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Abstract: Measuring and predicting Carbon Emission (CE) is important to enabling the main culprit 

of various urgent environmental issues including global warming. However, prior studies did not 

fully incorporate the impact of micro-level urban streetscapes, which might lead to biased 

prediction of urban CE. To fill the gap, we developed an effective framework to predict residential 

CE in urban areas from widely existing and publicly available street-view images (SVI) using 

machine learning. First, we used a semantic segmentation algorithm to classify more than 30 

streetscape elements from SVI images to describe the built environment whose features might affect 

residential and transportation CE. Second, based on the streetscapes quantified, we trained a 10-

fold cross-validation method with various machine learning models to predict the CE at the 1KM 

grid level using CE data from the PlanetData. We found first, built environment features such as 

sidewalks, roads, fences, buildings, and walls are significantly correlated with the residential CE. 

Second, the presence of buildings and subtle streetscape features (e.g., walls, fences) indicates 

higher-density residential areas which are related to more residential CE. Third, vegetation (e.g., 

trees and grass) are reversely related to residential CE. Our findings shed light on the feasibility of 

using a single and open data source (i.e., the SVI) to effectively model neighborhood-level CE for 

regions across diverse urban forms. Our framework is useful for urban planners to inform new town 

development and urban regeneration towards the low CE goals. 

Keywords: carbon emission; residential; neighborhood level; street view images; machine learning; 

Beijing 

 

1. Introduction  

1.1. Urban Form and CE 

Carbon emissions (CE) from fossil fuels (e.g., paraffin, gas, coal, and natural gas) have driven 

the global climate change (Du and Li, 2019; Qian et al., 2022) which result in more frequent natural 

disasters (Shi et al., 2022), causing societal crisis such as the insecurity in portable water (Huang and 

Tao, 2020) and energy (Ryu et al., 2014). China, as one of the main emitters (Liu, Li and Ji, 2021), 

generates ~10 billion tons CE annually – roughly 1/3 of all nations (Joint Research Centre (European 

Commission) et al., 2023). In reaction, China is committing to achieve the “3060” goal with CE 

reduction measures across many sectors (CSC, 2021; He, Liu and Wang, 2022). Notably, the 

residential sector is the second largest emitter which accounts for 23% of the Total Final Consumption 

(TFC) of fossil fuels (Fan et al., 2013; Yuan, Wang and Zuo, 2013). Considering the rapid growth of 

urbanization, the numerous population of urban dwellers and the corresponding lifecycle energy 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 February 2024                   doi:10.20944/preprints202402.0213.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202402.0213.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

consumption of the residential buildings play a crucial role (Park and Heo, 2007; Baiocchi, Minx and 

Hubacek, 2010; Cao et al., 2020).  

Consequently, for China to successfully transit to a low-carbon economy, the neighborhood level 

CE reduction measures become essential (Cheng et al., 2022). It’s the basic spatial unit in China that 

includes urban dwellers, their traffics, industry productions – a microcosm of the urbanization 

process (Zhang, Song and Yang, 2021). Therefore, street block level urban form reflects a city’s 

efficiency regarding the allocation and utilization of energy resources (Wang et al., 2019).  

Along this line, this study hypothesizes that the neighborhood level urban form directly and 

indirectly influences CE through its multi-dimensional variables such as the land use and building 

density. Fully understand the interlinkages between the two can inform a more sustainable urban 

development to achieve the reduction goal (Zheng et al., 2023). 

To understand how the urban form affect CE requires a capability to accurately model 

greenhouse gas concentration, as well as a comprehensive dataset to capture factors influencing CE 

at the individual and regional levels (Kumar et al., 2023). However, it has long been challenging to 

model the complex urban environmental phenomena which are highly variable in time and space 

(Jordan and Mitchell, 2015; Helm et al., 2020). Specifically, this study aims to tackle with the following 

three gaps. 

1.2. Knowledge Gap 

First, the data sources for CE models are limited. Traditionally, predicting residential CE relies 

on multifaceted GIS data – the energy-consumption as well as socioeconomic and demographic 

datasets (e.g., the census, the household economics survey) to build a regression model. However, 

detailed energy consumption data are not available in many cities – it does not even exist for some 

small cities due to the deficiency of funding for CE data collecting; nor do fine-grained population 

data exist everywhere (Cai et al., 2021)，other data related to energy consumption are often only at 

the city scale rather than at the mesoscale (Du, Liu and Li, 2024). Additionally, another challenge is 

that socio-economic data are usually on the different time scale with the energy consumption data. 

Therefore, conventional CE prediction models are not immediate applicable to a new region nor a 

different period (Zheng et al., 2022). 

Second, the accuracy is often limited, given the increased complexity of urban form variables. 

