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Abstract: A significantly reduced stress concentration effect and a stable deformation behavior are
exhibited by the arc-like S-shaped auxetic structure. Analytical works beyond the bar and hinge
method to capture structural effects, such as bending, shearing, etc., in the S-structure are scarce in
the literature. The deformation pattern of the S-structure is dominated by bending and shearing
within the linear elastic region. In this work, Timoshenko beam theory is used to derive closed-form
expressions for overall elastic modulus and Poisson’s ratio. This agrees well with the results of
finite element simulations. An adjusted R-square value of over 0.99 and almost 0.82 is obtained for
elastic modulus and Poisson’s ratio, respectively. From parametric studies, it’s established that under
quasi-static transverse load, strut thickness and the angle ‘a” are the most important parameters for
controlling elastic modulus, specific energy absorption, negative Poisson’s ratio (NPR) effect, and
relative density of the entire auxetic structure. Also, it’s found that energy absorption and elastic
modulus increase together. Interestingly, the elastic modulus of the structure under transverse load
lies in the range from 3 MPa to 250 MPa, which means this structure is compliant enough and can be
used in cushioning, packaging, soft robotics applications, etc.

Keywords: negative poisson’s ratio; Timoshenko beam theory; semi-analytical model; parametric
analysis; elastic modulus; transverse load

1. Introduction

Auxetics are meta-materials that are engineered to exhibit a negative Poisson’s ratio effect.
These materials show higher stiffness and energy absorption capacity [1-3], indentation and impact
resistance [4], light-weighting [5], vibration isolation and damping applications [3], etc. In contrast
to conventional materials, in the case of auxetics, if it is compressed transversely, it also contracts
in the lateral direction. The same behavior is observed under impact load, where material moves
toward the impact zone, and as a result, more mass resists the motion of the impactor, resulting in
larger impact energy absorption characteristics of auxetics compared to its conventional counterparts.
However, auxetics don't offer much advantage under larger strain rates, as shown in the literature [6].
Auxetics can be used in bicycle handlebar grip [7], aircraft brackets and structures, static and dynamic
aircraft and spacecraft engine components, thermal devices, etc., as discussed in the literature [8].
These can also be used in lightweight applications, energy absorption applications, etc., as discussed
in the literature [2]. Furthermore, the potential application of auxetics in medical devices has been
extensively discussed in the literature [9,10]. However, the industrial use of auxetics is very limited,
and products or components using these advanced materials are quite rare. For this, further analysis
of these materials is required.

The mechanical response of auxetic meta-materials under both static and dynamic load are
explored analytically, numerically, and experimentally by various researchers in the literature [11-13].
The overall mechanical properties of auxetics are majorly dependent on the structural architecture,
just like the material’s mechanical behavior depends largely on its micro-structures. Various new
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geometries of auxetics have been designed and explored in the literature [14-16]. Hierarchical auxetics
are explored in the literature [17,18]. The problem with classical re-entrant structures is that they
are deformed by shrinking very rapidly, which can be detrimental. This problem can be solved by
modified re-entrant structures, which are more rigid than the classical counterpart, as discussed in [19].
In this literature, the in-plane elastic modulus and Poisson’s ratio are investigated analytically and
numerically, which, in turn, is validated by experimental results. Other novel auxetic structures are
explored by various researchers, such as, in the literature [20], a novel design of auxetic structures with
enhanced energy absorption capacity is explored using mathematical, numerical, and experimental
methods under quasi-static and dynamic loading conditions. Furthermore, a comparative study is
conducted in the literature [21] on various geometries of auxetics and potentially auxetic meta-materials
using the finite element method. Again, various hybrid novel meta-materials are explored in works
such as [22,23]. A novel, efficient design method (similar to TPMS design) for shell-based Mechanical
Metamaterials is explored in the literature [1,24]. Further, a novel auxetic metamaterial with defined
Poisson’s ratio was developed theoretically and tested numerically and experimentally in the literature
[25]. The numerical and mathematical analysis of the tubular anti-tetrachiral structure under dynamic
load has been conducted and presented in the literature [26-30]. Again, experimental studies on
crushing behavior and plateau stress of hexagonal honeycomb under quasi-static and dynamic
loading conditions are discussed in the literature [31]. However, the utilization of auxetics in static
components requires appropriate static analysis. This has been conducted using various methods,
such as the utilization of continuum mechanics, Tension-field theory, homogenization, and utilization
of Euler-Bernoulli or Timoshenko beams, along with Castigliano’s second theorem as reported in the
literature [32-36]. The analysis using Timoshenko beams, along with Castigliano’s second theorem, is
quite rare in the literature and is explored in this work. This work is particularly focused on predicting
elastic modulus and Poisson’s ratio within the linear elastic region. Also, a detailed parametric analysis
of the auxetic S-structure is conducted under transverse loading conditions.

