Submitted:
06 February 2024
Posted:
06 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Location Description, Experimental Design and Crop Husbandry
2.2. Chemical Analysis of Plant and Soil Samples
- SYF :
- Signifies the seeds yield with applied N or S.
- SYC :
- Represents the seeds yield for the control group.
- F :
- Denotes the amount of applied fertilizers, whether N or S.
- SNUF:
- Stands for seeds nutrient uptake with applied N or S.
- SNUC:
- Indicates the seeds nutrient uptake for the control group.
2.3. Statistical Analysis
3. Results
3.1. Nutrients Uptake (kg ha−1)
3.2. Seeds and Stalks Yield (t ha−1)
3.3. Zn and Fe Content of Seeds and Soil (mg kg−1)
3.3. Nutrient Use Efficiency
3.4. Pearson Correlation and Principal Component Analysis (PCA)
4. Discussion
| Treatment |
Soil Zn content (mg kg−1) |
Soil Fe content (mg kg−1) |
Soil Zn content (mg kg−1) |
Soil Fe content (mg kg−1) |
seeds Zn content (mg kg−1) |
seeds Fe content (mg kg−1) |
| R2 | R5 | |||||
| Control | 0.68±0.04g | 3.58±0.04g | 0.76±0.02g | 3.80±0.02i | 34.8±1.7h | 78.9±2.4f |
| N(25) | 0.79±0.03cd | 3.80±0.05c | 0.84±0.03c | 4.09±0.03d | 42.5±1.3cd | 112.1±3.9c |
| N(50) | 0.85±0.02b | 3.91±0.04b | 0.88±0.02b | 4.14±0.06cd | 46.3±1.5b | 113.9±5.6c |
| N(25+25) | 0.81±0.02c | 3.76±0.03cd | 0.89±0.06b | 4.19±0.03bc | 46.4±1.2b | 125.3±7.1b |
| N(12.5+12.5) | 0.72±0.02f | 3.69±0.04ef | 0.77±0.02efg | 3.91±0.03fgh | 36.4±1.0fgh | 81.0±2.9ef |
| S(25) | 0.73±0.04ef | 3.71±0.06de | 0.74±0.02g | 3.88±0.05gh | 37.1±1.2fg | 102.4±2.5d |
| S(50) | 0.76±0.01de | 3.73±0.02de | 0.79±0.01cdef | 3.94±0.04efg | 39.7±1.3e | 104.8±1.4d |
| S(12.5+12.5) | 0.71±0.02fg | 3.64±0.02f | 0.75±0.04g | 3.88±0.03ef | 35.3±0.6gh | 86.8±3.4e |
| S(25+25) | 0.76±0.02de | 3.79±0.04c | 0.79±0.03def | 3.95±0.04ab | 40.8±1.3de | 100.5±4.7d |
| N(25+25),S(12.5+12.5) | 0.88±0.04ab | 3.87±0.05b | 0.91±0.03ab | 4.21±0.07ab | 46.6±0.7b | 126.9±2.7ab |
| N(12.5+12.5),S(12.5+12.5) | 0.78±0.05cd | 3.73±0.03de | 0.81±0.03cde | 3.91±0.04fgh | 36.8±0.9fg | 84.08±7.7ef |
| N(12.5+12.5),S(25+25) | 0.77±0.03d | 3.79±0.04c | 0.82±0.05cd | 3.98±0.03e | 37.7±0.8f | 88.2±6.0e |
| N(25+25),S(25+25) | 0.90±0.05a | 3.99±0.07a | 0.94±0.04a | 4.27±0.04a | 49.1±0.9a | 133.2±2.8a |
| N(25),S(50) | 0.87±0.03b | 3.91±0.05b | 0.91±0.04ab | 4.16±0.05ab | 43.6±1.51c | 115.2±2.0c |
| LSD(p=0.05) | 0.04 | 0.06 | 0.04 | 0.06 | 1.9 | 7.2 |
| Treatment | N Agronomic efficiency kg kg−1 |
N physiological efficiency kg kg−1 | N recovery efficiency % | S agronomic efficiency kg kg−1 | S physiological efficiency kg kg−1 | S recovery efficiency |
| N(25) | 23.96 | 10.07 | 238 | - | - | - |
| N(50) | 16.12 | 10.36 | 156 | - | - | - |
| N(25+25) | 16.12 | 10.00 | 129 | - | - | - |
| N(12.5+12.5) | 8.36 | 9.41 | 89 | - | - | - |
| S(25) | - | - | - | 10.00 | 196.85 | 5.1 |
| S(50) | - | - | - | 5.62 | 145.60 | 3.9 |
| S(12.5+12.5) | - | - | - | 5.52 | 186.49 | 3.0 |
| S(25+25) | - | - | - | 7.20 | 185.57 | 3.9 |
| N(25+25),S(12.5+12.5) | 15.32 | 9.77 | 157 | 30.64 | 210.44 | 14.4 |
| N(12.5+12.5),S(12.5+12.5) | 9.52 | 9.48 | 101 | 9.52 | 146.91 | 5.0 |
| N(12.5+12.5),S(25+25) | 17.16 | 10.29 | 167 | 8.58 | 170.24 | 5.0 |
| N(25+25),S(25+25) | 21.86 | 10.73 | 204 | 21.86 | 246.73 | 8.9 |
