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Abstract: Measuring and predicting Carbon Emission (CE) is important to enabling the main culprit
of various urgent environmental issues including global warming. However, prior studies did not
fully incorporate the impact of micro-level urban streetscapes, which might lead to biased
prediction of urban CE. To fill the gap, we developed an effective framework to predict residential
CE in urban areas from widely existing and publicly available street-view images (SVI) using
machine learning. First, we used a semantic segmentation algorithm to classify more than 30
streetscape elements from SVIimages to describe the built environment whose features might affect
residential and transportation CE. Second, based on the streetscapes quantified, we trained a 10-
fold cross-validation method with various machine learning models to predict the CE at the 1IKM
grid level using CE data from the PlanetData. We found first, built environment features such as
sidewalks, roads, fences, buildings, and walls are significantly correlated with the residential CE.
Second, the presence of buildings and subtle streetscape features (e.g., walls, fences) indicates
higher-density residential areas which are related to more residential CE. Third, vegetation (e.g.,
trees and grass) are reversely related to residential CE. Our findings shed light on the feasibility of
using a single and open data source (i.e., the SVI) to effectively model neighborhood-level CE for
regions across diverse urban forms. Our framework is useful for urban planners to inform new town
development and urban regeneration towards the low CE goals.

Keywords: carbon emission; residential; neighborhood level; street view images; machine learning;
Beijing

1. Introduction

1.1. Urban Form and CE

Carbon emissions (CE) from fossil fuels (e.g., paraffin, gas, coal, and natural gas) have driven
the global climate change (Du and Li, 2019; Qian et al., 2022) which result in more frequent natural
disasters (Shi et al., 2022), causing societal crisis such as the insecurity in portable water (Huang and
Tao, 2020) and energy (Ryu et al., 2014). China, as one of the main emitters (Liu, Li and Ji, 2021),
generates ~10 billion tons CE annually — roughly 1/3 of all nations (Joint Research Centre (European
Commission) et al.,, 2023). In reaction, China is committing to achieve the “3060” goal with CE
reduction measures across many sectors (CSC, 2021; He, Liu and Wang, 2022). Notably, the
residential sector is the second largest emitter which accounts for 23% of the Total Final Consumption
(TFC) of fossil fuels (Fan et al., 2013; Yuan, Wang and Zuo, 2013). Considering the rapid growth of
urbanization, the numerous population of urban dwellers and the corresponding lifecycle energy
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consumption of the residential buildings play a crucial role (Park and Heo, 2007; Baiocchi, Minx and
Hubacek, 2010; Cao et al., 2020).

Consequently, for China to successfully transit to a low-carbon economy, the neighborhood level
CE reduction measures become essential (Cheng et al., 2022). It’s the basic spatial unit in China that
includes urban dwellers, their traffics, industry productions — a microcosm of the urbanization
process (Zhang, Song and Yang, 2021). Therefore, street block level urban form reflects a city’s
efficiency regarding the allocation and utilization of energy resources (Wang et al., 2019).

Along this line, this study hypothesizes that the neighborhood level urban form directly and
indirectly influences CE through its multi-dimensional variables such as the land use and building
density. Fully understand the interlinkages between the two can inform a more sustainable urban
development to achieve the reduction goal (Zheng et al., 2023).

To understand how the urban form affect CE requires a capability to accurately model
greenhouse gas concentration, as well as a comprehensive dataset to capture factors influencing CE
at the individual and regional levels (Kumar et al., 2023). However, it has long been challenging to
model the complex urban environmental phenomena which are highly variable in time and space
(Jordan and Mitchell, 2015; Helm et al., 2020). Specifically, this study aims to tackle with the following
three gaps.

1.2. Knowledge Gap

First, the data sources for CE models are limited. Traditionally, predicting residential CE relies
on multifaceted GIS data — the energy-consumption as well as socioeconomic and demographic
datasets (e.g., the census, the household economics survey) to build a regression model. However,
detailed energy consumption data are not available in many cities — it does not even exist for some
small cities due to the deficiency of funding for CE data collecting; nor do fine-grained population
data exist everywhere (Cai et al., 2021), other data related to energy consumption are often only at
the city scale rather than at the mesoscale (Du, Liu and Li, 2024). Additionally, another challenge is
that socio-economic data are usually on the different time scale with the energy consumption data.
Therefore, conventional CE prediction models are not immediate applicable to a new region nor a
different period (Zheng et al., 2022).

Second, the accuracy is often limited, given the increased complexity of urban form variables.
Oftentimes, multiple sources are deployed to generate the multifaceted independent variables (e.g.,
land use, residential density, travel mode choice, traffics). However, the built environment and the
corresponding residential activities are perpetually evolving such that the dataset for some variables
will not be up-to-date (Ou et al., 2013, 2019; Fang, Wang and Li, 2015; Shu et al., 2018; Wang et al.,
2019; Shi et al., 2020; Qiu et al., 2023). That said, building a timely-effective model at the urban scale
is desirable however difficult. By contrast, street view imagery data (SVI) which is frequently updated
and open source (Qiu et al., 2022; Dong et al., 2023, 2023; Su, Li and Qiu, 2023), can describe the timely
changes of the built environment at least on a yearly basis. In addition, scholars use complex data
sources hoping to cover more social situations related to carbon emissions, but this does not mean
better model accuracy, it can be counterproductive (Bolén-Canedo and Remeseiro, 2020; Kabir and
Garg, 2023).

