis of
convergence. To this end, certain items in Lemma 1 will be concerted into norm form. To simplify
some expressions in the proof of the following lemmas, V* is denoted by

1 1 '
vk = 2,)7”)‘k||2 + 5 IMGF =), (3.13)

where M is defined in (3.6).
Under Assumption 1, we can get the following lemma.

doi:10.20944/preprints202401.2201.v1
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Lemma 2. Assume that {(xX,A%)} is the sequence produced by Algorithm 1 for the problem (2.2), where
Xk =[BT, ()T, .., ((8)T]T and Ak = [/\’e‘ij], eijj € E. Then under Assumption 1, one has the following
equality

1
(xk+l)TATAk+l +(xf — xk+1)TQ(xk+1 _ xk) — yk _yktl _ %HAkaHz _ E”M(xkﬂ _ xk)HZ’

(3.14)
where Q = MTM.
Proof. To prove (3.14), we firstly claim that
k+1NT ATy k+1 1 ) K12y PY 4 k412
() TATATT = 277(”)‘ 17 = AT = Sl AT (3.15)

1 1
(v =D TQUH — ) = S(IM(F — 2|2 = [M(x**! = x)|[2) = S M =242 (3.16)
Indeed, by the iteration of the multiplier: A¥*1 = Ak — 40 Ax**1, we know
(xk-&-l)TAT/\k-&-l — (xk-i-l)TATAk _ p'y||Axk+1||2, (3.17)

and
L ik _ g ak+1)2 KHINT ATk _ OV ) 4 k412
— - = AN ——||A . 1
o (ACIE = A1) = (25+1) Tk (3.18)
Therefore, equality (3.17) and (3.18) indicate that equality (3.15) is valid. In addition, by distorting

some of the terms, we obtain
Mk — )2 = M — ) 2 = ([ M2 — M2 4 2(Mx) T (kT — ),
and
2(x* — XFFOT(MTM) (61 — &8y = 2(Mx*) TM (T — Ky — 2| MxF 1|12 4+ 2(MaF) T Mk,
Combining the above two equalities, we yield

2(3(* o xk+1)T(MTM)(xk+1 _ xk)
= [|M(x =) |2 = M =) |2 4 2(Ma) T MR — (| MoF||2 4 [ M)
= [M(xF =) |2 = M =) |2 = [ M=)

Taking into account Q = MT M, we can get the equality (3.16). Consequently, by (3.15) and (3.16), the
equality (3.14) holds. O

With the help of the proceeding two lemmas, the convergence result of Algorithm 1 can be
established.

Theorem 1. Assume that {(x°,A%)} is the sequence produced by Algorithm 1, where
x5 = [(x5)T, ()T, ..., (x5)T]T and A = [)tgij],eij € E. Let y* = } Y X2} x5*1 be the ergodic average of x°
from step 1 to k. x* is the optimal solution of the problem (2.2). Then under Assumption 1, the following relation
holds for any k > 1 and for 0 < y <2

0<f(y") — f(x") < VTO (3.19)
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where VY given in (3.13) is a non-negative term. Furthermore,
li ky * -0, )
Jim (/) £(x) (3.20)

with the rate of O(1/k).

Proof. It follows from the optimality of x* that the first inequality in (3.19) is clearly true. Let x = x*
in inequality (3.7), then one has

f(x*) _f(xs+1> _ (x* _ xs+1)TATAs+l + (x* _ xs+l)TQ(xs+l _ xs> _P('Y _ 1)(x* _ xs+1>TL_xs+1 > 0.
Take into consideration that L_ = ATA and Ax* = 0, the above inequality can be rewritten as:
f(x*) 7f(xs+1) + (xs-&-l)TAT/\s—s—l + (x* . xs+1)TQ(xs+1 o xS) . P(l o 'Y)||Axs+1||2 > 0.