| N(25),S(50) | 38.28 | 11.68 | 333 | 19.14 | 257.26 | 7.4 |
5. Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, R. F. (2008). Soybean: market driven research needs. In Genetics and genomics of soybean (pp. 3-15). New York, NY: Springer New York. [CrossRef]
- Mahmoud, A. A., Natarajan, S. S., Bennett, J. O., Mawhinney, T. P., Wiebold, W. J., & Krishnan, H. B. (2006). Effect of six decades of selective breeding on soybean protein composition and quality: a biochemical and molecular analysis. Journal of Agricultural and Food Chemistry, 54(11), 3916-3922. [CrossRef]
- Khalili, A., Dhar, S., Mohammadi, M., & Rasooli, M. (2021). Effect of nitrogen on yield and yield attributes of soybean in Kunar, Afghanistan. E-planet 19 (1): 46-49.
- Khalili, A., Ramesh, A. & Sharma, M. P. (2023). Effect of nitrogen and sulfur applications on growth, chlorophyll content and yield of soybean [Glycine max (L.) Merr.]. E-planet 21 (1): 29-34.
- Luo, C., Branlard, G., Griffin, W. B., & McNeil, D. L. (2000). The effect of nitrogen and sulphur fertilisation and their interaction with genotype on wheat glutenins and quality parameters. Journal of Cereal Science, 31(2), 185-194. [CrossRef]
- Yu, Z., Juhasz, A., Islam, S., Diepeveen, D., Zhang, J., Wang, P., & Ma, W. (2018). Impact of mid-season sulphur deficiency on wheat nitrogen metabolism and biosynthesis of grain protein. Scientific reports, 8(1), 2499. [CrossRef]
- Bellaloui, N., Bruns, H. A., Abbas, H. K., Mengistu, A., Fisher, D. K., & Reddy, K. N. (2015). Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA. Frontiers in plant science, 6, 31. [CrossRef]
- Sinclair, T. R., & De Wit, C. T. (1976). Analysis of the carbon and nitrogen limitations to soybean yield 1. Agronomy Journal, 68(2), 319-324. [CrossRef]
- Giller, K. E., & Cadisch, G. (1995). Future benefits from biological nitrogen fixation: an ecological approach to agriculture. In Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems: Extended versions of papers presented at the Symposium on Biological Nitrogen Fixation for Sustainable Agriculture at the 15th Congress of Soil Science, Acapulco, Mexico, 1994 (pp. 255-277). Springer Netherlands. [CrossRef]
- Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO: A Journal of the Human Environment, 31(2), 132-140. [CrossRef]
- Salvagiotti, F., Castellarín, J. M., Miralles, D. J., & Pedrol, H. M. (2009). Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Research, 113(2), 170-177. [CrossRef]
- Timsina, J., & Connor, D. J. (2001). Productivity and management of rice–wheat cropping systems: issues and challenges. Field crops research, 69(2), 93-132. [CrossRef]
- Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A., & Dobermann, A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108(1), 1-13. [CrossRef]
- Scheerer, U., Haensch, R., Mendel, R. R., Kopriva, S., Rennenberg, H., & Herschbach, C. (2010). Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5′-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing γ-ECS, SO, or APR. Journal of experimental botany, 61(2), 609-622. [CrossRef]
- Ingenbleek, Y., & Kimura, H. (2013). Nutritional essentiality of sulfur in health and disease. Nutrition Reviews, 71(7), 413-432. [CrossRef]