Third, the traditional model is generally built based on satellite image and GIS data that ignoring
the street-level information which is more capable to model neighborhood-level activities that
consume fossil energies. For example, satellite image is not fully capable to describe the urban form
at a fine granularity — there are just many sight obstructions, e.g., tree canopy or the view angles.
Taking transportation CE (Xia et al., 2020) as an example, driving trajectory data is often the source
of insight to estimate traffic flows and the corresponding CE. However, satellite images lack the traffic
information for many residential blocks due to the obstructions from tree canopies. While SVI is
capable to infer traffic information for the neighborhoods, therefore is promising to improve the
accuracy of CE modeling.

1.3. Hypothesis and Research Design
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The built environment consists of various factors that influence residential CE (Shen et al., 2022),
ranging from the urban greening (Vaccari et al., 2013; Shen et al., 2022; Dong et al., 2023), density (Liu
et al., 2019), building height and building quality (Tranchard, 2017), to the public infrastructures (e.g.,
road, bus stop) (Zhang et al., 2020). Notably, most of the factors can be extracted from SVIs. For
example, the green view index is a proxy of the greenery (Lu et al., 2023) which is important to carbon
sequestration (Dwyer et al., 2000; Nowak and Crane, 2002; Birge et al., 2019), while the building view
index is a proxy to building density and building height (Carrasco-Hernandez, Smedley and Webb,
2015; Gong et al., 2018) that significantly affect CE (Resch et al., 2016). The adequate public
infrastructure and convenient transportation (e.g., road, streetlights, bus stop) may suggest a more
walkable and bikeable neighborhood whose residents would have higher tendency for active travel
(Li and Joh, 2017; Dong et al., 2023), resulting in lower CE (Zhang et al., 2020). A more developed
economy with adequate infrastructure also relates to better maintained buildings whose dwellers
exhibit stronger awareness and obligation of low-carbon measures. For example, the streetscapes
such as wall and fences can imply the quality of the building — a more complex composition of the
facade suggests a higher quality building whose likelihood of HVAC installation is higher — and
whose residents’” income is higher, tending to consume more energy. In other words, streetscape
features extract from SVIs can imply abundant dweller behavior information which can outweigh the
impacts of the geometry itself to model energy use (Quan et al., 2016).

The micro-scale built environment described by SVI is also related to other indicators of
residential behaviors, including walkability (Ha et al., 2023), bikeability (Ito and Biljecki, 2021; Qiu
and Chang, 2021; Song et al., 2023), running (Dong et al., 2023), public transit ridership (Su et al., 2022),
therefore the mode choice (Koo et al., 2023; Wu, Yao and Wang, 2023) and active living (Sallis et al.,
2006; Steinmetz-Wood et al., 2019). Moreover, SVI can infer the urban forms like street canyons and
density (Middel et al., 2019; Qiu et al., 2021) that explains local climate zones (Cao et al., 2022; Ignatius
et al., 2022; X. Xu, Qiu, Li, Huang, et al., 2022) — an effective indicator for modeling neighborhood
microclimate, outdoor comfort, and urban heat island effects (Stewart and Oke, 2009, 2012; C. Xu et
al., 2022) which ultimately influence energy usage and CE.

In terms of the feasibility of SVI data source, Google provide publicly available API access to
obtain the frequently-updated SVIs, while Baidu and Tencent are dominant suppliers in China. SVIs
have become a common method to replace the time-consuming and costly field auditing (Rundle et
al., 2011; Griew et al., 2013; Kelly et al., 2013; Queralt et al., 2021), being easily implementable at the
urban scale (Salesses, Schechtner and Hidalgo, 2013; Dubey et al., 2016). However, despite SVI's large
potential, little has been empirically tested to justify its effectiveness. To fill in the gap, this paper
proposes an image-based framework to directly predict residential CE based on the micro-level
streetscape features extracted from SVI dataset.

2. Literature Review

2.1. Conventional Urban Energy Models

Conventional urban CE models can be classified into three families based on methodology: 1)
models directly measure the CO2 concentration from remote sensed satellite data, for example, the
TanSat Satellite (Hong et al., 2022); 2) models aggregate sectoral emission data collected from sensors
monitoring viable spatial grids ranging from a city to a household, among which “one square
kilometer” is the most common resolution (Gregg and Andres, 2008); 3) models relate the global CE
data to human societal indicators in smaller spatial units (Huang et al., 2022).