By Lemma 4.2, one has
, g 1
fO) = fe*) + V= v 4 %Iles“IIZ +o(1 =P AcT 2+ S [MeeT =),

and then
S 1 1S 1 2 P S 192
KF() = L f ) + VO 2 VEL 2 Y IMGET = x) 2+ 52— ) ) A%
s=0 s=0 s=0
Due to V¥ > 0 for any k, the following inequality holds for 0 < ¢ < 2
k-1
kf(x*) = Y f(x**Hy+ v >0. (3.21)

s=0

Since the function f is convex, Y*2} f(x¥1) > kf (+ ©f23 1), and then using y* = } y¥ 2} x+1, we
have
kf(x*) —kf(y") + VO >0,

ie.,

FF) = f(x*) < - (3.22)

Therefore, inequality (3.19) stands. Furthermore, inequality (3.22) implies that

lim (f(4") - F(x)) 0.

k—+o0

On the other hand, from the optimality of x*, we have

lim (f(") - f(x")) > 0.

k—+o0

As aresult, limg_, | ( fy*) —f (x*)) = 0 and the proof is completed. O

Remark 5. Theorem 1 gives the theoretical upper bound for f(y*) — f*, which provides the error
estimates for the optimal value f* at each iteration k. The upper bound is consist of two additive items.
Both of them approach to zero at the rate O(1/k). In addition, Theorem 1 implies that f(x¥) converges
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to the optimal value f* asymptotically. Furthermore, if at least one function f; is strongly convex, then
the optimal solution x* is unique, and thus x* asymptotically approaches to x*.

Remark 6. When solving the consensus optimization problem (1.1), the convergence condition of
Algorithm 1 has less conservative than that in [17], wherein, the convergence of Algorithm 1 can be
guaranteed if P; is symmetric and P; > pd;1,; according to Remark 4.2, while algorithm in [17] requires
that P; is a symmetric positive semi-definite matrix and P; > (32 — 1)pATA; = (3% — Dpd;ln (0 <
¥ <2).

4. Numerical Experiments

In this section, some numerical experiments are provided to show the validity of Algorithm 1.
First, the convergence property of Algorithm 1 is verified. Then the impacts of penalty parameter p,
damping parameter oy and connectivity ratio d on Algorithm 1 are investigated.

In this section, each edge of the connected network G is generated randomly. The connectivity

2

ratio of the network G is denoted by d = n(711) Consider the following consensus optimization

problem given in [21]:

min

y (v —6,)%, @.1)

N =
™=

Il
_

where y € R. Apparently, the optimal solution of this problem is y* = § = % Y1 0;. The consensus
optimization problem (4.1) can be reformulated into a distributed version:

(x; — 6;)%,

N —
.M:

I
—

minf() = (4.2)

subject to x; =x;, V(i,j) € E,

where x = [xq,x2, ..., xn]T € R" and f is convex. Therefore, Algorithm 1 can be used to solve the
consensus optimization problem. For the consensus optimization problem (4.2), each ¢; is randomly
generated by a normal distribution N (0, 1).

The proximal matrix of Algorithm 1 is set by P; = pd;I. In this case, the iteration of x has a
closed-form solution, which is shown as follows:

e pdixf + 0 ieni) x}‘ + Ljes(i) /\f]- — Ljep(i) /\;‘i + 0;
! 1+ 2pd; !

where d; is the number of neighbors of the agent i.
A. Convergence Property

To illustrate the convergence property of Algorithm 1 for the consensus optimization problem
(4.2), ten networks are generated. Each network has n = 50 agents and the connectivity ratio of these
networks are set as d = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, respectively. The algorithm
parameters are set as p = 1 and y = 1. The algorithm will be stopped once | x* — x*|| reaches to 101
or the number of iterations k reaches to 3500, where x* is the optimal solution of problem (4.1).
Fig. 2 and Fig. 3 respectively depict how the relative error Hxll‘(x_fl* H
vary with iteration k. One can find that Algorithm 1 has high accuracy since the relative error can
achieve 10~ !% and the constraint violation can achieve 101,

and constraint violation || Ax*||

Figure 2. Relative error versus iteration.

Figure 3. Constraint violation versus iteration.

B. Algorithm Parameters p and 7y
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In this part, the impacts of algorithm parameters p and <y on the convergence speed of Algorithm 1
are discussed. The networks are generated in the same way as Part A. In order to explore the influences
of parameters p and <y on Algorithm 1, the convergence speed is denoted by ¢, = 1/kg, where gy > 0
and kg is the number of iterations required to achieve || xf0 — x*|| < gy. Here, the accuracy is set as
gg = 107°.

Choosing damping parameter v = 1 and selecting different penalty parameters to solve the
problem (4.2), one can get the relationship between the convergence speed ¢, and parameter p, which
is displayed in Fig. 4. Obviously, if the penalty parameter p is too large or too small, the convergence
speed of the algorithm is slow. The penalty parameter p can be selected from (0.01,2). In general,
a smaller connectivity ratio leads to larger actual optimal parameter p*. As a consequence, when
the network is sparse, it is better to select a larger penalty parameter and when it is dense, a smaller
penalty parameter will be a nice choice.