Oftentimes, multiple sources are deployed to generate the multifaceted independent variables (e.g., 

land use, residential density, travel mode choice, traffics). However, the built environment and the 

corresponding residential activities are perpetually evolving such that the dataset for some variables 

will not be up-to-date (Ou et al., 2013, 2019; Fang, Wang and Li, 2015; Shu et al., 2018; Wang et al., 

2019; Shi et al., 2020; Qiu et al., 2023). That said, building a timely-effective model at the urban scale 

is desirable however difficult. By contrast, street view imagery data (SVI) which is frequently updated 

and open source (Qiu et al., 2022; Dong et al., 2023, 2023; Su, Li and Qiu, 2023), can describe the timely 

changes of the built environment at least on a yearly basis. In addition, scholars use complex data 

sources hoping to cover more social situations related to carbon emissions, but this does not mean 

better model accuracy, it can be counterproductive (Bolón-Canedo and Remeseiro, 2020; Kabir and 

Garg, 2023). 

Third, the traditional model is generally built based on satellite image and GIS data that ignoring 

the street-level information which is more capable to model neighborhood-level activities that 

consume fossil energies. For example, satellite image is not fully capable to describe the urban form 

at a fine granularity – there are just many sight obstructions, e.g., tree canopy or the view angles. 

Taking transportation CE (Xia et al., 2020) as an example, driving trajectory data is often the source 

of insight to estimate traffic flows and the corresponding CE. However, satellite images lack the traffic 

information for many residential blocks due to the obstructions from tree canopies. While SVI is 

capable to infer traffic information for the neighborhoods, therefore is promising to improve the 

accuracy of CE modeling. 

1.3. Hypothesis and Research Design 
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The built environment consists of various factors that influence residential CE (Shen et al., 2022), 

ranging from the urban greening (Vaccari et al., 2013; Shen et al., 2022; Dong et al., 2023), density (Liu 

et al., 2019), building height and building quality (Tranchard, 2017), to the public infrastructures (e.g., 

road, bus stop) (Zhang et al., 2020). Notably, most of the factors can be extracted from SVIs. For 

example, the green view index is a proxy of the greenery (Lu et al., 2023) which is important to carbon 

sequestration (Dwyer et al., 2000; Nowak and Crane, 2002; Birge et al., 2019), while the building view 

index is a proxy to building density and building height (Carrasco-Hernandez, Smedley and Webb, 

2015; Gong et al., 2018) that significantly affect CE (Resch et al., 2016). The adequate public 

infrastructure and convenient transportation (e.g., road, streetlights, bus stop) may suggest a more 

walkable and bikeable neighborhood whose residents would have higher tendency for active travel 

(Li and Joh, 2017; Dong et al., 2023), resulting in lower CE (Zhang et al., 2020). A more developed 

economy with adequate infrastructure also relates to better maintained buildings whose dwellers 

exhibit stronger awareness and obligation of low-carbon measures. For example, the streetscapes 

such as wall and fences can imply the quality of the building – a more complex composition of the 

façade suggests a higher quality building whose likelihood of HVAC installation is higher – and 

whose residents’ income is higher, tending to consume more energy. In other words, streetscape 

features extract from SVIs can imply abundant dweller behavior information which can outweigh the 

impacts of the geometry itself to model energy use (Quan et al., 2016).  

The micro-scale built environment described by SVI is also related to other indicators of 

residential behaviors, including walkability (Ha et al., 2023), bikeability (Ito and Biljecki, 2021; Qiu 

and Chang, 2021; Song et al., 2023), running (Dong et al., 2023), public transit ridership (Su et al., 2022), 

therefore the mode choice (Koo et al., 2023; Wu, Yao and Wang, 2023) and active living (Sallis et al., 

2006; Steinmetz-Wood et al., 2019). Moreover, SVI can infer the urban forms like street canyons and 

density (Middel et al., 2019; Qiu et al., 2021) that explains local climate zones (Cao et al., 2022; Ignatius 

et al., 2022; X. Xu, Qiu, Li, Huang, et al., 2022) – an effective indicator for modeling neighborhood 

microclimate, outdoor comfort, and urban heat island effects (Stewart and Oke, 2009, 2012; C. Xu et 

al., 2022) which ultimately influence energy usage and CE.  

In terms of the feasibility of SVI data source, Google provide publicly available API access to 

obtain the frequently-updated SVIs, while Baidu and Tencent are dominant suppliers in China. SVIs 

have become a common method to replace the time-consuming and costly field auditing (Rundle et 

al., 2011; Griew et al., 2013; Kelly et al., 2013; Queralt et al., 2021), being easily implementable at the 

urban scale (Salesses, Schechtner and Hidalgo, 2013; Dubey et al., 2016). However, despite SVI’s large 

potential, little has been empirically tested to justify its effectiveness. To fill in the gap, this paper 

proposes an image-based framework to directly predict residential CE based on the micro-level 

streetscape features extracted from SVI dataset. 