The first approach mainly translates observed spectral data into the distribution of carbon
dioxide, thereby obtaining global or regional scale carbon flux information. It becomes a key source
for observing global and regional CO2 distribution (Crisp, 2010; Yoshida et al., 2011). Publicly
accessible satellite datasets include the Europe’s SCIAMACHY, the USA’s OCO-2 and OCO-3,
Japan’s GOSAT and GOSAT-2, and China’s TanSat (Hong ef al., 2022). Recent studies have showcased
the capability to map and estimate regional CO2 emissions (Hakkarainen, Ialongo and Tamminen,
2016) as well as facility-scale CH4 fluxes in urban and complex areas (Thompson et al., 2016;
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Frankenberg and Berry, 2018). This method exclusively yields CO2 emission data based on
advancements in satellite technology, its disadvantages are as evident as its merits: it offers frequent
updates for the global coverage in atmospheric CO2 levels.

The second approach collect carbon data from sensors (Christen, 2014; Feng et al., 2016) or
simulated energy consumption and CE (Pao and Tsai, 2011) including the fuel consumption
conversion based on prior sensor data (Shao et al., 2016). It often determines the total CE of a given
region based on fossil energy consumption information disaggregated by sectors — this is particularly
prevalent in China. For example, China’s National Greenhouse Gas Inventory is a created by experts
from various fields with the National Development and Reform Commission. They developed the
“Provincial Greenhouse Gas Inventory Compilation Guidelines (PGGICG)” in 2011, comprising
sectors including waste disposal, land-use changes, forestry, agriculture, production processes,
industrial and energy activities. In the US, (Gurney et al., 2019) quantified CE from all fossil fuel
consumptions by sector with a bottom-up method - hourly emissions from citywide
industrial/electricity facilities, road segments and individual buildings were measured. Notably,
various datasets, such as building energy simulations, electricity production data, traffic insights, and
local pollution reports were merged to build the dataset. City sub-regions can also be modeled. For
example, (Wu, Guo and Peng, 2003) measured the energy use intensity (EUI) for each building type
using the building energy efficiency monitoring platform in Shanghai. (Zhang, Pu and Zhu, 2013)
incorporated a traffic allocation model to mimic traffic situations using a gasoline consumption
function — the User Equilibrium (UE). Although their method versatility suits major cities in the more
developed world, it's not immediately applicable to medium to small size cities in many developing
countries where no similar data source exists.

The third approach disaggregate global CE data to a finer resolution relating to the indicators
describing the built environment and industrial activities. It's because there was a strong alignment
between surface fluxes of atmospheric CO2 and bottom-up inventories (Schuh et al., 2013; Ogle et al.,
2015) or urban activities indicators like land use (Jain, Meiyappan and Richardson, 2013; Chuai and
Feng, 2019) and road length (Song et al., 2021). On the one hand, nighttime light (NTL) image is found
to reflect human activities correlated with energy consumption. Therefore, the brightness of NTL
pixels significantly correlates with CE, enabling the prediction across spatial and temporal scales. On
the other hand, various urban layers, such as transportation network (Ehsani, Ahmadi and Fadai,
2016; Sun et al., 2017), buildings (Boehme, Berger and Massier, 2015; Peng, 2016; Ahmad et al., 2018),
and households (Pachauri, 2004; Druckman and Jackson, 2008) were related to the CE prediction
(Kaya, 1989). Others explanatory factors include population (Ribeiro, Rybski and Kropp, 2019) and
living standards (Baiocchi, Minx and Hubacek, 2010). This approach is particularly useful for
alternative urban scenarios’ ex-ante assessment to support decisions like urban retrofit aiming at
achieving low carbon goals (Gately and Hutyra, 2017; Zhang, Song and Yang, 2021).

2.2. Street View Image and Al to Model Urban Forms

Multifaceted natural, socio-economic, and human behavior forces have made the neighborhood
level residential CE prediction challenging (Berkhout, Hertin and Jordan, 2002). Fortunately, With
the rapid improvements of Al and multi-source big data application for urban studies, many urban
form characteristics that are used to model CE become more accessible for researchers (Li ef al., 2022).
Some focus on the complex relationships between total urban CE and the industrial/economic
development level or urban sprawl trend of the region (Du et al., 2018; Wen and Shao, 2019). Some
other studies consider the regularity of historical data (Zhou et al., 2021) — the cyclical trends in CE.
For example, (Wilson and Dowlatabadi, 2007) studied the influence of household members’
environmental perceptions and the energy consumption behavior on household CE. More recently,
(Jiang et al., 2019) model household travel patterns from neighborhoods” urban forms to evaluate CE.
Increasing number of models start to address the interplay between people’s energy use habits and
the environment they live in.