The literature [37] introduced a new arc-like structure, called the S-structure, that shows reduced
stress-concentration effects and a stable deformation mechanism (does not shrink very rapidly).
However, the mathematical model used before was based on the bar and hinge method, by which
structural effects, such as bending, shearing, etc., are not captured. This is an important setback, as the
structure itself is deformed predominantly due to bending and shearing. More accurate analyses are
required to enable the practical application of this arc-like auxetic structure.

The present work is particularly focused on the linear elastic region of S-structure. A closed-form
analytical expressions of overall elastic modulus and Poisson’s ratio under quasi-static load in the
transverse direction are rigorously derived. The analysis using Timoshenko beams, along with
Castigliano’s second theorem, is scarce in the literature and is explored in this work. A representative
unit cell elements (RUCE) of this structure are considered a collection of Timoshenko beams to capture
structural effects such as deformation of the structure under bending and shear stress. These effects are
not considered in the classic bar and hinge method used in previous works. The analytical results agree
well with the numerical results in the present work. Furthermore, a detailed parametric study of this
structure is conducted under the transverse loading condition. The detailed analytical and numerical
investigation of structural effects and an extensive parametric study in S-shaped auxetics under
transverse quasi-static load is scarce in the literature, and due to its significant stress concentration
reduction effects, it is worth exploring, which forms a scope of the present work.

2. Materials and Methods

2.1. Material and Geometric Parameters

In this work, the arc-like S-structure is explored under quasi-static transverse load. A significantly
reduced stress concentration effect and a more stable deformation mode are exhibited by this structure
when compared to the conventional re-entrant structure. In this section, different variations of
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S-structure are discussed. Various geometrical parameters of a unit cell of the S-structure are depicted
below in Figure 1. Values of different geometrical parameters of 11 different S-structures are shown in
Table 1.

L
! Lmin

C D

Figure 1. Surfaces A, B, C, and D of S-structure and various dimensions of S-structure and its unit cell

AlSi10Mg is chosen as the parent material of the auxetics. Material parameters for AlSi10Mg were
obtained from the literature [38]. In this section, the values of various elastic properties are shown in
Table 2. The Johnson-Cook plasticity model is used for the analysis, and the corresponding values
of parameters are reported in the literature [38]. These are utilized in the numerical analysis of the
S-structure.

All the numerical analyses are performed using Abaqus. In all these cases, the strain rate is
around 1.613x107° s~1, which is much less, and therefore, associated inertia effects can be ignored.
Therefore, static analysis can be used to predict the mechanical response of the structure accurately.

Various geometrical parameters of a unit cell of the S-structure are depicted below in Figure 1.
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Table 1. Geometric Parameters of S-structure Unit cells

Variations R (inmm) t(inmm) t1(@{inmm) « 0% b (in mm)
S1 4 0.8 1.5 45 75 5
S2 4 1.6 1.5 45 75 5
S3 4 0.4 1.5 45 75 5
S4 4 0.8 1.5 45 625 5
S5 4 0.8 1.5 45 50 5
S6 4 0.8 0.75 45 75 5
S7 4 0.8 1 45 75 5
S8 4 0.8 1.5 30 75 5
S9 4 0.8 1.5 60 75 5
S10 4 0.8 1.5 45 75 25
S11 4 0.8 1.5 45 75 3.75

Table 2. Elastic Properties of AlSil0OMg

Material Parameters Values
Density (in kg/m?3) 2700
Elastic Modulus (in GPa) 75
Poisson’s Ratio 0.3

2.2. Analytical Investigation

In the present work, the representative unit cell element (RUCE) is considered to be a collection of
Timoshenko beams. The entire RUCE is separated into three parts, two of which are identical. It can be
visualized in Figure A2.

Again, it may seem as if there is an unbalanced moment at a single RUCE level, which is true.
However, the deformation is still stable as one RUCE with an unbalanced moment in a clockwise
direction is directly connected with four RUCEs with a counterclockwise unbalanced moment, and
they cancel each other out. Each of the neighboring RUCEs is assumed to apply an equal amount of
balancing moment on a RUCE.

The detailed derivation for all equations is presented in Appendix A. Here, we only discuss the
important expressions.

2.2.1. Total Deflection of RUCE

The parts showing bending-dominated deformation are two arc-like parts and a vertically inclined
part, and in their calculation, deformation due to shearing and bending are accounted for. The straight
struts with which these S-shaped parts are connected with each other deform axially. The total
deformation is considered as, (8sot01 ) RuCE = p + da + 5. Here, 6, is deformation due to bending, J, is
deformation due to axial compression of straight struts, and J; is the deformation due to shearing, and
(8tota1) RUCE 18 total deformation of the RUCE.