2. Literature Review  

2.1. Conventional Urban Energy Models 

Conventional urban CE models can be classified into three families based on methodology: 1) 

models directly measure the CO2 concentration from remote sensed satellite data, for example, the 

TanSat Satellite (Hong et al., 2022); 2) models aggregate sectoral emission data collected from sensors 

monitoring viable spatial grids ranging from a city to a household, among which “one square 

kilometer” is the most common resolution (Gregg and Andres, 2008); 3) models relate the global CE 

data to human societal indicators in smaller spatial units (Huang et al., 2022).  

The first approach mainly translates observed spectral data into the distribution of carbon 

dioxide, thereby obtaining global or regional scale carbon flux information. It becomes a key source 

for observing global and regional CO2 distribution (Crisp, 2010; Yoshida et al., 2011). Publicly 

accessible satellite datasets include the Europe’s SCIAMACHY, the USA’s OCO-2 and OCO-3, 

Japan’s GOSAT and GOSAT-2, and China’s TanSat (Hong et al., 2022). Recent studies have showcased 

the capability to map and estimate regional CO2 emissions (Hakkarainen, Ialongo and Tamminen, 

2016) as well as facility-scale CH4 fluxes in urban and complex areas (Thompson et al., 2016; 
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Frankenberg and Berry, 2018). This method exclusively yields CO2 emission data based on 

advancements in satellite technology, its disadvantages are as evident as its merits: it offers frequent 

updates for the global coverage in atmospheric CO2 levels. 

The second approach collect carbon data from sensors (Christen, 2014; Feng et al., 2016) or 

simulated energy consumption and CE (Pao and Tsai, 2011) including the fuel consumption 

conversion based on prior sensor data (Shao et al., 2016). It often determines the total CE of a given 

region based on fossil energy consumption information disaggregated by sectors – this is particularly 

prevalent in China. For example, China’s National Greenhouse Gas Inventory is a created by experts 

from various fields with the National Development and Reform Commission. They developed the 

“Provincial Greenhouse Gas Inventory Compilation Guidelines (PGGICG)” in 2011, comprising 

sectors including waste disposal, land-use changes, forestry, agriculture, production processes, 

industrial and energy activities. In the US, (Gurney et al., 2019) quantified CE from all fossil fuel 

consumptions by sector with a bottom-up method – hourly emissions from citywide 

industrial/electricity facilities, road segments and individual buildings were measured. Notably, 

various datasets, such as building energy simulations, electricity production data, traffic insights, and 

local pollution reports were merged to build the dataset. City sub-regions can also be modeled. For 

example, (Wu, Guo and Peng, 2003) measured the energy use intensity (EUI) for each building type 

using the building energy efficiency monitoring platform in Shanghai. (Zhang, Pu and Zhu, 2013) 

incorporated a traffic allocation model to mimic traffic situations using a gasoline consumption 

function – the User Equilibrium (UE). Although their method versatility suits major cities in the more 

developed world, it’s not immediately applicable to medium to small size cities in many developing 

countries where no similar data source exists. 

The third approach disaggregate global CE data to a finer resolution relating to the indicators 

describing the built environment and industrial activities. It’s because there was a strong alignment 

between surface fluxes of atmospheric CO2 and bottom-up inventories (Schuh et al., 2013; Ogle et al., 

2015) or urban activities indicators like land use (Jain, Meiyappan and Richardson, 2013; Chuai and 

Feng, 2019) and road length (Song et al., 2021). On the one hand, nighttime light (NTL) image is found 

to reflect human activities correlated with energy consumption. Therefore, the brightness of NTL 

pixels significantly correlates with CE, enabling the prediction across spatial and temporal scales. On 

the other hand, various urban layers, such as transportation network (Ehsani, Ahmadi and Fadai, 

2016; Sun et al., 2017), buildings (Boehme, Berger and Massier, 2015; Peng, 2016; Ahmad et al., 2018), 

and households (Pachauri, 2004; Druckman and Jackson, 2008) were related to the CE prediction 

(Kaya, 1989). Others explanatory factors include population (Ribeiro, Rybski and Kropp, 2019) and 

living standards (Baiocchi, Minx and Hubacek, 2010). This approach is particularly useful for 

alternative urban scenarios’ ex-ante assessment to support decisions like urban retrofit aiming at 

achieving low carbon goals (Gately and Hutyra, 2017; Zhang, Song and Yang, 2021). 

2.2. Street View Image and AI to Model Urban Forms 

Multifaceted natural, socio-economic, and human behavior forces have made the neighborhood 

level residential CE prediction challenging (Berkhout, Hertin and Jordan, 2002). Fortunately, With 

the rapid improvements of AI and multi-source big data application for urban studies, many urban 

form characteristics that are used to model CE become more accessible for researchers (Li et al., 2022). 

Some focus on the complex relationships between total urban CE and the industrial/economic 

development level or urban sprawl trend of the region (Du et al., 2018; Wen and Shao, 2019). Some 

other studies consider the regularity of historical data (Zhou et al., 2021) – the cyclical trends in CE. 