Meanwhile, SVI data is publicly available and frequently updated to capture ground-level
panorama street scenes (Seiferling et al., 2017). SVI is an ideal dataset to comprehensively describe
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the urban environmental variability. For example, it has been used to model buildings (Gurney et al.,
2012) including building height (Yan and Huang, 2022), streetscape features (Wang, Liu and Gou,
2022), green and water systems (Jiang, Jiang and Shi, 2020), land use classification (Jain, Meiyappan
and Richardson, 2013; Tian, Han and Xu, 2021; Fang et al., 2022), the openness (Xia, Yabuki and
Fukuda, 2021), road network (Zhang et al., 2023), mobile monitoring (Sun et al., 2017) and POI (Gao,
Janowicz and Couclelis, 2017; Huang et al., 2022; Song et al., 2022; X. Xu, Qiu, Li, Liu, et al., 2022).
However, as a new dataset receiving a lot of attention in urban studies, only few studies attempted
to parse SVIs to reflect the state of urban CE. For example, (Yu et al., 2022) considered SVIs as one of
the data sets to model household travel CE in Jinan, China. However, SVIs only represent the road
and road-building relationship (i.e., urban canyon) in their model. To fill in the gap, this study sets
to address the effectiveness of using SVI data to represent urban forms relate to the energy use
behaviors of residents, to predict the residential CE.

3. Data & Method
3.1. Study Area and Analytical Framework

3.1.1. Study Area

Beijing, as the capital city and one of the largest metropolitans in China, is crucial to address the
CE reduction goal. Moreover, its diverse urban forms ranging from CBD, residential blocks, industry
parks to periphery, with its massive road network, provide important samples to address the
effectiveness of our proposed framework. Within the Sixth Ring Road is the area where the majority
urban residents live in. This region serves most frequent urban mobility and resident activities.
Therefore, the area within the Sixth Ring Road in Beijing is chosen (Figure 1.)

Research Scope: Arca
in Beijing’s Sixth Ring

)

B

L

s

Main Road
EI Secondary Road

The Map of Beijing

The Six Ring Roads in
Beijing

Figure 1. Study Area: Beijing.

3.1.2. Conceptual framework

Our model framework consists of six steps (see Figure 2). First, remote sensing CE data are
collected from PlanetData (https://www.planet-data.cn/), with a surface data grid of 1km*1km.
Second, obtaining the SVI of the selected point by using Baidu API (https://Ibsyun.baidu.com/) in
Python through the coordinates of the selected points along the road network in Beijing at a 250-
meter interval. For each sampling coordinate, we obtained the 360 degree-view SVI. Third, PSPNet,
a semantic segmentation model was used to extract the proportion of various street elements from
each SVI. The top xx most ubiquitous visual elements related to CE suggested by literature, including
the surface, sidewalk, greenery, sky, road, building, wall, fence, and seat are selected. Forth, training
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ML models to predict CE using visual features extracted in Python. The goodness of fit (R?) was
chosen as the criteria to select the most accurate models from the four ML models (i.e., KNN, SVM,
random forest and decision trees). Last, we use the trained ML model to predict the residential CE in
Beijing, visualizing the gaps between the ground truth CE and our best prediction, to validate our
model and understand the potential causes of the biases.

Topic Hypothesis Method Findings

A novel approach to Residential carbon Semantic segmentation Feature Importance,
calcu street-level [ | emission can be | 5| Machine Learning measures to reduce
residntial carbon predicted from SVis

residential carbon
emission emission, etc

| [

Set sample points in Semantically segmen Train machine learning Linear regression is used
G AN QVle = Ve 116 - a ~ 9 to discuss the relationship
GIS and collect SVIs tate SVIs using PspNet model and compare R? ”
from Baidu API to obtain the propor- to select the most between the factors and
Tor o b Prox e N the reasons for the differ-
tion of street elements effective model ence between the predic-
n each SVI tion and the real value
@ oy Selecting ML Modelg
. KNN Decision Tree
PetIgitay R S T AR e P svm Random Forest

oLs Voting Selection

L Gaussian ADA Boost

Sempntic
Segmentation

¥

5 3% wre‘s# Training Data Random Forest Preg:igng
9128 labelled $Vis Machine Learning Models Highest R? = 0.35 Farbon Emission irf
Chaoyang District

v

Selecting 27 Feature§

with the Highest &

Figure 2. Analytical Framework.

3.2. Variables

3.2.1. Residential Carbon Emission

The residential CE in July 2021 in Beijing is collected from the PlanetData (https://www.planet-
data.cn/, 2022, accessed April 2022) —a carbon data provider who provides the tagged image file (TIF)
of residential CE in 1KM city grid. The raw data from the Tsinghua University MEIC CE data
inventory. By relating urban activity indicators (e.g., energy consumption and the number of
residents per area) with the original satellite CE data (at the 1/4° resolution), PlanetData established
a 1KM resolution model (1/100°) covering the entire China using a fusion model. Since the focus of
this paper is to demonstrate the usefulness of predicting CE from SVI, we randomly choose a month
data in the most available year in Beijing as the case study (Figure 3).
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Figure 3. Beijing’s Residential CE in July 2021.
3.2.2. Independent Variables