Figure 4. Convergence speed versus p.

In order to explore the influence of parameter y on Algorithm 1, the penalty parameter is set as
p = 1 and the damping parameter is set to 60 different values. The numerical results are shown in Fig.
5. Obviously, the convergence speed of Algorithm 1 increases with the damping parameter, and then
remains constant. Therefore, v = 2 is a great choice.

Figure 5. Convergence speed versus 7.

C. Connectivity Ratio

In this part, the effect of connectivity ratio d on the convergence speed of Algorithm 1 is explored.
From Fig. 4, one can find that when penalty parameter p takes different values, the impact of
connectivity ratio on convergence speed is different. Therefore, the penalty parameter is set to six
different values p = 0.005,0.01,0.05,0.1,1 and 2, respectively.

We generate 30 networks with n = 50 agents, whose connectivity ratio are set to 30 different
values : 31—0, %, ..., 1. From Fig. 6, one can find that when the penalty parameter takes a smaller value,
such as p = 0.005,0.01 or 0.05, the convergence speed of Algorithm 1 generally slows down with the
increase of connectivity ratio, and the opposite is true when the penalty argument takes a bigger value,
such as p = 0.1,1 or 2 from Fig. 7. It is worth noting that when the network is very sparse, for example
d = 0.05, no matter what the penalty parameter value is, the convergence speed is slow. Therefore,
on the premise of ensuring network connectivity, few edges can be added to increase information
exchange between agents.

Figure 6. Convergence speed versus d.

Figure 7. Convergence speed versus d.
5. Application to A Logistic Regression Problem

In this section, the proposed distributed Jacobi-proximal ADMM algorithm is applied to a logistic
regression problem, which is a widely used machine learning model[22,23].

The network G = {V, E} is generated with n = 50 agents. The connectivity ratio is setas d = 0.3
and the edges are generated randomly. The network generated is given in Fig. 8. Each agent has #;

training samples, which denoted by {w;;, ]/ij};iy where w;; € R and y;; € {1, —1}.

Figure 8. The network of problem (5.1).
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The distributed logistic regression problem is described as follows:
. Lo, T —yiwhx

min f(x) = 5 [x[[° + 5 X ) log(1+e ™), (5.1)

i=1j=1

where N = YI' | n; is the total number of samples. The dimension of feature is set as p = 3, the number
of samples ; is generated by a uniform distribution U(1,20), and the parameter w;; is generated by a
normal distribution N (0, 1). The generation rule of the label y;; is shown as follows:

L 1, if 1/[1']' > 05,
I\ -1, ifu; <05,

where u;; is generated by a uniform distribution U(0,1).
The distributed logistic regression problem (5.1) can be formulated as

i=1 (5.2)
subject to x; = x;, V(i,j) € E,

where x = [x],x], .., xIT and fi(x;) = & [|x: > + & 217'11 log(1+ e_y""ng"). Obviously, problem (5.2)
can be solved by Algorithm 1.

The convergence path of Algorithm 1 is compared with the Jocobi-Proximal ADMM (JP-ADMM)
algorithm in [17]. To investigate the performances of the two algorithms, the penalty parameter is
set to p =0.01, 0.1 and 1, respectively. In addition, the damping parameter is set to two different
values v = 1 and % The proximal matrix of Algorithm 1 and algorithm in [17] are set as P; = pd;I and
P; = [(3%; — 1)pd; + 1]1, respectively. Every algorithm is stopped once || x¥ — x*=1|| reaches to 1075 or
the number of iterations k reaches to 1000. One can find that the convergence speed of Algorithm 1 is
significantly faster than that in [17] from Fig. 9 and Fig. 10.

Figure 9. Objective value f* (y = %).

Figure 10. Objective value f* (y = %).
6. Conclusions

In this paper, a distributed ADMM algorithm is put forward to solve a consensus convex
optimization problem over a connected network. The proposed algorithm is a Jacobi-proximal ADMM
algorithm and the proximal matrix is smaller than existing algorithms. The convergence of the
algorithm is proved and its convergence rate is O(1/k). Extensive numerical experiments are provided
to verify the convergence of the algorithm. Besides, the impacts of penalty parameter, damping
parameter and connectivity ratio on the proposed algorithm are investigated. Finally, an application
of the proposed algorithm to a logistic regression problem is implemented and its performance is
compared with that of another ADMM algorithm in [17].
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