For example, (Wilson and Dowlatabadi, 2007) studied the influence of household members’ 

environmental perceptions and the energy consumption behavior on household CE. More recently, 

(Jiang et al., 2019) model household travel patterns from neighborhoods’ urban forms to evaluate CE. 

Increasing number of models start to address the interplay between people’s energy use habits and 

the environment they live in.  

Meanwhile, SVI data is publicly available and frequently updated to capture ground-level 

panorama street scenes (Seiferling et al., 2017). SVI is an ideal dataset to comprehensively describe 
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the urban environmental variability. For example, it has been used to model buildings (Gurney et al., 

2012) including building height (Yan and Huang, 2022), streetscape features (Wang, Liu and Gou, 

2022), green and water systems (Jiang, Jiang and Shi, 2020), land use classification (Jain, Meiyappan 

and Richardson, 2013; Tian, Han and Xu, 2021; Fang et al., 2022), the openness (Xia, Yabuki and 

Fukuda, 2021), road network (Zhang et al., 2023), mobile monitoring (Sun et al., 2017) and POI (Gao, 

Janowicz and Couclelis, 2017; Huang et al., 2022; Song et al., 2022; X. Xu, Qiu, Li, Liu, et al., 2022). 

However, as a new dataset receiving a lot of attention in urban studies, only few studies attempted 

to parse SVIs to reflect the state of urban CE. For example, (Yu et al., 2022) considered SVIs as one of 

the data sets to model household travel CE in Jinan, China. However, SVIs only represent the road 

and road-building relationship (i.e., urban canyon) in their model. To fill in the gap, this study sets 

to address the effectiveness of using SVI data to represent urban forms relate to the energy use 

behaviors of residents, to predict the residential CE. 

3. Data & Method 

3.1. Study Area and Analytical Framework 

3.1.1. Study Area 

Beijing, as the capital city and one of the largest metropolitans in China, is crucial to address the 

CE reduction goal. Moreover, its diverse urban forms ranging from CBD, residential blocks, industry 

parks to periphery, with its massive road network, provide important samples to address the 

effectiveness of our proposed framework. Within the Sixth Ring Road is the area where the majority 

urban residents live in. This region serves most frequent urban mobility and resident activities. 

Therefore, the area within the Sixth Ring Road in Beijing is chosen (Figure 1.) 

  

Figure 1. Study Area: Beijing. 

3.1.2. Conceptual framework 

Our model framework consists of six steps (see Figure 2). First, remote sensing CE data are 

collected from PlanetData (https://www.planet-data.cn/), with a surface data grid of 1km*1km. 

Second, obtaining the SVI of the selected point by using Baidu API (https://lbsyun.baidu.com/) in 

Python through the coordinates of the selected points along the road network in Beijing at a 250-

meter interval. For each sampling coordinate, we obtained the 360 degree-view SVI. Third, PSPNet, 

a semantic segmentation model was used to extract the proportion of various street elements from 

each SVI. The top xx most ubiquitous visual elements related to CE suggested by literature, including 

the surface, sidewalk, greenery, sky, road, building, wall, fence, and seat are selected. Forth, training 
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ML models to predict CE using visual features extracted in Python. The goodness of fit (R2) was 

chosen as the criteria to select the most accurate models from the four ML models (i.e., KNN, SVM, 

random forest and decision trees). Last, we use the trained ML model to predict the residential CE in 

Beijing, visualizing the gaps between the ground truth CE and our best prediction, to validate our 

model and understand the potential causes of the biases. 

 

 

Figure 2. Analytical Framework. 

3.2. Variables 

3.2.1. Residential Carbon Emission 

The residential CE in July 2021 in Beijing is collected from the PlanetData (https://www.planet-

data.cn/, 2022, accessed April 2022) – a carbon data provider who provides the tagged image file (TIF) 

of residential CE in 1KM city grid. The raw data from the Tsinghua University MEIC CE data 

inventory. By relating urban activity indicators (e.g., energy consumption and the number of 

residents per area) with the original satellite CE data (at the 1/4° resolution), PlanetData established 

a 1KM resolution model (1/100°) covering the entire China using a fusion model. Since the focus of 

this paper is to demonstrate the usefulness of predicting CE from SVI, we randomly choose a month 

data in the most available year in Beijing as the case study (Figure 3). 
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Figure 3. Beijing’s Residential CE in July 2021. 

3.2.2. Independent Variables 

3.2.2.1. SVI Data Collection 

The panoramic SVI dataset was downloaded with the Baidu Map Open-Platform (i.e., the Baidu 

API: http://api.map.baidu.com/panorama/v2) between April-May 2022. The sampling interval is 

every 250 meters along the road networks (Figure 4). The panorama photos include street views from 

all four directions at each sampling point. Note that (by checking the meta data) all SVI samples were 

taken during 2019-2021 – being the most up-to-date dataset that available to match the period of our 

CE data. We looked through the street-view history in Baidu Map, which make it possible that users 

could see how a place has changed over the years and help on identifying changes in the physical 

environment, and there were few major construction projects in the study area during this period. 