3.2.2.1. SVI Data Collection

The panoramic SVI dataset was downloaded with the Baidu Map Open-Platform (i.e., the Baidu
APIL: http://api.map.baidu.com/panorama/v2) between April-May 2022. The sampling interval is
every 250 meters along the road networks (Figure 4). The panorama photos include street views from
all four directions at each sampling point. Note that (by checking the meta data) all SVI samples were
taken during 2019-2021 - being the most up-to-date dataset that available to match the period of our
CE data. We looked through the street-view history in Baidu Map, which make it possible that users
could see how a place has changed over the years and help on identifying changes in the physical
environment, and there were few major construction projects in the study area during this period.
Considering the street environment is rather stable in a short term (Liang, Zhao and Biljecki, 2023),
we were able to assume no significant changes happened between the sample period (2019-2021).
Notably, the SVI retrieval process is also consistent with all parameters including the heading, the
position coordinates (longitude and latitude), the image resolution (width and height), the horizontal
field, and the pitch. In total, 25,046 images were downloaded for the study area.


https://doi.org/10.20944/preprints202402.0213.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2024 doi:10.20944/preprints202402.0213.v1

Hebei Province

(1). Sample SVI

ol
B s BB

5
.

Loft Voew (270360 Roght View (30150

Back View
180~271

(2). Camera Setting (3). 25046 Samples (4). Beijing Municipality Boundaries

Tianjin Province

Figure 4. SVI Samples.

3.2.2.2. Semantic Segmentation

The independent variables are streetscape visual features extracted from the 25,046 SVIs (Figure
4). Streetscape features representing the micro-level-built environment that becomes hidden layers
to represent comprehensive urban information related to residential CE, such as its urban location,
land use, microclimate condition, residents’” behavior such as their living styles and habits which link
to the residential CE.

PSPNet (Pyramid Scene Parsing Network), a deep learning (DL) semantic segmentation was
used to process SVIs. Semantic segmentation refers to dividing and parsing images into several areas
linked with semantic categories (Guo et al., 2018). The PSPNet has become a commonly used
approach by emerging urban studies to extract street canyon characteristics (Zhao et al., 2017; Yuan,
Wang and Xu, 2022; Sun et al.,, 2023) and shown state-of-the-art performance on the ADE20K
database, achieving an accuracy of over 80% (Zhao et al., 2017; Zhou et al., 2019).

Consequently, for each SVI, the output is the visual feature’s view index — denoting as the pixel
percentage of the feature identified to the total pixels of the image. More than 50 visual features were
observed from all SVI samples in Beijing (Figure 5), including natural features (e.g., trees, grass), built
environment features (e.g., roads, sidewalks, buildings), and traffic features (e.g., cars, buses,
bicycles). Evidently not all visual elements should be taken as the independent variables. Variables
whose presences in SVIs were minor (e.g., sculpture, lamp, fountain, pier, van, minibike) were
removed.

FID:8825 I8
4211373‘37 116.2316277

FID:4 FID:4128
-40.24101574,116.2103345 » 40.20094714,116.1860459

Figure 5. SVI Semantic Segmentation.

To this end, the residential CE at each SVI sample point becomes the dependent variable, while
the selected visual features’ view indices become the independent variables for all the 25,046 SVI to
train the ML models for prediction.
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Table 1. Summary of streetscape visual elements.

Variables Mean Min Max Std Dev. Data Source
Y Carbon emission 688.20 1.14 1914.87 487.97 Planetdata.com
X1  wall 83.55% 10.00% 99.98% 24.70%
X2 building 19.23% 10.00% 99.99% 26.49%
X3  sky 52.24% 11.00% 100.00% 12.38%
X4  tree 59.53% 10.00% 100.00% 24.92%
X5  road 15.44% 10.00% 99.97% 17.71%
X6  grass 34.38% 10.00% 99.99% 23.99%
X7  sidewalk 74.60% 10.00% 99.98% 24.48%
X8  person 45.75% 10.00% 99.98% 24.39%
X9  earth 28.70% 10.00% 99.98% 25.29%
X10 car 16.34% 10.00% 100.00% 24.58%
X11 fence 16.85% 10.00% 99.97% 24.81%
X12  railing 65.90% 10.00% 99.96% 24.51%
X13  column 49.67% 10.00% 99.99% 24.64%
X14 bridge 11.64% 10.00% 99.98% 25.06%
X15  streetlight 23.65% 10.00% 99.98% 24.96%
X16  plant 22.61% 10.00% 99.96% 25.05%
X17  signboard 73.56% 10.00% 99.90% 24.76% 25,046 panorama
X18 minibike 16.17% 10.00% 99.91% 24.41% SVIs in Beijing
X19  chair 16.57% 10.00% 99.95% 24.74%
X20  bicycle 16.97% 10.00% 99.90% 24.38%
X21 lamp 13.16% 10.00% 99.99% 24.86%
X22 van 11.27% 10.00% 99.91% 24.89%
X23  ashcan 92.73% 10.00% 99.90% 24.73%
X24  skyscraper 12.30% 10.00% 99.98% 24.91%
X25  ceiling 19.77% 10.00% 99.80% 24.67%
X26 mountain 14.22% 10.00% 99.90% 24.29%
X27  awning 17.25% 10.00% 99.83% 24.09%
X28  windowpane 12.16% 10.00% 99.50% 24.71%
X29  sculpture 19.86% 10.00% 99.98% 25.01%
X30 fountain 14.18% 10.00% 99.70% 24.59%
X31 water 15.15% 10.00% 99.80% 24.61%
X32  pier 23.82% 10.00% 99.90% 25.85%
X33  sofa 16.38% 10.00% 99.60% 25.19%

