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Abstract: Mass customization, small batch sizes, high variability of product types and a changing

product portfolio during the life cycle of an industrial plant are current trends in the industry. Due to

an increasing decoupling of the development of software and hardware components in an industrial

context, compatibility problems within industrial control systems arise more and more frequently. In

this publication, a strategy concept for compatibility testing is derived and discussed by means of

literature review and applied research. This 4-phased strategy concept identifies incompatibilities

between software and hardware components in the industrial control environment and enables

test engineers to detect problems at an early stage. By automating the compatibility test on an

external I-PC, the test can be run both when new software is installed on the industrial controller

and when the controller is restarted. Thus, changes to the components are constantly detected and

incompatibilities are avoided. Furthermore, early incompatibility detection can ensure that a system

remains permanently operational. Based on a discussion, additionally strategies are identified to

consolidate the robustness and applicability of the presented concept.

Keywords: compatibility; test automation; industrial controller

1. Introduction

Modern trends in manufacturing are characterized by mass customization, small batch sizes, high

variability in product types, and a changing product portfolio during the life cycle of an industrial

plant [1]. These trends imply more complex plants [2] that support changes in physical layout,

including major engineering upgrades. The complexity of plants, including automation hardware and

automation software, is increasing. As the percentage of system functionality realized by software

increases, concepts to support automation engineers in dealing with this complexity are urgently

needed [3].

Automated testing can help minimize the resources required for software development. However,

changes to the software necessitate re-evaluation of functionality through testing. To reduce resource

consumption, existing relevant tests can be re-run after ensuring their compatibility with the software

after the changes [4]. If a software or its environment are changed, it is necessary to check, on the one

hand, whether the desired function is fulfilled and, on the other hand, whether there are any unwanted

changes or side effects [5].

In the proposed concept, the target and actual state of the software and hardware components is

an essential part of the compatibility test. A stringent test procedure, which can always be repeated in

exactly the same way, forms the framework for the concept and is also presented in this paper.

As a result of the compatibility test, the concept offers an overview of found incompatibilities and

shows possible reactions.

The concept was tested and evaluated on a module of the P2O-Lab [6] of the TU Dresden . The

results met the concept requirements, allowed the detection of incompatibilities and where therefore

published as a German preprint [7].
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2. Methods and State of the Art

The analysis of the requirements for the proposed concept is backed by a theoretical examination

of the existing compatibility testing strategies in virtual commissioning (VC) and cyber security (CS).

These strategies serve as a valuable foundation for developing a compatibility testing concept and are

described in the following sections of this article (see sections 2.1 - 2.4).

The primary criterion for inclusion in compatibility testing, for both VC and CS, is the presence of

a model to test against. Consequently, only two test strategies meet this criterion and are classified as

essential for compatibility testing.

In the following section the most important literature findings, which were found to be most

beneficial to the proposed concept, are highlighted. From virtual commissioning the testing strategies

Software-in-the-Loop (SiL) and Hardware-in-the-loop (HiL) were found to be a good source of guidance

for the development of the proposed concept. The findings from current literature developments

are highlighted in chapter 2.1 and chapter 2.2). The other major literature topic which was used to

influence the concept development was cyber security. The test strategy of anomaly-based detection

(see chapter 2.4) from the topic of cyber security, was found to be connected to an approach which

could be used for the proposed concept.

2.1. Software-in-the-loop

In the SiL approach, a virtual PLC is instantiated to test the automation code associated with the

behavior models in the simulation layer [8].

This approach makes it possible to integrate software components with an environment simulation

[9]. In addition, this approach enables very fast testing of different scenarios and control algorithms

and their flexibility.

The costs for implementing an SiL environment are around sixty times lower than for a

hardware-in-the-loop (HiL) environment. The SiL environment can be available to any developer,

while separate equipment is required for HiL [9].

SiL tests are carried out by running the software on normal PC hardware, which makes it possible

to identify the most important errors in the functional area. However, the compiler and the processor

of a PC may behave differently than on the final automation platform[10].

2.2. Hardware-in-the-loop

In the HiL approach, a real physical PLC is connected to a simulation layer that executes the

system’s behavior models.

All VIBN processes are based on a virtual model that is connected to a PLC. In the case of a

hardware-in-the-loop (HiL) simulation, the PLC is a real hardware controller [11]. Consequently, it

is possible to carry out the VIBN with the PLC, which is then integrated into the production system.