Considering the street environment is rather stable in a short term (Liang, Zhao and Biljecki, 2023), 

we were able to assume no significant changes happened between the sample period (2019-2021). 

Notably, the SVI retrieval process is also consistent with all parameters including the heading, the 

position coordinates (longitude and latitude), the image resolution (width and height), the horizontal 

field, and the pitch. In total, 25,046 images were downloaded for the study area.  
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Figure 4. SVI Samples. 

3.2.2.2. Semantic Segmentation 

The independent variables are streetscape visual features extracted from the 25,046 SVIs (Figure 

4). Streetscape features representing the micro-level-built environment that becomes hidden layers 

to represent comprehensive urban information related to residential CE, such as its urban location, 

land use, microclimate condition, residents’ behavior such as their living styles and habits which link 

to the residential CE. 

PSPNet (Pyramid Scene Parsing Network), a deep learning (DL) semantic segmentation was 

used to process SVIs. Semantic segmentation refers to dividing and parsing images into several areas 

linked with semantic categories (Guo et al., 2018). The PSPNet has become a commonly used 

approach by emerging urban studies to extract street canyon characteristics (Zhao et al., 2017; Yuan, 

Wang and Xu, 2022; Sun et al., 2023) and shown state-of-the-art performance on the ADE20K 

database, achieving an accuracy of over 80% (Zhao et al., 2017; Zhou et al., 2019).  

Consequently, for each SVI, the output is the visual feature’s view index – denoting as the pixel 

percentage of the feature identified to the total pixels of the image. More than 50 visual features were 

observed from all SVI samples in Beijing (Figure 5), including natural features (e.g., trees, grass), built 

environment features (e.g., roads, sidewalks, buildings), and traffic features (e.g., cars, buses, 

bicycles). Evidently not all visual elements should be taken as the independent variables. Variables 

whose presences in SVIs were minor (e.g., sculpture, lamp, fountain, pier, van, minibike) were 

removed.  

 

Figure 5. SVI Semantic Segmentation. 

To this end, the residential CE at each SVI sample point becomes the dependent variable, while 

the selected visual features’ view indices become the independent variables for all the 25,046 SVI to 

train the ML models for prediction.  
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Table 1. Summary of streetscape visual elements. 

Variables Mean Min Max Std Dev. Data Source 

Y Carbon emission 688.20  1.14  1914.87  487.97  Planetdata.com 
       

X1 wall 83.55% 10.00% 99.98% 24.70% 

25,046 panorama 

SVIs in Beijing 

X2 building 19.23% 10.00% 99.99% 26.49% 

X3 sky 52.24% 11.00% 100.00% 12.38% 

X4 tree 59.53% 10.00% 100.00% 24.92% 

X5 road 15.44% 10.00% 99.97% 17.71% 

X6 grass 34.38% 10.00% 99.99% 23.99% 

X7 sidewalk 74.60% 10.00% 99.98% 24.48% 

X8 person 45.75% 10.00% 99.98% 24.39% 

X9 earth 28.70% 10.00% 99.98% 25.29% 

X10 car 16.34% 10.00% 100.00% 24.58% 

X11 fence 16.85% 10.00% 99.97% 24.81% 

X12 railing 65.90% 10.00% 99.96% 24.51% 

X13 column 49.67% 10.00% 99.99% 24.64% 

X14 bridge 11.64% 10.00% 99.98% 25.06% 

X15 streetlight 23.65% 10.00% 99.98% 24.96% 

X16 plant 22.61% 10.00% 99.96% 25.05% 

X17 signboard 73.56% 10.00% 99.90% 24.76% 

X18 minibike 16.17% 10.00% 99.91% 24.41% 

X19 chair 16.57% 10.00% 99.95% 24.74% 

X20 bicycle 16.97% 10.00% 99.90% 24.38% 

X21 lamp 13.16% 10.00% 99.99% 24.86% 

X22 van 11.27% 10.00% 99.91% 24.89% 

X23 ashcan 92.73% 10.00% 99.90% 24.73% 

X24 skyscraper 12.30% 10.00% 99.98% 24.91% 

X25 ceiling 19.77% 10.00% 99.80% 24.67% 

X26 mountain 14.22% 10.00% 99.90% 24.29% 

X27 awning 17.25% 10.00% 99.83% 24.09% 

X28 windowpane 12.16% 10.00% 99.50% 24.71% 

X29 sculpture 19.86% 10.00% 99.98% 25.01% 

X30 fountain 14.18% 10.00% 99.70% 24.59% 

X31 water 15.15% 10.00% 99.80% 24.61% 

X32 pier 23.82% 10.00% 99.90% 25.85% 

X33 sofa 16.38% 10.00% 99.60% 25.19% 

X34 bulletin board 21.81% 10.00% 97.00% 23.66% 
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X35 booth 15.11% 10.00% 89.56% 21.14% 

X36 glass 24.95% 10.00% 90.00% 30.91% 

X37 desk 46.43% 10.00% 91.00% 25.19% 

3.3. Model Architecture  

3.3.1. Machine Learning Models 

Regarding the ML training, 80% of the sample was used for training, and 20% for validation. 