X34  bulletin board 21.81% 10.00% 97.00% 23.66%
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X35  booth 15.11% 10.00% 89.56% 21.14%
X36 glass 24.95% 10.00% 90.00% 30.91%
X37  desk 46.43% 10.00% 91.00% 25.19%

3.3. Model Architecture

3.3.1. Machine Learning Models

Regarding the ML training, 80% of the sample was used for training, and 20% for validation.
The training utilizes a ten-fold cross-validation approach was deployed to add the effectiveness of
models’ training. Specifically, dividing the input data into 10 subgroups: for each iteration, one
subgroup is utilized as the testing data while the other nine subgroups are employed for training. In
other words, all data is utilized to train the ML models after 10 iterations — lowering the bias. What's
more, every iteration’s model weights for the convolutional layers are continuously updated, which
also adds the effectiveness of training (Malakouti, 2023).

3.3.2. Model Selection

Since the number of independent variables are less than 40, we excluded the neural network
model. Eight commonly used ML models were selected to train the data based on literature regarding
the model’s usefulness in predicting continuous variables related to urban studies (Table 2).

Table 2. Comparison of ML model performance.

Index Model R? (t/kn{{ZlX[nanths) (t/kml;/jignths)

1 KNN 0.35 105.17 83.21

2 SVM 0.1 123.31 100.61

3 Random Forest* 0.80 58.11 40.90

4 Decision Tree 0.74 66.79 21.69

5 OLS 0.1 123.04 100.22

6 Gaussian 0.0 130.72 106.64

7 Voting Selection 0.47 95 77.11

8 Gradient Boosting 0.23 113.97 93

Note: * The best model selected.

For example, the Random Forests (RF) which has been tested by many prior urban studies. The
accuracy of ML models was evaluated using the R2 (correlation coefficient), RMSE (root mean square
error), MAE (mean absolute error), and IA (index of agreement). Whereas R2 represents the goodness
of fit, IA is representative for the agreement of the estimated value with the observed value, and the
fitting effect of MAE and RMSE is representative for the deviation of the estimated value from the
observed value.

To enhance the quality of our dataset and to ensure robust analysis, we employed a method to
identify and remove outliers from the SAMPLE residential column - the Interquartile Range (IQR), a
common statistical approach for outlier detection. Instead of the traditional 25th (Q1) and 75th (Q3)
percentiles, we opted for the 30th and 70th percentiles to compute the IQR. After the outlier removal
process, approximately 99.57% of the original data remained. This process ensured that our analyses
were conducted on a dataset free from extreme values that might skew the results.


https://doi.org/10.20944/preprints202402.0213.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2024 doi:10.20944/preprints202402.0213.v1

11

As an initial test, we first selected top 10 ubiquitous visual elements (e.g., ‘sky’, ‘person’, “earth’,
‘car’ ‘sidewalk’, ‘grass’, ‘road’, ‘tree’, ‘building’, ‘wall’) as training inputs, which resulted in an R2 of
0.78505 as the baseline model. We than selected 27 elements excluding almost-all-zero-ratio visual
elements and obtained an R2 of 0.80021 (best model). Notably, when tested with all visual elements,
the models obtained an R2 of 0.80015, whose effectiveness is next to the best model. Random Forest
was finally selected for the final validation.

4. Results and Discussions

4.1. Spatial and Temporal Distribution of Residential CE in Street Microenvironment

In general, high values of CE happen in densely populated area such as the center of the city.
The CE of residents in diverse microenvironments show significant spatial heterogeneity. For
example, the unit CE of suburban areas around Beijing are the lowest, with the CE in July ranging
from 106 to 211 t/km?/months, while the unit CE are higher when closer to the center of the city where
the density of residents is high. The CE in July is between 950-1,056 t/km?/months. In the eastern
urban districts of Beijing, such as Chaoyang and Dongcheng, the overall CE in residential area in
summer are higher than those in the western urban districts, such as Changping and Haidian. This
is probably because the eastern urban area is an old urban area, with more residents’ activities and a
higher population density, resulting in more CE.

Therefore, the CE in Beijing residential area presents spatial heterogeneity distribution
obviously. Meanwhile, the density of residents and their activity frequency can be directly reflected
from the street view. That’s because residents’ activities largely shape the street view images. For
example, in general, a place with a higher population density has more residents’ activities, more
residential buildings and higher building density, which then demonstrates as less greenery and
more bounding walls. In addition, a place with more residents’ activities and more population has
more vehicles in the street view images. Therefore, the street map can be used to predict residents’
CE and reflect the spatial heterogeneity of residents’” CE accordingly.

