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Simple Summary: The enrichment of cancer stem cells (CSCs) following therapies such as chemotherapy or
radiotherapy can significantly impede treatment efficacy, as CSCs tend to exhibit greater resistance. Recent
research has unveiled a novel phenomenon termed "phenotypic plasticity " or “reprogramming” which
facilitates the conversion of non-CSCs back into a CSC state. The molecular mechanisms underpinning this
process frequently involve signaling pathways associated with the maintenance of stemness. In this study, we
demonstrate that specific cytokines induced by radiation therapy target non-CSCs, inducing their conversion
into CSCs. Interestingly, their inhibition mitigates radiation-induced CSC enrichment in preclinical mouse
models. Furthermore, we have observed that patients displaying high expression levels of these cytokines
and/or their receptors exhibit a CSC expression profile and enhanced survival following radiotherapy. This
finding suggests a promising way for patient stratification, where individuals with elevated cytokine levels
could benefit from radiotherapy in conjunction with cytokine inhibitors.

Abstract: Cancer stem cell (CSC) has paved the way to many fundamental and translational studies. Recent
studies have highlighted differentiated breast cancer cells (non-CSCs) switching phenotype to CSCs in
response to various stimuli, depicting the existence of cancer stem cell plasticity. Although strategies to reduce
the phenotypic plasticity of non-CSCs into CSCs are likely to prevent treatment-resilient cancer cells driving
recurrence, most phenotypic plasticity mechanisms involve Notch, Wnt or MAPK signaling pathways. In this
study, breast cancer cells were irradiated to identify soluble reprogramming factors. Using conditioned medias,
protein arrays analyses, flow cytometry and in cellulo/in vivo functional assays, we demonstrated, for the first
time, that radiation-induced chemokine expression, especially CXCL1 and CCL5 and their receptors CXCR?2,
CCR1 and CCR5, stimulates reprogramming of breast non-CSCs into CSCs. Treatment of non-CSCs with
recombinant CXCL1 and CCLS5 is sufficient to induce cell reprogramming, while their inhibition can be used
to prevent reprogramming and sensitize tumor to radiation. Moreover, analysis of gene expression profiles
from 38 public merged databases demonstrated that combined over-expression of CXCL1/CXCR2, CCL5/CCR1
or CCL5/CCRS5 has a poorer prognosis in patients treated with radiotherapy, suggesting a promising way for
patient stratification, where individuals with elevated cytokine levels could benefit from radiotherapy in
conjunction with cytokine inhibitors. Taken together, our findings provide a rationale to consider these axes as
potential targets and predictive biomarkers in breast cancer patients.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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1. Introduction

Cancer stem cells (CSCs), distinguished by their ability for self-renewal, multipotency,
involvement in tumorigenesis, and resistance to therapies, present intriguing prospects for novel
treatment approaches. According to the hierarchical model of tumor development, eradicating CSCs
could result in tumor regression or even complete elimination [1]. However, further investigations
have unveiled the concept of cancer cell plasticity. In this context, fully differentiated breast cancer
cells (non-CSCs) can transform into CSCs when exposed to various stimuli [2,3]. This phenomenon,
termed "phenotypic plasticity”, "conversion”, or “reprogramming” can occur under diverse
conditions. For instance, Heddleston and colleagues demonstrated that hypoxic conditions can
activate HIF2q, leading to the re-expression of pluripotency factors in glioma [4]. Similarly, HDAC
inhibitors have the capacity to induce the Wnt/f-catenin pathway and confer a stem cell-like
phenotype to breast cancer cell lines depleted of CSCs [5]. Also, the Lin28B/let7 axis was found to
induce CSCs in prostate carcinoma cells [6]. Interestingly, common cancer therapies, such as
radiotherapy, can also trigger this phenotypic plasticity process. We observed that ionizing radiation
treatment of CSC-depleted breast cancer cell lines induced a stem-like phenotype, and this was
associated with Notch signaling [7]. This phenotypic plasticity mechanism may contribute to tumor
heterogeneity [8] and the development of tumor resistance [9], suggesting that targeting CSCs alone
may not suffice for complete tumor eradication. Currently, the exact mechanisms underlying
radiation-induced phenotypic plasticity remain unknown, and strategies to mitigate the conversion
of non-CSCs into CSCs following treatment may help to prevent treatment-resistant cancer cell
recurrences.