2.2.2. RUCE to entire system

For getting the total deformation of the entire structure, the following scheme is used: first, a
single row is considered a series combination of RUCEs, and then the entire structure is considered a
parallel combination of such rows. This can be visualized from the Figure 2.

From this, the transverse elastic modulus is obtained as,

2mRE;s , | t1,1

1
Eiong = W(Sm’)’ + ﬁ)a 1)
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1 =
2_R3[{ (x+7) + (sin2a + sin2y) + sin2y | yeos’y + 1COS2DC}+
I 2 4 2 4 3 ?
12 (sin2u — sin27) 2 (17)
W(1+Vs){(“+'7)+ f—l—Zcos a}+ 12R3]
_ b
and [ = 5.

x and y directions are as shown in Figure 2. The total horizontal and vertical deflections of a
RUCE are represented as Ay, and Ay.

(D)
(€x)ij = 3(Rsiny +11) (3)
and
(Do)

B = n(2Rsiny +2t;) < W (notice), L = m(2R + 2t;); where, L;; = 2R + 2t; and B;; = 2Rsiny +
2t;. Again, I} = 2Rsin% , I = 2Rsin(“+T7) and I3 = 2R.

Fij _’.Z"_FIJ
y |4 |

Fq F1

Figure 2. Assembly scheme of RUCEs to obtain the entire system under transverse load
2.2.3. Poisson’s Ratio Calculation
Finally, the Poisson’s Ratio for one RUCE is given as,

(ey)ij
(ex)ij

(Vyx)ij = —

(5)

doi:10.20944/preprints202402.0180.v2
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The equivalent Poisson’s ratio under transverse load can also be presented as,

Veq,x = dl(Vyx)ij + ds. (6)

Where vy is dependent on A,. Therefore, Poisson’s ratio-displacement curve is also obtained from
analytical work, but the elastic region is considered the main focus of this study. Detailed derivations
are given in Appendix A.

2.3. Numerical Investigation

In this section, first, a mesh convergence study and an overview of various results are given,
and in the latter part, a general description of force-displacement and Poisson’s ratio-displacement
curves, along with deformation patterns, are discussed. Most importantly, in this section, numerical
simulation results for different variations of S-structure are discussed in detail.

The force-deflection curves are shown in Figure 3 for various approximate global (element)
sizes (represented by 1), respectively, under transverse load. The Poisson’s ratio (PR)-deflection
curve is presented in Figure 3, and a comparative understanding of NPR value at its first peak is
obtained for various element sizes. From Figure 4, a comparative understanding of error in force at
displacement = 4mm results and Poisson’s ratio results for S1 structure under quasi-static load for
various approximate global sizes can be obtained. From this, it can be concluded that approximate
global size = 0.25 mm leads to a very accurate result and takes a reasonable amount of time. The
accuracy is calculated by taking results for 1=0.2 mm as a reference. All of these results are presented
in Table 3.

4000
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Figure 3. Mesh convergence study from (a) force-displacement and (b) Poisson’s ratio-displacement
response under transverse load for various approximate global (element) sizes, 1
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Figure 4. Error in (a) force and (b) NPR calculation vs. approximate global size under transverse load
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Table 3. Numerical study results for S1 structure for various approximate global size

I (mm) F4(N) NPR(first Absolute  Absolute
peak) error in error in NPR
Fy (%) (first  peak)
(%)
0.2 695.922 -0.358955 - -
0.25 641.015 -0.353701 7.89 1.21
0.3 599.039 -0.296 13.92 17.54
0.35 517.979 -0.394992 25.57 10.04
0.4 474.29 -0.371764 31.85 3.57
0.45 475.383 -0.374599 31.69 4.36
0.5 471.711 -0.372856 32.22 3.87