The training utilizes a ten-fold cross-validation approach was deployed to add the effectiveness of 

models’ training. Specifically, dividing the input data into 10 subgroups: for each iteration, one 

subgroup is utilized as the testing data while the other nine subgroups are employed for training. In 

other words, all data is utilized to train the ML models after 10 iterations – lowering the bias. What’s 

more, every iteration’s model weights for the convolutional layers are continuously updated, which 

also adds the effectiveness of training (Malakouti, 2023).  

3.3.2. Model Selection 

Since the number of independent variables are less than 40, we excluded the neural network 

model. Eight commonly used ML models were selected to train the data based on literature regarding 

the model’s usefulness in predicting continuous variables related to urban studies (Table 2).  

Table 2. Comparison of ML model performance. 

Index Model R2 
RMSE 

(t/km2/months) 

MAE 

(t/km2/months) 

1 KNN 0.35 105.17 83.21 

2 SVM 0.1 123.31 100.61 

3 Random Forest* 0.80 58.11 40.90 

4 Decision Tree 0.74 66.79 21.69 

5 OLS 0.1 123.04 100.22 

6 Gaussian 0.0 130.72 106.64 

7 Voting Selection 0.47 95 77.11 

8 Gradient Boosting 0.23 113.97 93 

Note: * The best model selected. 

For example, the Random Forests (RF) which has been tested by many prior urban studies. The 

accuracy of ML models was evaluated using the R2 (correlation coefficient), RMSE (root mean square 

error), MAE (mean absolute error), and IA (index of agreement). Whereas R2 represents the goodness 

of fit, IA is representative for the agreement of the estimated value with the observed value, and the 

fitting effect of MAE and RMSE is representative for the deviation of the estimated value from the 

observed value.  

To enhance the quality of our dataset and to ensure robust analysis, we employed a method to 

identify and remove outliers from the SAMPLE residential column – the Interquartile Range (IQR), a 

common statistical approach for outlier detection. Instead of the traditional 25th (Q1) and 75th (Q3) 

percentiles, we opted for the 30th and 70th percentiles to compute the IQR. After the outlier removal 

process, approximately 99.57% of the original data remained. This process ensured that our analyses 

were conducted on a dataset free from extreme values that might skew the results.  
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As an initial test, we first selected top 10 ubiquitous visual elements (e.g., ‘sky’, ‘person’, ‘earth’, 

‘car’ ‘sidewalk’, ‘grass’, ‘road’, ‘tree’, ‘building’, ‘wall’) as training inputs, which resulted in an R2 of 

0.78505 as the baseline model. We than selected 27 elements excluding almost-all-zero-ratio visual 

elements and obtained an R2 of 0.80021 (best model). Notably, when tested with all visual elements, 

the models obtained an R2 of 0.80015, whose effectiveness is next to the best model. Random Forest 

was finally selected for the final validation. 

4. Results and Discussions 

4.1. Spatial and Temporal Distribution of Residential CE in Street Microenvironment 

In general, high values of CE happen in densely populated area such as the center of the city. 

The CE of residents in diverse microenvironments show significant spatial heterogeneity. For 

example, the unit CE of suburban areas around Beijing are the lowest, with the CE in July ranging 

from 106 to 211 t/km2/months, while the unit CE are higher when closer to the center of the city where 

the density of residents is high. The CE in July is between 950-1,056 t/km2/months. In the eastern 

urban districts of Beijing, such as Chaoyang and Dongcheng, the overall CE in residential area in 

summer are higher than those in the western urban districts, such as Changping and Haidian. This 

is probably because the eastern urban area is an old urban area, with more residents’ activities and a 

higher population density, resulting in more CE. 

Therefore, the CE in Beijing residential area presents spatial heterogeneity distribution 

obviously. Meanwhile, the density of residents and their activity frequency can be directly reflected 

from the street view. That’s because residents’ activities largely shape the street view images. For 

example, in general, a place with a higher population density has more residents’ activities, more 

residential buildings and higher building density, which then demonstrates as less greenery and 

more bounding walls. In addition, a place with more residents’ activities and more population has 

more vehicles in the street view images. Therefore, the street map can be used to predict residents’ 

CE and reflect the spatial heterogeneity of residents’ CE accordingly. 

4.2. Co-linearity Check for the Independent Variables 

We plotted the heatmap of pairwise correlation coefficients (Figure 6) to show the relationship 

between the streetscape visual features to examine the potential co-linearity issues. Highly correlated 

variables will be further discussed with reference to Importance Features (IF) score and theory to 

decide whether to be removed to reduce the redundancy. For example, our results show that “earth” 

and “road” are highly related to prompt concerns about potential redundancy. However, in this case, 

both “earth” and “road” are important as they indicator different aspects affecting the residential 

energy use: while “road” indicate travel models and mobility/accessibility related to travel frequency, 

earth can affect permeability of the land surface and the micro-climate. Therefore, both were kept. 
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Figure 6. Pairwise Correlation Coefficients of 27 Features. 