According to Mazza [10], this is particularly interesting for:

1. Validation of PLC control strategies based on a virtualized environment with the ability to

represent the expected dynamics of the real machine
2. Improvement or comparison of real-world measured data with simulated data (e.g. from virtual

sensors)
3. Support operators during real machine operation through simulated predictions or diagnostics

fed by a ’digital twin’ with real data from the field.

2.3. Use of SiL and HiL for the concept

To summarize, the following reasons can be found why the VIBN strategies SiL and HiL are very

useful:

1. Control strategies can be virtually validated without endangering human lives or machines.
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2. Costs can be reduced thanks to the possibility of debugging (error correction could occur too late

during the design process)
3. Operators can familiarize themselves with the control systems, including those under

construction, thanks to the creation of virtual systems.
4. Errors can be found within a few minutes with the help of ’virtual time’ through simulation.

2.4. Anomaly-based detection

Anomaly-based detection uses statistical methods and artificial intelligence to detect unknown

attacks [12]. Ourston et al. [13] presented an approach that uses hidden Markov models to detect

complex cyber attacks. This method is able to address the problem of multi-stage attacks. Experimental

results have shown that this method is more effective than classical machine learning techniques, such

as decision trees and artificial neural networks.

Mukkamala et al. [14] developed a method for detecting attacks using K next neighbors algorithms

(KNN) and support vector machines (SVM). KNNs and SVMs were used to create the classifiers based

on a list of features. Experimental results have shown that KNNs and SVMs are able to detect anomalies

and known intruders. Pan et al. [15] developed a hybrid method for detecting attacks by combining

KNNs and decision tree algorithms. Experimental results have shown that KNNs can detect DoS

and probing attacks more effectively than detecting unauthorized access from a remote machine and

authorized access to local superuser attacks.

Zhang et al. [16] developed a method based on random forests to detect network intrusions. This

method was demonstrated on an intrusion detection data-set. The experimental results have shown

that the proposed method can achieve a high detection rate with a low false positive rate.

Gaddam et al. [17] developed an anomaly detection approach using cascading K-Means clustering

and ID3 decision tree learning algorithms. This method was used to analyze a data-set of network

anomalies. Experimental results have shown that the detection accuracy is up to 96.24 % with a false

positive rate of 3 %.

Liao and Vemuri [18] developed a classifier for intruder detection using the k-nearest neighbor

(kNN) algorithm. This method was used to classify the behavior of programs as normal or intrusive.

Experimental results have shown that the kNN classifier can effectively detect attacks with a low false

positive rate.

Sabhnani and Serpen [19] analyzed an intrusion detection data-set using a set of machine learning

algorithms. The data-set includes four types of major attacks, including probing, DoS, user-to-root,

and remote-to-local attacks. Simulation results have shown that certain classification algorithms are

more effective for a particular attack category.

Lee et al. [20] introduced an attack detection method based on cluster analysis to proactively

detect DoS attacks. A hierarchical clustering algorithm was used to analyze a data-set for attack

detection. Experimental results have shown that this method is capable of detecting DoS attacks.

3. Proposed Concept

For the proposed concept, SiL approach, based on [8] and HiL approach, based on [11] strategies

from VC highlight the crucial role of a pre-established model in conducting effective tests. Additionally,

from the field of CS, the strategy of anomaly-based detection, as described by Ourston et al. [13],

emphasizes the use of a predefined model to detect deviations and potential attacks.

Based on this insight, it becomes evident that a model, referred to as the target state, is

fundamental in compatibility testing. This target state encompasses the intended software and

hardware configurations for compatibility testing.

In contrast to the target state, akin to the SiL or HiL strategies, there is the system to be tested,

whether simulated or the physical programmable logic controller (PLC), to which the test is applied.

In the proposed context of compatibility testing, this system under test is referred to as the actual state.

It represents the current state of the hardware components connected to the PLC and the state of the
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software running on these devices. These two main points, the determination of a target and actual

state, form the foundation of the compatibility testing concept.

The model checking and anomaly-based detection strategies from VC and CS can be adapted for

use in the context of software upload and restart by introducing an additional component external

to the PLC. This additional component takes on the role of monitoring the PLC and automatically

initiating a compatibility check whenever a software update is pending or the PLC undergoes a restart.