2.3.1. Finite Element Analysis of all S-structures:

For static analysis under transverse load, static (general) analysis on Abaqus is conducted.
Material data is obtained from Tables 2. A friction coefficient of 0.1 between two interacting surfaces
is used, which is similar to the literature [38]. For the static step, the time interval is taken as 40000
s. The right surface of the S-structure is encastered (Uy = U, = U, = URy = UR, = UR; = 0), and
the whole structure has U, = 0, URy = 0, UR, = 0 as the boundary condition, where ‘U’ represents
linear displacement and the subscript represents the axis along which it takes place; on the other hand,
“UR’ represents angular displacement and the subscript represents the axis about which it occurs. It
should be noted that the x and y axes are oriented the way described in Figure 2, and the z-axis is
oriented perpendicular to the xy-plane and towards the reader. Further, the impactor is given the
boundary condition Uy = 30, Uy, = U; = URy = UR, = UR; = 0. Surfaces A, B, C, and D of the
S-structure, as shown in Figure 1, are given the boundary condition, U, = U; = 0, URy = UR, = 0. In
meshing, ‘approximate global size=0.25" is chosen from the ‘Seed part,” and from “assign mesh controls,’
‘Hex’ is chosen as the element shape, ‘sweep” as the technique, and ‘medial axis” as the algorithm.
‘C3D8R’ elements (an 8-node linear brick, reduced integration, hourglass controlled element) are
chosen for the numerical investigation (as shown in Figure 5 (a)). Using these inputs, results like the
force-displacement curve and Poisson’s Ratio-displacement curves are obtained for all 11 variations of
S-structure with geometric parameter values as mentioned in Table 1. Also, other dimensions that are
used in numerical and other calculations have been mentioned in Table 4. Furthermore, the Elastic
modulus, Energy absorbed, and the first peak of Negative Poisson’s ratio value during the deformation
process are obtained from these curves. It should be noted that Poisson’s ratio is calculated as the ratio
of strain experienced by the mid-surface perpendicular to the loading direction and strain experienced
by the S-structure along the loading direction. The values of these outputs are given in Table 5. For
the impactor plate, “‘C3D8R’ elements are used as shown in Figure 5 (b), and in mesh control, ‘Hex’ is
selected as the element shape and ‘structured” as the technique. For the impactors for S1-S9 structures
(width in the z-direction, b=5 mm), the mesh size is kept at 2.5 mm. For the 510 structure (b=2.5 mm)
and for the S11 structure (b=3.75 mm), the mesh size of the impactor is kept at 1.25 mm. To maintain a
similar level of mesh fineness even for the S-structure with the least width in the z-direction (2.5 mm),
we must use a mesh size of at least 0.1984 mm (423 = 4XZ5 5o 5 = (.19845) where a mesh size of

05)> — (s ”
0.15 mm is used for S10 and S11 structures, and hence it is acceptable.
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(b) RUCE of S-structure

(a) Impactor
h

1

Figure 5. Mesh of (a) impactor and (b) RUCE of S-structure under transverse loading condition

Table 4. Dimensions required for numerical and other calculations

Various S-structure W L Wi Liyin
S1 46.001 85.678 56.001  81.122
S2 49.092 92.285 59.092  87.135
S3 44.455 82.374 54455  78.026
S4 43.223 87.463 53.223  79.337
S5 38.965 89.057 48965  77.743
S6 40.001 75178 50.001  70.622
S7 42.001 78.678 52.001  74.122
S8 46.001 85.678 56.001  81.122
S9 46.001 85.677 56.001  81.123

510 46.001 85.678 56.001  81.122
511 46.001 85.678 56.001  81.122

Table 5. Numerical study results for various S-structures

Various S-structure  E (MPa) PR (first peak) Relative SEA (J/kg)

density
S1 31.17863 -0.354618 0.194 32.37
S2 253.188 -0.313944 0.340 48.73
S3 3.506994 -0.374515 0.104 48.55
S4 29.77344 -0.370364 0.206 42.03
S5 17.4955 -0.255436 0.229 77.95
S6 30.42813 -0.37018 0.232 34.81
S7 30.72542 -0.363079 0.218 32.39
S8 33.47418 -0.267152 0.181 37.84
S9 29.91472 -0.391942 0.206 38.32
S10 16.00413 -0.362093 0.194 44.94

S11 25.03883 -0.361589 0.194 35.31
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The force (Fyum) on the S-structure was measured as the sum of force at all the nodes on the right
surface of the impactor (which interacts with the left surface of the S-structure) at the end of the linear
elastic stage. Let’s say the area of the right surface of the impactor is A; then the stress is ¢ = F;ym / A.
This is the stress on the right surface of the impactor and is caused by the strain in the S-structure. This
strain is measured as €) = d/Wj, where ‘d’ is the average displacement of all the nodes at the right
surface of the impactor at the end of the linear elastic stage and is equal to the average displacement of
all nodes at the left surface of the S-structure at that stage. ‘W] is the length of the S-structure as shown
in Figure 1. Elastic modulus is calculated as E = o/ ¢;.

Again, the transverse strain is given by €; = d;/L,,;,, where the transverse displacement of
the mid-surface of the S-structure is d;, and the width of the structure at mid-plane is L,,;,. So, the
Poisson’s ratio is given as PR = —¢;/ €.

The energy absorbed by each S-structure is obtained from the area under the force-displacement
curve using the trapezoidal numerical integration method, and relative density is calculated as
RD = p/ps = Vs/V, where V; is the volume of the S-structure and V is the volume of a solid block
replacing the S-structure with the same overall dimensions (W x b x L).