4.3. The Roles of Micro-Level Built Environment Visual Features 

The impact factor (IF) and feature importance (FI) analysis reveal big divergence regarding what 

visual features are more important determinants in predicting the CE. On the one hand, the IF 

ranking based on linear regression coefficients indicates that the bridge, streetlight, van, signboard, 

ashcan, chair, minibike, grass, earth, railing was the most impactful (Figure 7). On the other hand, 

the FI analysis, by contrast, highlights divergent visual elements are more effective when using tree-

based ML models (Figure 8). The top 10 features regarding FI are earth, sidewalk, tree, sky, road, 

building, fence, wall, chair, and grass. Given the OLS has a significant poorer performance (Table 2), 

the relationship between visual features and the CE is more likely to be non-linear. The FI analysis is 

more reliable.  
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Figure 7. Impact Ranking based on linear regression model coefficients. 

 

Figure 8. Feature Importance. 

The Pearson Correlation analysis shows that built environment features such as sidewalk, road, 

fence, building, and wall are in strong correlation with residential CE (Table 3). One possible 

explanation for this result is that the high ratio of these elements means the high density of residents 

in the area, which results in the high frequency of activities that emit carbon and other greenhouse 

gasses. For instance, the high ratio of buildings in SVIs might indicate the high frequency of usage of 

air-conditioners in the buildings near the streets. Such a phenomenon is even more obvious in this 

study since the data of CE used in our model was collected in July, the time when the monthly average 
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temperature in Beijing was 29℃ and air-conditioners and other household appliances were widely 

used. The high density of residents will also lead to a growth in the frequency of vehicle use. 

Therefore, the factor of road also indirectly determines the CE of the area, the higher the traffic 

volume, the larger the CE in the site. 

Table 3. Pearson Correlation of selected dependent and independent variables. 
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In addition, better infrastructure (e.g., walls, fences) exists in higher-density residential areas. 

Elements like walls, fences and buildings might reduce wind speed and slow down the diffusion of 

carbon-containing gasses, thus keeping the carbon content in the streets at a relatively higher level 

than those in open streets with few obstacles. Meanwhile, (Choi et al., 2016) found that the block-
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scaled UFP (ultrafine particle) concentrations have a close connection with the surface turbulence and 

built environment of buildings in urban areas. And CE are also in the form of particles in the air and 

are related to the constructions in the streets. 

Natural features such as trees and grass are reversely related to residential CE since plants can 

absorb carbon dioxide through photosynthesis, thus reducing the carbon content concentration in the 

street. In streets near parks and other green areas, where the microclimate is adjusted by trees and 

other natural elements, the carbon concentration is relatively low. 

4.4. Model Visualization and Model Application Scenarios  

To better visualize the CE predication results, ArcGIS was used to illustrate the difference 

between actual and predicted residential CE values within each 1KM urban grid (Figure 9). The actual 

CE value ranges between 177-748 t/km2/month, therefore the estimated CE is also visualized in the 

same scale, to be more immediate comparable.  

Figure 10 clearly depicts a relatively reliable prediction of CE values, as overall there are not 

distinct divergences between the predicted and actual CE values. However, certain deviations were 

observed across the Beijing urban area. Notably, a significant portion of the city registered lower 

predicted CE than the actual recorded values. Interestingly, this trend shifts at the urban fringes, 

where our model consistently predicts higher emissions than what’s been observed. This variance 

could be indicative of underlying complexities in the urban-peripheral dynamics that may not be 

fully encapsulated by the current model. These findings are invaluable, highlighting potential areas 

of refinement in our predictive mechanisms, especially concerning the nuanced interplay at the city’s 

outskirts. Figure 9 indicates that prediction accuracy is higher when the ground truth value falls in a 

certain range (350-550 t/km2/month). When the actual CE are low and high, the accuracy of the 

predicted values will be low. The range of actual CE is 177.72-748.10 t/km2/month, while the predicted 

range is 210.77-627.19 t/km2/month.  

  

 

 

 
(a) Study area within the 6th Ring 

Road 

(b) Observed residential CE (c) Predicted residential CE 

Figure 9. Comparison between Actual and Predicted CE Value Model. 
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Given the spatial heterogeneity of prediction residual, we selected six areas of 16-square-

kilometer urban areas to investigate the divergence between the actual and predicted data. These six 

areas are distributed in various parts of Beijing (Figure 10). Among them, the MAEs in Figure 10a,b,d 

are smaller, indicating better prediction accuracy. It can be seen from the comparison of Figure 10c,e 

that there exist quite great gaps in the prediction of extremely high value and extremely low value, 

and the accuracy performs not that good. In Figure 10f, which is similar to the average level, but there 

is still a certain gap when predicting higher CE values. 