Concurrently, multiple studies have established a connection between inflammation and cancer
stem cells, with a particular emphasis on cytokines and chemokines. Treatment of breast cancer cell
lines with Chemokine (C-C motif) ligand 5 (CCL5) leads to an enrichment of CD44high/CD24low- CSCs
[10]. Chen et al. identified CCL20 as an inflammatory factor that increases both ALDH+ and
CD44high/CD24low- breast CSC frequencies in a population treated with taxanes [11]. This enrichment
is mediated through the p65 nuclear factor kappa B (NF-«kB) pathway, activated via mitogen-activated
protein kinase (MAPK) or protein kinase CC (PKCC). In prostate cancer cell lines, C-X-C motif
chemokine ligands such as CXCL1 and CXCL8 can modulate tumorigenicity [12]. Interleukin-6 (IL6)
has been shown to generate CSCs from non-CSCs in breast and prostate tumor cells, as well as in
breast cancer patient samples [13]. Additionally, chemokine receptors present promising therapeutic
targets, as evidenced by studies examining the impact of CXCR1 and CXCR2 inhibition on CSC
biology [14,15]. In our study, we faced the challenge of investigating the molecular mechanisms of
phenotypic plasticity by depleting the CSC population and then regenerating it to the original level
using ionizing radiation. In our findings, we demonstrate that CXCL1 and CCL5 are specifically
secreted after ionizing radiation (IR) treatment of non-CSCs. Treatment of non-CSCs with
recombinant hCXCL1 and hCCL5 induces a CSC-like phenotype, while their inhibition reduces
radiation-induced CSCs and enhances radiation sensitivity in vitro and in vivo, leading to improved
survival in xenografted mice. Moreover, analysis of transcription databases from breast cancer
patients reveals a strong correlation between the expression of chemokines and CSC profiles in breast
cancer patients. Furthermore, the combined expression of CXCL1/CXCR2 or CCL5/CCR1 appears to
have prognostic value in overall survival among patients treated with radiotherapy. This study
represents an important effort in identifying new potential therapeutic targets through specific
inhibition of phenotypic plasticity, especially when combined with radiotherapy.
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2. Materials and Methods

Cell culture

The human SUM159PT breast cancer cell line was purchased from Asterand Biosceince (BiolVT,
Hicksville, USA), MDA MB 231 and HCC70 cells were purchased from ATCC (Manassas, USA), and
cultured in the recommended media at 37°C with 5% CO2.

Irradiation

Cells were irradiated as monolayers at room temperature and at a density of approximately 5500
cells/cm2. The irradiation was performed in the radiotherapy department of Centre Oscar Lambret
de Lille using a low-energy electron accelerator (DARPAC 2000 X-Ray) at a dose rate of 0.95 Gy/min.
Analysis of CSCs was performed 5 days after irradiation.

Aldefluor assay

Breast cancer stem cells were identified based on their high aldehyde dehydrogenase (ALDH)
activity, as described before by Ginestier et al. [16], using the Aldefluor® kit (StemCell Technologies,
Vancouver, Canada). Only 30% of the most negative cells were collected as ALDH- cells. Flow
cytometry data were acquired on CyAn™apr cytometer (Beckman Coulter, Brea, USA) with Summit
software. All analyses were performed with FlowJo (v10.4.1, BD, Franklin Lakes, USA).

RNA extraction, reverse transcription, and Real-Time RT-PCR

Total RNA from the cell lines was isolated using the RNeasy kit (Qiagen, Venlo, The
Netherlands). cDNA synthesis was performed using the SuperScript IIl First-Strand Synthesis
System for RT (Invitrogen, Carlsbad, USA). Quantitative PCR was carried out using the CFX96 Real-
Time System (Bio-Rad, Hercules, USA) with Quantification SyBR Green master mix (Qiagen, Venlo,
The Netherlands). All primers were synthesized by Eurogentech (Sox2 5-3"
AACCCCAAGATGCACAACTC; Sox2 3-5: CGGGGCCGGTATTTATAATC; Oct4 5-3"
GAAGGATGTGGTCCGAGTGT; Octd 3-5: GTGAAGTGAGGGCTCCCATA; Nanog 5-3"
TTCAGTCTGGACACTGGCTG; Nanog 3'-5: CTCGCTGATTAGGCTCCAAC; GAPDH 5-3"
AGCCACATCGCTCAGACAC; GAPDH 3'-5": GCCCAATACGACCAAATCC). The Ct for each gene
was determined after normalization to GAPDH (ACt). We then obtained AACt by subtracting the ACt
of the sample from the ACt of the control condition, and 2-AACt was used to calculate the ratio of
expression differences.