3. Results and Discussion

3.1. Comparison of Numerical and Analytical Studies

In this section, the value of elastic modulus obtained from the analytical study and numerical
study are compared, and the maximum negative Poisson’s ratio obtained from analytical and numerical
studies are compared. This is done using the ‘Curve Fitter” application in MATLAB. A linear fit is
expected between elastic modulus/PR obtained from analytical and numerical studies. Analytical
values are taken along the abscissa axis, and numerical values are taken along the ordinate axis. The
closest fit among the ‘LAR (Least Absolute Residual)’ method and the bi-square method is used to
obtain the best-fit line and for validation.

Figure 6 (a) is the comparison between the elastic modulus of different variations of S-structures
obtained from the analytical and numerical investigation using the bi-square method. It is obtained
that E,umerical = P1Eanatytical + p2, where, p1 = 3.169, pp = —2.642. The R-square value is 0.9943, the
adjusted R-square value is 0.9937, and RMSE=5.535. In the case of transverse load, within the elastic
region, the effect of bending is the most dominant one. So, this mode of deformation is neglected
for elastic modulus calculation. As a result, the analysis is accurate only in a qualitative way, but for
quantitative analysis, the process becomes semi-analytical.

T T T T T -0.1 T
2501 7 datapoints i ¢+ datapoints
—best fit line —best fit line|
200} 1 02}
= 150 E .
2 2”031 N
= 100t A *//
+ *
sol -0.4F
0 ; 05
0 20 40 60 80 -2 1.5 1 0.5
PR
an an

(a) (b)

Figure 6. Comparison between numerical and analytical results | (a) Elastic modulus, numerical
(Enum) and analytical (Ea) and (b) Poisson’s ratio, numerical (PRnum) and analytical (PRan)

Figure 6 (b) is the comparison between the Poisson’s Ratio of different variations of S-structures
obtained from the analytical and numerical investigation using Least Absolute Error (LAR) method. It
is obtained that PRyericat = P1PRanatytical + P2, where, p1 = 0.03525, pp = —0.321. It is assumed in
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the analytical expression that PRyuaryticat = (ny)ij/ where the numerical expression is basically v,;, so
it is similar to the equation A49, when ¢; = p; and c; = p». The R-square value is 0.8406, the adjusted
R-square value is 0.8207, and RMSE=0.01526. Qualitatively, the analytical model agrees well with the
numerical simulation results. The rotation of each unit cell is not considered in the analysis, the effect
and constraints of which become important as the value of “y” decreases. Therefore, for the validation
of analytical results using the numerical results, the S-structure with ¢ = 50° is neglected, as it will
produce high error and lower correlation, as expected.

It must also be noted that when energy absorbed in the linear elastic region (EAs;,,) according
to simulation results is plotted along the y-axis and elastic modulus (Eg;;,,) obtained from simulation
results is plotted along the x-axis, as shown in Figure 7, a linear relationship given by EAg;,, =
p1Esim + p2 is obtained, where, p; = 0.003333, p, = 0.2639. In this case, R-square = 0.8905, adjusted
R-square = 0.8784, and RMSE =0.09452. This validation was made using the LAR method.

2

*+ datapoints
—best fit line

1.5F

0 100 200 300
E

sim

Figure 7. Relationship between Energy absorbed (m]) and elastic modulus (MPa) from simulation
results

3.2. Parametric Studies

In this section, the effect of various geometrical parameters on the overall mechanical properties
of the S-structure and its relative density is discussed using the results of the numerical study. The
variation of elastic modulus, Poisson’s ratio, relative density, and specific energy absorption (SEA) for
various S-structures under quasi-static transverse load is presented in Figure 8.

1. SEA, elastic modulus, and relative density have increased with a greater thickness of struts (t);
however, the NPR effect is decreased.

2. Highest SEA and NPR effect is obtained for S-structure with 7 = 62.5°. With a decrease in 7,
elastic modulus is decreased, and relative density is increased.

3. Elastic modulus and NPR effect are almost unaffected by the parameter t1 (connecting strut
length); however, with the increase in t1, relative density and SEA have decreased.

4. Elastic modulus and energy absorption capacity are decreased with increasing value of «;
however, NPR effect and relative density are increased.

5. Elastic modulus is increased as the out-of-plane thickness (b) is increased; however, the NPR
effect is reduced with an increase in b. SEA capacity is the least for b = 3.75 mm, and the relative
density remains unchanged.

6. SEA for transverse loading condition is maximum for S-structure with & = 10°. The next highest
value of SEA is obtained for t = 1.6 mm. On the other hand, t = 1.6mm offers the highest elastic
modulus among all S-structures, which is expected as an increase in strut thickness implies the
introduction of more mass. The lowest value of SEA and elastic modulus is obtained for the
S-structure with ¢+ = 0.4 mm. So, strut thickness and « have the most effect on energy absorption
capacity and strength of the S-structure, as can be seen in Figure 8.