In the proposed concept, as outlined in chapter 3, this external component is an industrial pc (I-PC).

The I-PC runs a test script responsible for managing the software upload to the PLC and monitoring

the software restart process of the PLC.

The proposed concept consists of four phases (see Figure 1). Phase one conducts an automated

self-test on the PLC connected to a test I-PC. This ensures basic PLC operation requirements, like CPU

and I/O modules presence, memory checks, and power availability (see Chapter 3.1).

Phases two and three determine the actual and target state of software and hardware components

in the system. First the actual state (see Chapter 3.3) of the system is determined, then the determination

of the target state (see Chapter 3.2) follows. It is important to note, that the proposed concept is not

generally applicable. The proposed concept is based on the TIA Openness API as foundation for the

determination of the actual and target state.

In the fourth phase, the test compares target and actual states to identify differences and

categorizes incompatibilities in error detection tables (see Chapter 3.5).

Figure 1. Proposed compatibility test sequence.

3.1. PLC Self Test

PLC self-test includes self-testing and diagnosis of a PLC under test. As required by DIN EN

61131-2, manufacturers of PLC systems must provide means for self-testing and diagnosing the

operation of these systems. Furthermore, the self-test must allow a statement about the proper

condition of a PLC system.

The PLC self-test according to DIN EN 61131-2 must provide diagnostic means to perform the

following actions:

1. monitoring of the application program (watch dogs);
2. checking the integrity (freedom from errors) of the memory;
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3. checking the correctness of data exchanged between memory, processing unit and I/O modules;
4. checking the power supply of the system;
5. monitoring the state of the main processing unit.

The output of the PLC self-test is essential to determine the suitability of the PLC for compatibility

testing. The self-test provides the basis for meeting the hardware requirements of the compatibility

test. A system which is not in proper condition, i.e. which does not pass the self-test, cannot be used as

part of the concept for testing the compatibility between software and hardware.

3.2. Export & Import of Target State

Before the target state can be imported to check compatibility with the new hardware, the files

required for the import must first be obtained. Depending on the use case, the requirements for

importing the target state differ.

Use Case A - Determination upon PLC Restart

For use case A, the target state is imported from stored data on the test PC, representing the last

known actual state before PLC restart. To ensure an automated sequence, the test PC retains the last

actual state, making it available for compatibility tests after a PLC restart. A continuous ping between

the test script and the PLC detects restarts, triggering automatic compatibility checks. See Figure 2

for the relevant components. Since the target state is already on the I-PC during a restart, it’s simply

loaded by the test script.

Figure 2. Determination of the target and actual state at restart.

Use Case B - Determination upon PLC Update

To install new software on the PLC, the target state comes from user-provided update data. This

data typically includes a TIA project file, which is first opened using the TIA Openness API. The

open-source software TiaExportBlocks [21] extracts variable tables in XML format from the TIA project

and exports them to an XML file. The hardware topology is exported as an AML file [22] using the

CAx export function of the TIA Openness API.

This process results in software data in XML format and hardware data in AML format (CAEX

standard) [23].

The test script now has the target state for the software and hardware, which is essential

for the compatibility check. The CAEX format in AML uses the PLCopen XML standard [24] for

machine-readable hardware topology.
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By determining the target state, the necessary hardware and software information is collected

for comparison with the actual state in the next step. See Figure 3 for a visual representation of this

process.

Figure 3. Determination of target and actual state during software update.

3.3. Determination of the Actual State

To determine the current state of software and hardware components, the network state is first

assessed using the DCP Scan. Then, the I-PC programmatically contacts the PLC via the Siemens

TIA-Portal Openness API [25].

The DCP “Identify All” command is initially broadcasted over the Ethernet network connected

to the test PC. This command, illustrated in Figure 4, helps identify PROFINET devices physically

connected to the network and supporting the DCP protocol. These devices, once found, return

hardware information such as device name, IP address, firmware version, and MAC address via the

DCP “GET” command.

Subsequently, the PLC software is downloaded to the I-PC through the TIA Openness API. Upon

successful download, the AML file for the hardware configuration is generated by selecting “Export

CAx data” from the “Tools” tab.

Additionally, variables in the PLC code can be automatically exported to machine-readable XML

files from an open project using the open-source software “TiaExportBlocks.”

Figure 4. DCP command flow, based on [26].