Conditioned medium preparation and treatments

Conditioned medium (CM) was withdrawn from the cell culture 5 days after irradiation and
centrifuged at 300 g for 10 min to eliminate dead cells and debris. CM treatments consisted of
replacing 50% of the culture medium with CM freshly obtained from irradiated cells.

Cytokine & chemokine arrays

Protein arrays were performed with CM following the manufacturers’ instructions (Cytokine
array panel A ARY005, Chemokine array ARY017, Biotechne, Minneapolis, USA). The signal was
detected using a LAS-4000 camera (Fujifilm, Tokyo, Japan). Control samples were performed with
fresh medium incubated without cells for 6 days at 37°C and 5% CO2 and were used to normalize
and compare each sample.

Enzyme-linked immunosorbent array (ELISA)

ELISA assays for CXCL1 (Duoset CXCL1, DY275, Biotechne), CCL5 (Duoset CCL5, DY278,
Biotechne) and CCL19 (DuoSet CCL19, DY361, Biotechne) were performed in non-diluted CM
following the fabricant instructions. The plates were read with Multiskan FC (Thermo Scientific,
Waltham, USA) at 450 nm and 540 nm for blank correction. The average of each duplicate was
calculated after blank correction. Each optical density was plotted on the standard curve to determine
the chemokine concentrations.

Treatment of cells with human recombinant cytokines

Cells were treated with recombinant cytokines from Bio-Techne. The concentrations used were
equal to 10 times the ED50 indicated by the manufacture datasheet: CXCL12 (2 ng/ml), CCL19, CCL20
(5ng/ml), CXCL1, CCL4, CCL5, MIF (10 ng/ml), CCL3 (30 ng/ml) and CXCL9 (1 pg/ml). All cytokines
were reconstituted in PBS containing 0.1% BSA. For dose effect treatments, the chosen concentrations
were 1, 10, or 100 times the ED50.

doi:10.20944/preprints202402.0403.v1
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Sphere-forming capacity (SFC) and sphere generations

Cells were trypsinized and cultured in sphere medium consisting of phenol red-free DMEM-
F12, 0.4% BSA (Sigma, St. Louis, USA), 10 ml B27 additive (Invitrogen) per 500 ml medium, 5 pg/ml
insulin (Sigma), 4 pg/ml heparin, and 20 ng/ml epidermal growth factor (EGF) and fibroblast growth
factor (FGF) (Biotechne). Cells were plated in 96-well low adhesion plates, ranging from 1024 cells to
1 cell. The number of spheres per well was assessed 7 days later. Cells were also cultured as spheres
in the same medium, at 10,000 cells/ml in low adhesion flasks for 10 days, to perform sphere
generations. Spheres were then dissociated with Accutase (Invitrogen) and re-cultured for secondary
SFC tests.

Antibody staining for flow cytometry

For the chemokine receptors studies, receptors were stained with coupled antibodies from
Miltenyi (Bergisch Gladbach, Germany) targeting CCR1 (130100371, PE-Vio770), CCR3 (130097068,
VioBlue), CCR4 (13010395, Biotin and anti-Biotin, 130097022, VioGreen), CCR5 (130106224, APC),
CCR6 (130100375, PE), CCR7 (130099153, Biotin), CXCR2 (130100908, APC-Vio770), and CXCR3
(130101377, APC or 130107463, PE-Vio615). Antibodies at a dilution of 1/50 were incubated for 10 min
on ice in the dark in a staining buffer (PBS, 0.5% BSA, 2 mM EDTA), centrifuged, and washed with a
staining buffer. If necessary, cells were first stained using the Aldefluor assay, and 50 pM Verapamil
was added to the staining buffer to limit the loss of ALDH staining. REA controls (REAfinity
Recombinant Antibody, Miltenyi) were performed at the same concentrations as those of
corresponding specific antibodies.