7. On the other hand, the highest NPR effect is obtained for @ = 60°, and the highest relative density
is obtained for the S-structure with strut thickness, t = 1.6 mm.
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Figure 8. Parametric study of auxetic S-structure (a) Elastic modulus (MPa), (b) Poisson’s ratio, (c)
relative density and (d) Specific energy absorption (J/kg) for various S-structures

4. Conclusion

Mathematical, finite element simulations and parametric studies are conducted on the overall
mechanical properties of S-shaped auxetic under quasi-static transverse load. The closed-form
solutions are obtained assuming the RUCE as a collection of Timoshenko beams, and the results
are in good agreement with the numerical results. In this study, we have obtained semi-analytical
expressions for overall elastic modulus and Poisson’s ratio after comparing mathematical results and
that of finite element simulations, where the simulation results have been considered to be more
accurate, as a sufficiently fine mesh has been employed for the analysis. However, the rotation of
RUCEs in Poisson’s ratio calculations is not considered, which becomes more prominent with a
decrease in the value of . Therefore, for the Poisson’s ratio, the v = 50° is not considered while
validating the mathematical results with numerical results, as it will understandably produce high
error and low correlation.

Further, a relation between the energy absorbed by the S-structure and the overall elastic modulus
is obtained in this study. It is of the form EA = p x E, where p and q are arbitrary constants. Therefore,
generally, for S-structure, energy absorption increases as the overall elastic modulus increases.

The parameters ‘t’ and ‘a” are the most important geometrical parameters for controlling elastic
modulus, NPR effect, relative density, and energy absorption capacity (measured by specific energy
absorption or SEA by the structure), whereas ‘t1’ is the least important geometric parameter of the
S-structure under quasi-static transverse load. Relative density and elastic modulus are most affected
by the choice of ‘t,” whereas NPR effect and SEA are most affected by the choice of ‘a.”

By controlling the geometric parameters, a range of elastic modulus approximately from 3 MPa to
250 MPa is achieved, which implies that the S-structure can be used for packaging, cushioning, and in
soft robotics applications under quasi-static transverse load.
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Abbreviations

The following abbreviations are used in this manuscript:

RUCE Representative Unit Cell Element
FBD Free Body Diagram

TB Timoshenko Beams

NPR Negative Poisson’s Ratio

Appendix A. Analytical Investigation

Appendix A.1. Brief Description

In Figure Al, we can see the loading condition of the complete S-structure and of one
Representative Unit Cell Element (RUCE). In this analytical study, parts of the S-structure are assumed
to be Timoshenko beams (TB). Various parts of the S-shaped portion of a RUCE are shown in Figure
A2 and represented by elastic lines. These are the parts of the RUCE that are considered TB. There
are two struts at the left and right that connect S-shaped parts, as can be seen in Figure Ala,b. Parts 1
and 3 deform in a similar way, so both the parts are represented by one free-body diagram (FBD), and
part 2 deforms differently, so one FBD represents this part, as can be seen from Figure A3 and A4. It
may seem as if there is an unbalanced moment, but this is balanced due to its connection to adjacent
RUCEs, which have an unbalanced moment of opposite signs, and they contribute equally to balance
the unbalanced moment generated in an RUCE.

(2)

Figure Al. (a)Loading condition of S-structure and (b) one RUCE of S-structure under transverse
loading
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Figure A3. (a) FBD of parts 1 and 3 and (b) shear force and (c) bending moment on a section of it

Appendix A.1.1. Shear force and bending moment distribution

Parts 1 and 3:

For parts 1 and 3, the free-body diagram is represented by the leftmost part of Figure A3. The
shear force at various locations of the part is represented by the middle one, and the bending moment
at various locations of the parts is represented in the rightmost part. At the fixed end of parts 1 and 3,

the supporting moment is My = F;jRcosa, and the supporting load is F;;. At the junction of struts (that

connect two RUCESs) and arc-like parts, a balancing moment of M is applied.

Shear force distribution:

Let’s say the line along part 2 represents 6 = 0, and 6 is positive in the clockwise direction. Now,
for 6 € [0,a], shear force, Vy = —Fjjsin(a — 6); and for 6 € («,a + ], shear force, Vg = F;jsin(6 — a).
For 6 € (a +v,a + /2], Vo = 0, it is assumed that the horizontal displacement of all the RUCEs in a
column is the same.

Bending moment distribution:

For 6 € [0, «], bending moment, M@Z-FZ‘]‘RCOS(OC —0), and for 0 € (a,a + 7|, bending moment,

M9=[M{1 +<0—a—q>+ FijRcos(0 — «)].For 0 € (a + 7, a + 71/2], Mg=0.