- Salvagiotti, F., & Miralles, D. J. (2008). Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. European Journal of Agronomy, 28(3), 282-290. [CrossRef]
- Arata, A. F., Lerner, S. E., Tranquilli, G. E., Arrigoni, A. C., & Rondanini, D. P. (2017). Nitrogen× sulfur interaction on fertiliser-use efficiency in bread wheat genotypes from the Argentine Pampas. Crop and Pasture Science, 68(3), 202-212. [CrossRef]
- Gaspar, A. P., Laboski, C. A., Naeve, S. L., & Conley, S. P. (2017). Dry matter and nitrogen uptake, partitioning, and removal across a wide range of soybean seed yield levels. Crop Science, 57(4), 2170-2182. [CrossRef]
- Bender, R. R., Haegele, J. W., & Below, F. E. (2015). Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agronomy Journal, 107(2), 563-573. [CrossRef]
- Erenoglu, E. B., Kutman, U. B., Ceylan, Y., Yildiz, B., & Cakmak, I. (2011). Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytologist, 189(2), 438-448. [CrossRef]
- Kutman, U. B., Kutman, B. Y., Ceylan, Y., Ova, E. A., & Cakmak, I. (2012). Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant and Soil, 361, 177-187. [CrossRef]
- Kutman, U. B., Kutman, B. Y., Ceylan, Y., Ova, E. A., & Cakmak, I. (2012). Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant and Soil, 361, 177-187. [CrossRef]
- Khalili, A., Qayyum, A., Khan, S. U., Ullah, I., & Khalofah, A. (2023). Role of Temporal Zn Fertilization along with Zn Solubilizing Bacteria in Enhancing Zinc Content, Uptake, and Zinc Use Efficiency in Wheat Genotypes and Its Implications for Agronomic Biofortification. Agronomy, 13(11), 2677. [CrossRef]
- Persson, D. P., De Bang, T. C., Pedas, P. R., Kutman, U. B., Cakmak, I., Andersen, B., ... & Husted, S. (2016). Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytologist, 211(4), 1255-1265. [CrossRef]
- Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428. [CrossRef]
- Miller, J. D. (1998). The measurement of civic scientific literacy. Public understanding of science, 7(3), 203. [CrossRef]
- Burkitbayev, M., Bachilova, N., Kurmanbayeva, M., Tolenova, K., Yerezhepova, N., Zhumagul, M., ... & Demeu, G. (2021). Effect of sulfur-containing agrochemicals on growth, yield, and protein content of soybeans (Glycine max (L.) Merr). Saudi Journal of Biological Sciences, 28(1), 891-900. [CrossRef]
- Głowacka, A., Jariene, E., Flis-Olszewska, E., & Kiełtyka-Dadasiewicz, A. (2023). The Effect of nitrogen and sulphur application on soybean productivity traits in temperate climates conditions. Agronomy, 13(3), 780. [CrossRef]
- Schweiger, P., Hofer, M., Hartl, W., Wanek, W., & Vollmann, J. (2012). N2 fixation by organically grown soybean in Central Europe: Method of quantification and agronomic effects. European Journal of Agronomy, 41, 11-17. [CrossRef]
- Jarecki, W., & Bobrecka-Jamro, D. (2015). Effect of fertilization with nitrogen and seed inoculation with nitragina on seed quality of soya bean (Glycine max (L.) Merrill). Acta Scientiarum Polonorum. Agricultura, 14(3).
- Lorenc-Kozik, A. M., & Pisulewska, E. (2003). Wplyw zroznicowanego nawozenia azotem i mikroelementami na plonowanie wybranych odmian soi. Rośliny Oleiste-Oilseed Crops, 24(1), 131-142.