4.2. Co-linearity Check for the Independent Variables

We plotted the heatmap of pairwise correlation coefficients (Figure 6) to show the relationship
between the streetscape visual features to examine the potential co-linearity issues. Highly correlated
variables will be further discussed with reference to Importance Features (IF) score and theory to
decide whether to be removed to reduce the redundancy. For example, our results show that “earth”
and “road” are highly related to prompt concerns about potential redundancy. However, in this case,
both “earth” and “road” are important as they indicator different aspects affecting the residential
energy use: while “road” indicate travel models and mobility/accessibility related to travel frequency,
earth can affect permeability of the land surface and the micro-climate. Therefore, both were kept.
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The impact factor (IF) and feature importance (FI) analysis reveal big divergence regarding what
visual features are more important determinants in predicting the CE. On the one hand, the IF
ranking based on linear regression coefficients indicates that the bridge, streetlight, van, signboard,
ashcan, chair, minibike, grass, earth, railing was the most impactful (Figure 7). On the other hand,
the FI analysis, by contrast, highlights divergent visual elements are more effective when using tree-
based ML models (Figure 8). The top 10 features regarding FI are earth, sidewalk, tree, sky, road,
building, fence, wall, chair, and grass. Given the OLS has a significant poorer performance (Table 2),
the relationship between visual features and the CE is more likely to be non-linear. The FI analysis is

more reliable.
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Figure 7. Impact Ranking based on linear regression model coefficients.
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The Pearson Correlation analysis shows that built environment features such as sidewalk, road,
fence, building, and wall are in strong correlation with residential CE (Table 3). One possible
explanation for this result is that the high ratio of these elements means the high density of residents
in the area, which results in the high frequency of activities that emit carbon and other greenhouse
gasses. For instance, the high ratio of buildings in SVIs might indicate the high frequency of usage of
air-conditioners in the buildings near the streets. Such a phenomenon is even more obvious in this
study since the data of CE used in our model was collected in July, the time when the monthly average
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temperature in Beijing was 29°C and air-conditioners and other household appliances were widely
used. The high density of residents will also lead to a growth in the frequency of vehicle use.
Therefore, the factor of road also indirectly determines the CE of the area, the higher the traffic
volume, the larger the CE in the site.

Table 3. Pearson Correlation of selected dependent and independent variables.

wa sk tre roa gra sidew ear pers pla cha wat fen build
CE . car .
1 y e d ss alk th on nt ir er ce ing

CE

Corr.

| —— |
wall 0.0
3 -1.0.-0.50 0.5 1.0

sky

tree

road

grass

sidew
alk

earth

perso

plant

chair

car

water

fence

buildi
ng

In addition, better infrastructure (e.g., walls, fences) exists in higher-density residential areas.
Elements like walls, fences and buildings might reduce wind speed and slow down the diffusion of
carbon-containing gasses, thus keeping the carbon content in the streets at a relatively higher level
than those in open streets with few obstacles. Meanwhile, (Choi et al., 2016) found that the block-
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scaled UFP (ultrafine particle) concentrations have a close connection with the surface turbulence and
built environment of buildings in urban areas. And CE are also in the form of particles in the air and
are related to the constructions in the streets.

Natural features such as trees and grass are reversely related to residential CE since plants can
absorb carbon dioxide through photosynthesis, thus reducing the carbon content concentration in the
street. In streets near parks and other green areas, where the microclimate is adjusted by trees and
other natural elements, the carbon concentration is relatively low.

4.4. Model Visualization and Model Application Scenarios

To better visualize the CE predication results, ArcGIS was used to illustrate the difference
between actual and predicted residential CE values within each 1KM urban grid (Figure 9). The actual
CE value ranges between 177-748 t/km?/month, therefore the estimated CE is also visualized in the
same scale, to be more immediate comparable.

Figure 10 clearly depicts a relatively reliable prediction of CE values, as overall there are not
distinct divergences between the predicted and actual CE values. However, certain deviations were
observed across the Beijing urban area. Notably, a significant portion of the city registered lower
predicted CE than the actual recorded values. Interestingly, this trend shifts at the urban fringes,
where our model consistently predicts higher emissions than what’s been observed. This variance
could be indicative of underlying complexities in the urban-peripheral dynamics that may not be
fully encapsulated by the current model. These findings are invaluable, highlighting potential areas
of refinement in our predictive mechanisms, especially concerning the nuanced interplay at the city’s
outskirts. Figure 9 indicates that prediction accuracy is higher when the ground truth value falls in a
certain range (350-550 t/km?/month). When the actual CE are low and high, the accuracy of the
predicted values will be low. The range of actual CE is 177.72-748.10 t/km?/month, while the predicted
range is 210.77-627.19 t/km?/month.
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Figure 9. Comparison between Actual and Predicted CE Value Model.
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Given the spatial heterogeneity of prediction residual, we selected six areas of 16-square-
kilometer urban areas to investigate the divergence between the actual and predicted data. These six
areas are distributed in various parts of Beijing (Figure 10). Among them, the MAEs in Figure 10a,b,d
are smaller, indicating better prediction accuracy. It can be seen from the comparison of Figure 10c,e
that there exist quite great gaps in the prediction of extremely high value and extremely low value,
and the accuracy performs not that good. In Figure 10f, which is similar to the average level, but there
is still a certain gap when predicting higher CE values.
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Figure 10. Comparison between Actual and Predicted CE Value Model by MAE in t/km?/month: (a)
MAE 21.10, (b) MAE 34.33, (c) MAE 57.95, (e) MAE 33.71, (e) MAE 65.33, (f) MAE 40.96.