Part 2:

The sub-figures in Figure A4 are arranged for part 2 of the RUCE like those in Figure A3 for
parts 1 and 3. At the junction of the inclined part and the arc-like parts, the support moment,
M, = M; = FjjRcosa, and the supporting load is F;;.

Shear force distribution:

Shear force, at any x=x, Vy = —Fjjcosa, where “x” is the distance along the length of part 2.

Bending moment distribution:

For x=x, bending moment, M, = Fijxsinoc — My, where M, = Fincoszx.
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Figure A4. (a) FBD of part 2 and (b) bending moment and (c) shear force on a section of it

Appendix A.1.2. Analytical Investigation of Elastic Modulus

Ma =-Fij*Rsina

/@x=Fijsina Mx =Ma+Fij*xsina
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The total vertical deflection is given as 6, = 261;, + doj, + &,. Again, the deflection of any part is
the summation of deflection due to shearing. Due to bending, e.g., 61, = d15, + 151, Where J14 is the

vertical deflection due to shear and Jy;, is due to bending.
Parts 1 and 3:
Shear stress distribution on a section at any angle 6 € [0, «) is obtained as,

 Fy3(J +p)b(§ —y)sin(a —6)

= b ’
and after simplifying it, it is obtained that,
_Ej 2,
21(4 y°)sin(a —0).

Again, shear stress distribution on a section at any angle 6 € [, « + 7y) is obtained as,

Fi3 (5 +9)b(% —y)sin(6 —a)

T Ib ’
and again, after simplifying it, it is obtained that,
Ej 2 5
E(Z —y°)sin(0 — )

Now, strain energy due to shear for part 1,

aty szR o sin2a — sin2
U, _/ /t EbRaled L 15 (a+7)+—( 5 T

So, using Castigliano’s second theorem,

oy, FiR(1+wvs) 2 sin2ua — sin2-y
_ 5

Again, strain energy due to bending for part 1 is given by,

U — [ M3Rd6
“’_/ 2E I
213
FiR® (a+ 1)

) sin2u + sin2vy . yco
2E;I 2 4

+ sin-ycosy +

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)


https://doi.org/10.20944/preprints202402.0180.v2

Preprints.org (Wwww.preprints.org) | NOT PEER-REVIEWED | Posted: 6 February 2024 doi:10.20944/preprints202402.0180.v2

15 of 21
So, using Castigliano’s second theorem,
FiR (a+7 sin2u + sin2y ycos®y
S1pn = gsl [( 5 ) ) 1 +sinycosy + —, ]. (A8)
Now,
o1 = O15n + S1pn- (A9)
Part 2:
Shear stress distribution on part 2 at any given x=Xx is given by,
F.: t2
= —2—1;(2 — y?)cosa. (A10)
Strain energy due to shear on part 2 is,
L 2R g2 EZRE>
Ups = /zt A Ebdydx = SE1 " a (14 vs). (A11)
So, using Castigliano’s second theorem,
ol 2F;Rt* (14 vs)cos’a
Orep = = Al2
On the other hand, the strain energy due to bending in part 2 is,
2R M2d FZR3cos’a
Uy = / Mydx _ T : (A13)
2EsI 3Esl
So, using Castigliano’s second theorem,
Ay, 2FjR3cos’n
Bopyy = = Al4
2h = 3 3E.I (A14)
Now,
02 = a5 + Gooi- (A15)
left and right struts:

The left and right struts deform axially in a similar manner, so the axial deflection of the left strut
is,
_ hjh
 btEs’
Total axial deflection of the left and right struts, 6, = J, + &4 = 20),, where &, is the axial
deflection of the right strut, J, is the axial deflection of the left strut, and é;, = d;,.

Total Deflection of RUCE:
Total horizontal deflection of a RUCE in i row and jth column in the structure is,

5tu

(Al6)
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(Ah)l] =
201 + G + 0ta =
2R (a+1) yeos?y 1,
EI { 5 sinycosy + ==+ Zcos a}
2 2 — sin2
+ 1(§R2 (1+vs){(a+7y)— (smtx# + 2cos’a} +
RUCE to Entire System:

1t
5
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(A17)

]

The method of assembly is given in Figure 2. First, RUCEs in one column are combined, and then

multiple columns are assembled to get the entire system.
So,

n

(Dr)i =Y (Dw)ij-

j=1

(A18)

Now, it is known that the force on all the RUCEs in a single column is the same, or along the

column same force is experienced by all RUCEs, i.e., F; = F;. So,

(Ap)i =
n(Bp)ij =
2FiR®  (a47) . yeos?y 1,
E1 [{ 5 Tsinycosy + —— + zcos a}
t? (sin2ua — sin2vy
— B e el

as there are m RUCEs in a column. For simplification, it is assumed that,

1 =
3 2 1
%[{ (a+7) + sinvycosy + 'ycc;s Ty gcosza}
t2 _ (sin2a — sin2y
1 ~ - -

So,

(Ah)i = TlFicl/Es.