 

Figure 10. Comparison between Actual and Predicted CE Value Model by MAE in t/km2/month: (a) 

MAE 21.10, (b) MAE 34.33, (c) MAE 57.95, (e) MAE 33.71, (e) MAE 65.33, (f) MAE 40.96. 

To the best of our knowledge, currently there are just few mesoscale residential CE models (Jiang 

et al., 2022). As a cross-reference validation, we selected three similar studies that also focus on 

household residential and travel CE to compare with our CE model. Compared with these prior 

studies, our model achieves a similar level accuracy with simply one publicly available input 

variable, while others normally use more than five types of data inputs (Table 4). 

That said, this study not only proposed a model that can better predict residents’ carbon 

emissions on a small scale. More importantly, we verified the possibility of using street view, a simple 

data source, to predict residents’ carbon emissions, supporting simpler data sources for a wide 

geographical region. A more timely and finer-grained carbon emission prediction model can be 

potentially established for cities where data availability is limited, especially those in the developing 

countries.  
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Table 4. Summary of Literature in CE Prediction. 

Literature Dep. Variable 

Independent Var.  Model Performance  

NO. of 

Data 

Sources 

Type of Variables S.D. MAE RMSE R2 

Jiang et 

al., 2022 

Household 

travel CE in 

Guangzhou 

(kg/week) 

5 

Socio-economic, household, 

land use, street forms, 

location 

5.7 12.7 N/A 

0.418 

(pseudo 

R2) 

Zhang, 

Xiong 

and Song, 

2022 

China’s 

annual CE 

(mt/year) 

6 

Forest coverage, total energy 

consumption, energy 

consumption intensity, GDP, 

industrial structure, 

employment structure 

2850.1 405.5 525.2  N/A 

Zhou, 

Zhang 

and Hu, 

2021 

CE in China 6 

Renewable energy 

development, market 

demand changes, energy 

industry regulations, 

industrial structure reforms, 

industrial technology 

innovation, and accidental 

events. 

N/A N/A  N/A 
0.74-

0.77 

This  

paper 

Residential 

CE 

(t/km2/month) 

1 SVIs 131.12  40.9 58.11 0.8 

5. Conclusions and Limitations 

5.1. Effects of Micro-Level Streetscape Attributes 

Our SVI based prediction model is a novel tool to predict the residential CE in meso-scale urban 

area according to the street view images publicly available (i.e., Google/Baidu map). The model can 

follow the temporal and spatial changes well to predict. Because our model can be used for data 

visualization and data prediction, it can provide effective CE data for policy makers and urban 

planners in public environmental protection. The model reflects the influences of specific features on 

residential CE, so it could provide urban designers with simulation experiments on specific 

environmental influencing factors. For researchers, our approach presents a new perspective for 

predicting data and increases the application of machine learning in multi-disciplines. In addition, 

the visual expression of the model also provides the possibility for ordinary citizens to participate in 

public decision-making and living place choosing. 

This study makes the following contributions. First, compared to other elements of street view, 

elements like sidewalk, road, fence, building facade and wall are highly relative with the residential 

CE. Second, using one data of a district in Beijing can measure relatively precisely another district’s 

residential CE in Beijing. The training results from this mode could be used not only to suburban 

areas but also to urban areas, with the development potential of universality and generalization. The 

transferability of the model can provide reference for more research on regional CE in the long term. 

Third, study on the connection between CE and streetscape elements can be conducive to the creation 

of urban environment under the concept of low-carbon design. Let the goals of sustainable 

development and carbon neutrality have a foothold to be promoted and optimized on a large scale. 

5.2. Limitations  

In the previous discussion, we compared the different SVIs features and the differences in CE of 

the specific areas in Chaoyang, including the prosperous areas with high population density, CBD 

areas, suburbs, industrial areas, etc. to discuss the model’s transferability in different urban scenarios. 
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Although the experimental area selected in this study is the one that has the most rich and diverse 

urban forms in Beijing, the model’s transferability in different cities remains to be verified, especially 

for those whose energy consumption composition and residents’ living habits are very different from 

those of Beijing. In addition, the model of this study is affected by the features and uncertainties of 

the input data in the estimation of residential CE. In the process of training and data screening, the 

quality and representativeness of the data will directly affect the model performance. In this study, 

through screening and comparison, 22 variables of street features were finally adopted, but these 

variables do not necessarily represent all relevant variables at the street level. In the meanwhile, the 

street scenes we study mainly focus on urban arterial roads. There is a lack of certain data for 

pedestrian blocks. For pedestrian blocks or commercial blocks blocked by other elements (such as 

canopies, billboards, etc.), there may be certain errors. In addition, since the residential CE data grid 

is 1km, the CE corresponding to the street observation points in the same grid are of the same value, 

so the obtained residential CE value cannot fully represent the location of CE. Ideally, each street 

observation point should have a corresponding accurate residential CE value. 
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