To the best of our knowledge, currently there are just few mesoscale residential CE models (Jiang
et al., 2022). As a cross-reference validation, we selected three similar studies that also focus on
household residential and travel CE to compare with our CE model. Compared with these prior
studies, our model achieves a similar level accuracy with simply one publicly available input
variable, while others normally use more than five types of data inputs (Table 4).

That said, this study not only proposed a model that can better predict residents’ carbon
emissions on a small scale. More importantly, we verified the possibility of using street view, a simple
data source, to predict residents’ carbon emissions, supporting simpler data sources for a wide
geographical region. A more timely and finer-grained carbon emission prediction model can be
potentially established for cities where data availability is limited, especially those in the developing
countries.
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Table 4. Summary of Literature in CE Prediction.
Independent Var. Model Performance
NO. of
Literat Dep. Variabl
Herattire - ep. Varable  pata Type of Variables S.D. MAE RMSE R?
Sources
H hol
Jiang ef tr;)\lzl;le C(}; ?n Socio-economic, household, 0.418
& 5 land use, street forms, 5.7 12.7 N/A (pseudo
al., 2022 Guangzhou .
location R?)
(kg/week)
Zhang, - Forest Cov?rage, total energy
Xion China’s consumption, energy
and Sgon annual CE 6 consumption intensity, GDP,  2850.1 405.5 525.2 N/A
2022 & (mt/year) industrial structure,
employment structure
Renewable energy
development, market
Zhou, demand changes, energy
Zhang . . industry regulations, 0.74-
and Hu, CE in China 6 industrial structure reforms, N/A N/A N/A 0.77
2021 industrial technology
innovation, and accidental
events.
This Residential
aper CE 1 SVIs 131.12 409 58.11 0.8
pap (t/km2/month)

5. Conclusions and Limitations

5.1. Effects of Micro-Level Streetscape Attributes

Our SVI based prediction model is a novel tool to predict the residential CE in meso-scale urban
area according to the street view images publicly available (i.e., Google/Baidu map). The model can
follow the temporal and spatial changes well to predict. Because our model can be used for data
visualization and data prediction, it can provide effective CE data for policy makers and urban
planners in public environmental protection. The model reflects the influences of specific features on
residential CE, so it could provide urban designers with simulation experiments on specific
environmental influencing factors. For researchers, our approach presents a new perspective for
predicting data and increases the application of machine learning in multi-disciplines. In addition,
the visual expression of the model also provides the possibility for ordinary citizens to participate in
public decision-making and living place choosing.

This study makes the following contributions. First, compared to other elements of street view,
elements like sidewalk, road, fence, building facade and wall are highly relative with the residential
CE. Second, using one data of a district in Beijing can measure relatively precisely another district’s
residential CE in Beijing. The training results from this mode could be used not only to suburban
areas but also to urban areas, with the development potential of universality and generalization. The
transferability of the model can provide reference for more research on regional CE in the long term.
Third, study on the connection between CE and streetscape elements can be conducive to the creation
of urban environment under the concept of low-carbon design. Let the goals of sustainable
development and carbon neutrality have a foothold to be promoted and optimized on a large scale.

5.2. Limitations

In the previous discussion, we compared the different SVIs features and the differences in CE of
the specific areas in Chaoyang, including the prosperous areas with high population density, CBD
areas, suburbs, industrial areas, etc. to discuss the model’s transferability in different urban scenarios.
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Although the experimental area selected in this study is the one that has the most rich and diverse
urban forms in Beijing, the model’s transferability in different cities remains to be verified, especially
for those whose energy consumption composition and residents’ living habits are very different from
those of Beijing. In addition, the model of this study is affected by the features and uncertainties of
the input data in the estimation of residential CE. In the process of training and data screening, the
quality and representativeness of the data will directly affect the model performance. In this study,
through screening and comparison, 22 variables of street features were finally adopted, but these
variables do not necessarily represent all relevant variables at the street level. In the meanwhile, the
street scenes we study mainly focus on urban arterial roads. There is a lack of certain data for
pedestrian blocks. For pedestrian blocks or commercial blocks blocked by other elements (such as
canopies, billboards, etc.), there may be certain errors. In addition, since the residential CE data grid
is 1km, the CE corresponding to the street observation points in the same grid are of the same value,
so the obtained residential CE value cannot fully represent the location of CE. Ideally, each street
observation point should have a corresponding accurate residential CE value.
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