For ALDH1, NANOG, SOX2, and OCT4 analysis on tumor cells, tumors were dissociated using
enzymatic digestion (Tumor dissociation kit, Miltenyi 130-095-929) and mechanical dissociation
(gentle MACS Dissociator). Fresh samples were then stained for ALDH activity (as previously
described). Part of the samples was fixed with 4% paraformaldehyde solution and stored at 4°C
before SOX2 and OCT2 immunostaining. Cells were incubated in PBS 0.1% Triton X100 for 15 min
and rinsed in PBS. Cells (1x106) were then incubated with Biolegend antibodies targeting NANOG
(2.5ug/ml, BLE653706, AF488), SOX2 (10 pg/mL, BLE656112, Pacific Blue), or OCT4 (BLE653706,
AF488), or corresponding isotypes, for 30 min at RT. Cells were rinsed and analyzed by flow
cytometry.

All samples were acquired on Cyan™apr (Beckman Coulter) and data were analyzed using
FlowJo 10.

Cytokine treatment and inhibition

Cells were treated with recombinant cytokines from Bio-Techne. The concentrations used were
equal to 10 times the indicated ED50: CXCL12 (2 ng/ml), CCL19, CCL20 (5 ng/ml), CXCL1, CCL4,
CCL5, MIF (10 ng/ml), CCL3 (30 ng/ml) and CXCL9 (1 pg/ml). All cytokines were reconstituted in
PBS containing 0.1% BSA. For dose effect treatments, the chosen concentrations were 1, 10, or 100
times the ED50. Cytokine inhibitions were performed using neutralizing antibodies from Bio-Techne.
Different concentrations were tested, and the most effective one was chosen anti-CXCL1 (MAB275, 2
pg/ml), and anti-CCL5 (MAB278, 0.1 ug/ml). Corresponding isotype controls were used at the same
concentrations as that of corresponding specific antibodies. Antibody treatments were carried out
using ALDH- cells before radiotherapy. Cytokine depletion in the CM was performed by incubating
CM with neutralizing antibodies at the concentrations cited above for 1h. Then, 50% of the cell
medium was replaced with this mixture of CM and antibodies.

Receptor inhibition

To assess the chemokine receptor involvement in phenotypic plasticity, ALDH- cells were
treated one time, 1 h before radiotherapy, with pharmacological inhibitors of, CXCR2 (SB225002),
CCR1 (BX471), and CCR5 (Maraviroc) purchased from Biotechne. Different concentrations were
tested, and the least toxic one was chosen (100 nM). Inhibitors were reconstituted in DMSO, and the
control treatment consisted of DMSO alone.

In vivo study

Animal experiments were approved by the French Animal Experiment Ethics Committee
(authorization #5935076 and project #01989.02). Female SCID mice (8 weeks) were purchased from

doi:10.20944/preprints202402.0403.v1
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Pasteur Institute, Lille, and maintained under pathogen-free conditions. SUM159PT cells were
suspended in PBS (10¢ cells/ 100 uL) and subcutaneously injected in both flanks of each mouse. Tumor
volumes were monitored every week by measuring the length (1) and width (w), and calculating the
volume with the following formula: (rt**w2)/6.

Treatments

Once the tumor volumes reached approximately 200 mm? the mice were treated with
neutralizing antibodies (Biotechne) and/or radiotherapy (Oncovet, Villeneuve d’Ascq, France). Mice
were divided into different groups: “isotype controls” (IgG2B, 80 pg/mouse, MAB004; IgGl1, 32
ug/mouse, MAB002), “antiCXCL1” (antiCXCL1, 80 upg/mouse, MAB275; IgGl), “antiCCL5”
(antiCCL5, 32 ug/mouse, MAB278; 1gG2B), and “antiCXCL1 + antiCCL5” (antiCXCL1; antiCCL5).
Concentrations were determined according to the literature. Each group was subdivided into 2
subgroups: one was not irradiated (“0 Gy”) and the second subgroup received 5*3 Gy radiotherapy
(”5*3 Gy”). The treatment protocol consisted of 6 intraperitoneal antibody injections over 2 weeks (3
injections per week, every 2 days) and 5 irradiations (5*3 Gy) daily during the first week. Mice were
euthanized when the tumor volume reached an ethical limit or when the welfare score was too low.

Irradiation procedure

A Precise (Elekta, Stockholm, Sweden) linear accelerator was used for irradiation. A 6 MV
photons (X-ray) beam was selected to permit the treatment of a large field, at a standard treatment
distance (100 cm), through the cover of the container (thin plastic). The beam was delivered at a rate
of 200 cGy/min.

The mice were placed by 6 in a sterile isolation container under 3% Isoflurane / O2 (0.9 L/min).
Each container was placed on 5 cm PMMA plates to allow for radiation back-scatter. A 20 cm x 3 cm
field was designed to have all mice from one group aligned under anesthesia, under the beam. Once
under anesthesia, the mice were positioned in line along the long axis of the container with their hind
limbs under the field light centered on the masses.