+ 2cos?a} +

+ 2cos?a} +

(A19)
1H
nR%”
(A20)
t
2R
(A21)

It is known that all the columns deform equally, and this is equal to the total deflection of the
entire structure, i.e., A, = (A);. To achieve static equilibrium, the following must be true-

mE;s
ncy

m
Fi =) F=mF=_——A

; —h = B
Again, o = IoF and € = (Rsiny Th) "

(A22)

So, effective transverse elastic modulus, Ej,o=¢. It should

be noted that all cross sections are rectangular with I = 12 Putting all of these in the equation, it is

obtained that,
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2mRE; t1.1
E = — —)—. A23
long Lob (Slnly + R)C1 ( )
Vertical Deflection of RUCE:
The total horizontal deflection of a RUCE,
Ay = by + 201y, (A24)
and the total vertical deflection of a RUCE,
Ny = 0oy + 2615- (A25)
It can be said from Figure A5 that,
L
l; = 2Rszn(§), (A26)
and
L = 2Rsin(’x i ’Y), (A27)
and
I3 = 2R. (A28)
So,
01y = li[sin(a) — sin(a — 7). (A29)
(a) © (b) 62h ®
7
\ -~ a
z 4
¢ = F
51h O

Figure A5. Deformed (a)part 1 or 3 and (b) part 2 of RUCE: continuous line represents undeformed
situation and dashed line represents deformed situation

Again,

51h:lz[cos(7;a)—cos(ry;a+€)]. (A30)

From here, the value of { is obtained as,

gzcosfl[cos(v_a)—(sih]—’y_a. (A31)
2 I 2

Similarly, I3 = 2R. Now, from Figure A5(b), it can be said that,

02y = I3[cos(a) — cos(a + 6)]. (A32)

Further,
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T s . .
o =13 [cos(z —a—10)— cos(z —a)] = I3[sin(a + 0) — sin(a)]. (A33)
From here, 0 can be evaluated.
0 = sin~[sina + ‘Slih] — . (A34)
3
So, from equation A25, it is obtained that,
Ay = 2R[cosa — cos(a + 0)] + 2Rsin%[sintx —sin(a — 7)]. (A35)
Appendix A.1.3. Poisson’s Ratio Calculation:
(Bn)ij
U A
(ex)i 2(Rsiny +t1)’ (A36)
and
(Av)ij
(ey)ij = AR+t (A37)

where x is along the horizontal direction, and y is along the vertical direction, as mentioned in Figure 2.
Finally, Poisson’s Ratio for one RUCE is obtained as,

~ (ey)yj
(ex)ij
W = n(2Rsiny + 2t1) (notice), L = m (2R + 2t1); where, L;; = 2R + 2t; and W;; = 2Rsiny + 2.
Now, the vertical deflection of the mid-plane of the S-structure is considered in the expression of
the Poisson’s ratio. Hence, for a column,

(Vyx)ij = (A38)

W n

(€x>i7 = (éx)ijoEI (A39)
where (éx)ij is strain in x direction averaged over 5 RUCEs; or,
e w Gy W (A40)
(VyX)z‘ 2 (VyX)ij 2
As we know, W = nWj;, and we assume that (e,); = (&);j, where (&,);; is the average strain

of the unit cells in the “if"’

obtained that,

row in the y-direction. upon putting these values in the expression, it is

(vyx)i = (Tyx)ij- (A41)
It must be noted that
_ (&);;
(Tyx)yy = = @i (A42)
Further, it is assumed that
(Tyx)ij = c1(vyx)ij + c2, (A43)

and the total contraction of the mid-plane is obtained as,

(éy)L = Z(Gy)iLi- (A44)
i=1
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NgE

(Veq)yx(éx)L = (Vyx)i(ex)iLi/ (A45)

i=1

where (Veg)yx,(€x) and (€,) are Poisson’s ratio, strain along x direction and strain along y-direction
of the mid-plane of the overall structure. It is known that all the columns deflect by the same distance
or all columns have the same strain in the x-direction, i.e.,

(€x) = (€x);- (A46)
Now,
(vl = ZE1 T (A7)
Or, m
(Veq)yx = (Vyx)ij%/ (A48)

as (7yx);j is the same for every column. Now,

m
Y Li=L (A49)
i=1
So,
(Veq)yx = (Tyx)ij = c1(vya)ij + 2. (A50)

Where (veq)yx is dependent on Ay,.
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