3.4. Comparison of Target-Actual State

The core element of the concept is the comparison of the target and actual state, which emerges

from the previous chapters. The components and IDs of the target software is compared to the

actual software from the PLC and the imported expected hardware AML structure is compared to the

determined DCP scan output. In doing so, the differences are identified and possible problems and

inconsistencies are revealed.
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When looking at the differences, incompatibilities between the hardware and software

components can be identified and categorized in a table (see Chapter 3.5). The complete comparison

process is automated by a custom test script on the I-PC. This automated test process can be performed

when new software is uploaded or when the system is rebooted.

3.5. Error Detection Table

Shown below is the error detection table that is automatically created by the test script as a result

of the compatibility check. The different rows are divided by components of the test flow, as shown in

Figure 1. Possible reactions to the incompatibilities found are also included in the table. To simplify

the notations within the tables, the following abbreviations are introduced:

• Hardware (H/W)
• Software (S/W)
• Not available (n.a.)
• Locally solvable problem (L)
• Remotely solvable problem (R)

Table 1. Error and inconsistency detection table.

Stage Detectable error Reaction

1 - PLC self test

CPU, E/A-Modul n.a. Repair hardware on site, install,replace(L)
Error in the application program Check code and update(R)

Data exchange faulty Check PLC(L)
Memory integrity violated Check memory(L)

Comm. Interface n.a. Check power supply(L)

2 - Import & export of the target state

Error in the logic of the PLC code Fix logic errors in code(R)
H/W topology n.a. Check file structures(R)

SPS code n.a. Check file structures(R)
File/XML structure incorrect Re-export+import AML(R)

3 - Determination of the actual software state
PLC code n.a. Check connection to PLC(L)

PLC system n.a. Check connection to PLC(L)
PLC in wrong network Check network configuration(R)

4 - Determination of the actual hardware state

No H/W devices found Check connections(L)
DCP Scan unsuccessful Check if DCP protocol is supported(L)

Data from device not retrievable Check connections(L)
H/W device in wrong network Check network configuration(R)

3.6. Reactions to Incompatibilities

The reactions outlined in chapter 3.5 offer a framework for test engineers to respond effectively to

identified incompatibilities. It’s important to note that these reactions are not automated by the system

and require intervention from the test engineer.

The proposed concept for reacting to incompatibilities involves pinpointing at which location

in the system action is needed to resolve the issues. Additionally, the error detection tables identifies

whether a specific incompatibility can be fixed remotely (R) or if an on-site engineer intervention (L) is

required.

4. Proof of concept

In the following, the TIA portal and other software tools from Siemens will be used explicitly to

evaluate the strategy concept using a reference system to conduct a proof of concept. The evaluation

method to be used is a test of the concept on a real plant.

4.1. Proof of concept criteria

The criteria for the evaluation correspond to the following requirements for the compatibility test:

A. The compatibility test must make a statement about the compatibility, i.e. the compatibility of

the simultaneous operation of the hardware and software components connected to the PLC,

and display this to the test engineer.
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B. The compatibility check must be able to run automatically during the PLC restart or during the

loading of software onto the PLC.
C. The result of the compatibility check must enable a statement to be made about incompatibilities

and errors found.
D. At the end of the compatibility check, the test engineer should be shown appropriate reactions to

incompatibilities and errors found.
E. The compatibility check should work with hardware and software from different manufacturers

in the industry.

4.2. Reference system

The evaluation is carried out by testing the installation of new software on a hardware PLC on a

reference system from the biopharmaceutical equipment supplier Sartorius. The concept presented for

the compatibility check is applied and carried out. Two Sartorius industrial control systems are being

used as possible real world application examples for the compatibility test. There are two different

control system models which are used for the proof of concept.

One of the models contains a so-called software PLC. A virtual instance of a fully configurable and

usable PLC is created on the I-PC. Communication with the field devices is then realized via an I/O

module connected to the I-PC. Most engineering companies also uses automation scripts in its systems,

which make it easier to process updates. WinCC OA is also used to implement a human-machine

interface.

The second model uses a regular hardware PLC. This is supplied by an external power supply

and connected to the I-PC via Ethernet to enable the PLC to be programmed. The hardware PLC is

physically connected to the field devices via digital and analog I/O modules.