The point of prescription was located 0.5 cm in depth from the skin. A 1 cm tissue equivalent
material (sterile water-soaked gauze) was placed over and around the hind limbs between each
mouse to allow for dose build-up and lateral radiation scatter (and avoid the skin-sparing effect of
megavoltage irradiation). Dose calculations were made by hand (2 cm in depth at a standard 100 cm
SAD (Source Axis Distance).

Gene expression analysis from public databases and clinicopathological correlations

Analysis of gene expression profiles of clinical samples collected from 38 public data sets
(Supplementary Table 1-2) required pre-analytic processing. The first step was to normalize each data
set separately: we used quantile normalization for the available processed data from non-Affymetrix-
based sets (Agilent, SweGene, and Illumina), and Robust Multichip Average (RMA) with the non-
parametric quantile algorithm for the raw data from the Affymetrix-based data sets. Normalization
was done in R using Bioconductor and associated packages. The probes were then mapped based on
their EntrezGenelD. When multiple probes were mapped to the same GenelD, we retained the one
with the highest variance in a particular dataset. We log2-transformed the available TCGA RNAseq
data that were already normalized. We applied different multigene classifiers in each data set
separately, including several cancer stem cells (CSC) signatures: Prat’s claudin-low, Creighton’s
CD44+/CD24-, Prat’s subpopulation transition signature, Lim’s signature, and Charafe’s ALDH1 [17-
21]. Estrogen receptor (ER), progesterone receptor (PR), and ERBB2 expressions (negative/positive)
were defined at the transcriptional level using gene expression data of ESR1, PGR, and ERBB2
respectively, as previously described [22]. Expression levels of CXCL1, CCL5, and their receptors
were extracted from each of the 38 normalized data sets. Before analysis, gene expression data were
standardized within each data set using the PAMS50 luminal A population as a reference [23]. This
allowed us to exclude biases due to laboratory-specific variations and population heterogeneity and
to make data comparable across all sets. Metastasis-free survival (MFS) was calculated from the date
of diagnosis until the date of distant relapse. Follow-up was measured from the date of diagnosis to
the date of last news for event-free patients. Survivals were calculated using the Kaplan-Meier
method and curves were compared with the log-rank test. All statistical tests were two-sided at the
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5% level of significance. Statistical analysis was done using the survival package (version 2.30) in the
R software (version 2.15.2; http://www.cran.r-project.org/). We followed the reporting
REcommendations for tumor MARKer prognostic studies (REMARK criteria) [24].

Statistical analysis

All results are expressed as the means of at least 3 independent biological replicates. Data were
analyzed using Prism (GraphPad) software. A difference with a p-value of 0.05 or less was considered
statistically significant with the two-sided Student’s t-test and two-way ANOVA. Error bars are
presented as SEM. The log-rank (Mantel-Cox) test was performed for survival analysis. A difference
with a p-value of 0.05 or less was considered statistically significant. All Figures of the articles have
been composed using Adobe Illustrator.

3. Results
3.1. Radiation-induced cytokines drive CSC plasticity

3.1.1. Ionizing radiation induces soluble factor secretion, which reprograms non-CSCs into CSCs

To investigate the mechanism behind CSC reprogramming, we collected conditioned medium
(CM) from irradiated sorted non-CSCs from SUM159PT and MDA-MB-231 cells and tested it for its
reprogramming potential on non-CSCs (Figures 1A and S1). We used 50% fresh medium and 50%
CM to avoid nutrient depletion. As shown in Figure 1B, treatment with CM from irradiated non-
CSCs was able to induce stemness (ALDH activity) both in SUM159PT (Figure 1B, upper panel) and
MDA-MB-231 cells (Figure 1B, lower panel). CM-induced reprogramming was slightly lower than
IR-induced reprogramming (Radiation: 3.2% (+/-0.6, p=0.0002) vs. CM: 1.5% (+/-0.3, p=0.0065). We
then validated the complete reprogramming of non-CSCs by IR and/or CM via sphere-forming
capacity assay (SFC), which selects for progenitor and CSCs. While radiation-induced
reprogramming was affected by cell killing, requiring several generations of spheres to be increased
(Figure 1C), the effect of CM was immediately visible and significant, as soon as the first generation
(Figure 1D and 1E). Additionally, irradiated non-CSCs displayed a significant increase in
pluripotency factor gene expression, such as SOX2 and NANOG (Figure 1F). SOX2 expression was
also increased in CM (8 Gy)-treated cells compared to control cells. Interestingly, OCT4 expression
did not significantly change either in irradiated cells or CM (8 Gy)-treated cells, which could be
explained by the relatively high basal expression of OCT4 in our cell line compared with SOX2 and
NANOG expression. Overall, our data suggest that CSC reprogramming is induced by soluble
factors, secreted by irradiated non-CSCs, in a paracrine manner.