- Bobrecka-Jamro, D., Jarecki, W., & Buczek, J. (2018). Response of soya bean to different nitrogen fertilization levels. Journal of Elementology, 23(2). [CrossRef]
- Lošák, T., Ševčík, M., Plchová, R., Von Bennewitz, E., Hlušek, J., Elbl, J., ... & Vollmann, J. (2018). Nitrogen and sulphur fertilisation affecting soybean seed spermidine content. Journal of Elementology. [CrossRef]
- Namvar, A., & Sharifi, R. S. (2011). Phenological and morphological response of chickpea (Cicer arietinum L.) to symbiotic and mineral nitrogen fertilization. Zemdirbysté-Agriculture, 98(2), 121-130.
- Gai, Z., Zhang, J., & Li, C. (2017). Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield. PloS one, 12(4), e0174841. [CrossRef]
- Van Kessel, C., & Hartley, C. (2000). Agricultural management of grain legumes: has it led to an increase in nitrogen fixation?. Field Crops Research, 65(2-3), 165-181. [CrossRef]
- Sohrabi, Y., Habibi, A., Mohammadi, K., Sohrabi, M., Heidari, G., Khalesro, S., & Khalvandi, M. (2012). Effect of nitrogen (N) fertilizer and foliar-applied iron (Fe) fertilizer at various reproductive stages on yield, yield component and chemical composition of soybean (Glycine max L. Merr.) seed. African Journal of Biotechnology, 11(40), 9599-9605.
- Khalili, A., Dhar, S., Rasrat, N. A., Faiz, M. A., Dass, A., & Varghese, E. (2016). Effect of nitrogen management on yield and economics of maize (Zea mays L.) in Kandahar region of Afghanistan. Annals of Agricultural Research, 37(3).
- Shi, R., Zhang, Y., Chen, X., Sun, Q., Zhang, F., Römheld, V., & Zou, C. (2010). Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science, 51(1), 165-170. [CrossRef]
- Cakmak, I., & Kutman, U. Á. (2018). Agronomic biofortification of cereals with zinc: a review. European journal of soil science, 69(1), 172-180. [CrossRef]
- Khalili, A., Dhar, S., Dass, A., Ahmad Faiz, M., & Varghese, E. (2018). Agronomic indices of nitrogen use efficiency and maize yield response to various rates, time of application and their interaction effect in Kandahar region of Afghanistan. Agronomic indices of nitrogen use efficiency and maize yield response. Annals of Agricultural Research, 39(4), 347-353.





| Treatment coding | Treatment details | |
| N | S | |
| N0S0 | - | - |
| N(25) | Starter 25 kg N ha−1 | - |
| N(50) | Starter 50 kg N ha−1 | - |
| N(25+25) | Starter 25 kg N ha−1 + 25 kg N ha−1 at R2 stage | - |
| N(12.5+12.5) | Starter 12.5 kg N ha−1 + 12.5 kg N ha−1 at R2 stage | - |
| S(25) | - | Starter 25 kg S ha−1 |
| S(50) | - | Starter 50 kg S ha−1 |
| S(12.5+12.5) | - | Starter 12.5 kg S ha−1 + 12.5 kg S ha−1 at R2 stage |
| S(25+25) | - | Starter 25 kg S ha−1 + 25 kg S ha−1 at R2 stage |
| N(25+25), S(12.5+12.5) | Starter 25 kg N ha−1 + 25 kg N ha−1 at R2 stage | starter 12.5 kg S ha−1 + 12.5 kg S ha−1 at R2 stage |
| N(12.5+12.5), S(12.5+12.5) | Starter 12.5 kg N ha−1 + 12.5 kg N ha−1 at R2 stage | Starter 12.5 kg S ha−1 + 12.5 kg S ha−1 at R2 stag |
| N(12.5+12.5), S(25+25) | Starter 12.5 kg N ha−1 + 12.5 kg N ha−1 at R2 stage | Starter 25 kg S ha−1 + 25 kg S ha−1 at R2 stage |
| N(25+25), S(25+25) | Starter 25 kg N ha−1 + 25 kg N ha−1 at R2 stage | Starter 25 kg S ha−1 + 25 kg S ha−1 at R2 stage |
| N(25), S(50) | Starter 25 kg N ha−1 | Starter 50 kg S ha−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