The assumed real world existing systems are developed by Sartorius with the TIA Portal from

Siemens and are therefore suitable for demonstrating the application of the concept. However, no

Sartorius control system could be used to evaluate the concept on site. Therefore, the individual

steps of the compatibility test were evaluated on a system from the P2O-Lab [6] at TU Dresden. The

industrial control systems in the P2O-Lab mostly correspond to the real world models with hardware

PLCs.

5. Discussion

The compatibility check concept presented gives test engineers of industrial control systems an

overview of incompatibilities before they occur during operation of the control system. Differences

between the target and actual status are shown and possible reactions are identified.

By using an I-PC, the compatibility check is carried out automatically when the PLC is restarted

or new software is installed. This means that errors and inconsistencies are detected at an early stage

and can be rectified accordingly.

The concept facilitates an automated comparison of the hardware and software of a PLC’s target

and actual states, allowing the detection of inconsistencies or incompatibilities. This check can be

applied when restarting the PLC or when updating the software. The error detection methods in

chapter 3.5 offer an overview of potential errors and reactions. These tables are not complete and cover

more inconsistencies in practice than presented, but have been condensed to focus on the core concept.

The concept relies solely on Siemens software and the TIA Portal. Future work could explore

extending it to other major industrial control manufacturers, contributing to broader research in this

domain.

Since the proposed concept does not include an own implementation of a test script, this could

also be a useful extension to further verify the applicability of the presented concept. The script could

be a starting point for a more in-depth analysis on how the concept could be integrated into other

domains of industrial control systems, where different types of data sets are available.
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6. Conclusion

In this work the need for automated compatibility testing is outlined and underpinned by a

concept, based on a literature review. The findings of the literature review were presented in the

chapter on the state of the art, existing test strategies from VIBN and CS were discussed and the

concept of compatibility from various literature sources was brought together and examined. The SiL

and HiL strategies from the VIBN and anomaly-based detection from the CS were considered to be

particularly relevant and decisive for the compatibility testing presented in this study.

Based on this, the most important requirements for the concept were then derived and identified

by means of a requirements analysis.The results of the requirement analysis are shown in the concept

section of this work.

Furthermore, it was discussed how the strategies determined from the VIBN and the CS can be

transferred to the processes of restarting the PLC and installing new software on the PLC.

The proposed concept for carrying out an automatic compatibility check was developed using

applied research into the early detection of incompatibilities. A 4-phase concept was presented,

which is characterized by the comparison of target and actual states of the software and hardware

components.

As a result of the compatibility check, the concept offers an overview of incompatibilities found

and shows possible reactions.

The functionality of the concept was implemented and evaluated on a module of the P2O

Lab at TU Dresden. The results met the concept requirements and made it possible to identify

incompatibilities.

7. Future Directions

There are numerous avenues for further research in the field of compatibility testing, building

upon the theoretical basis established in this work. These possibilities include:

1. Implementation Variations: Expanding on the presented concept by creating various

implementations to assess its flexibility and adaptability to different scenarios. Other scenarios

could also involve completely different industry domains.
2. Multi vendor Compatibility: Evaluating and extending the concept to encompass software

and hardware configurations from a range of manufacturers, providing a more comprehensive

solution.
3. Automated Test Script: Developing a test script that automates the different phases of the concept,

streamlining the compatibility testing process.
4. Data Sources Extension: Expanding the concept to incorporate data from additional sources for

determining target and actual states, enhancing its robustness and applicability.
5. Fully Automated Systems: In the future, fully automated compatibility testing systems could

significantly benefit test engineers and integrators of industrial control systems. This would

enable early detection of incompatibilities in various Industry 4.0 components, particularly in

the face of new hardware and software developments and changes to existing PLC architectures.

These research directions show the potential to advance the field of compatibility testing, making

it a valuable asset in the ever-evolving landscape of industrial control systems.
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Abbreviations

The following abbreviations are used in this manuscript:

AML Automation Markup Language

CAEX Computer Aided Engineering Exchange

CS Cybersecurity

DCP Discovery and Configuration Protocol

DoS Denial of Service

H/W Hardware

HiL Hardware-in-the-Loop

I-PC Industrial Personal Computer

I/O Input/Output

KNN K next neighbors algorithm

PLC Programmable Logic Controller

S/W Software

SiL Software-in-the-Loop

SVM Support vector machines

TIA Totally Integrated Automation (Software from Siemens)

VC Virtual Commisionning

XML Extensible Markup Language
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