doi:10.20944/preprints202402.0403.v1
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Figure 1. CSC induction after ionizing radiation and CM treatments. (A) Experimental procedure
for testing the conditioned medium effect on reprogramming;: cells were stained with the Aldefluor®
assay, and ALDH"" non-CSCs were sorted and seeded as monolayers. The cells were irradiated with
0 or 8 Gy. Five days after radiation, conditioned medium (CM) was withdrawn from irradiated
cultures and applied to treat freshly sorted non-CSCs. (B) Reprogramming was analyzed 5 days after
CM treatment or IR by performing an Aldefluor® assay in SUM159PT and MDA MB 231 cells. (C)
CM-treated non-CSCs from SUM159PT cells were seeded in low-adhesion 96-well plates 5 days post-
radiation. The number of primary spheres was counted 10 days later. In parallel, CM-treated non-
CSCs were seeded in low-adhesion flasks 5 days after treatment and allowed to grow for 10 days.
After 10 days, the spheres were dissociated and reseeded for secondary sphere-forming capacity tests.
The sphere-forming capacity (SFC) of the cells was evaluated up to 4 generations (4G). (D) SFC of
CM-treated non-CSCs SUM159PT after 10 days of culture. (E) Representative images of SUM159PT
primary spheres at 10 days. Photos were obtained with a Nikon Eclipse Ti microscope, 10x lens (scale
=100 pum). (F) Expression of OCT4, SOX2, and NANOG by qRT-PCR in irradiated or CM-treated non-
CSCs 5 days post-IR in SUM159PT. Gene expression was normalized to GAPDH expression. All data
are represented by means + SEM. *p<0.05, **p<0.001, **p<0.0001, ****p<0.00001, f test, n > 3.

3.1.2. Radiation-induced CXCL1 and CCL5 are involved in reprogramming

We next aimed to investigate what factors are secreted by irradiated non-CSCs. Interestingly,
cytokines, well-known secreted, chemotactic proteins, have been associated with CSC
chemoresistance and enrichment in breast cancer [11,25]. We therefore performed chemokine and
cytokine arrays on irradiated non-CSCs CM. We compared the levels of chemokines and cytokines
in a 6-day-old medium without cells, a 6-day-old medium with non-irradiated cells, and 6-day-old
medium with irradiated cells (8 Gy). The chemokine array presented in Figure 2A shows an increased
secretion of various chemokines in CM after IR. Every detectable spot was quantified (Figure 2B). We
found an increased secretion of CXC- chemokines such as CXCL1, CXCL9, and CXCL12, and CC-
chemokines such as CCL3/4, CCL5, CCL19/20, and CCL15. However, only CXCL1 and CCL20 were
significantly higher. Additionally, cytokine arrays were performed and revealed increased
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expression of CXCL1 and MIF (Figures S2A and 52B). It is also important to note that there was no
decrease in any protein after IR.
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Figure 2. Radiation-induced expression of chemokines and their effects on reprogramming. (A)
CM from irradiated ALDH7*" non-CSCs SUM159PT was collected and analyzed by chemokine array.
The control condition consists of a fresh medium incubated for 6 days without cells at 37°C and 5%
CO2. Black arrows indicate CXCL1 (1), CCL5 (2), and CXCL8 (3). (B) Relative expression of
chemokines post-IR. The expression was normalized to the internal positive controls. (C, D) Relative
quantification of CXCL1 (C) and CCL5 (D) by ELISA for 5 days post-IR. (E, F) Freshly sorted non-
CSCs were seeded and treated 24 hours later with CXCL1 or CCL5 (concentrations are indicated in
Materials and Methods). The control condition consisted of PBS 0.1% BSA. (E) Aldefluor flow
cytometry analysis at 5 days post-treatment. (F) Sphere-forming capacity of treated cells. (G) Freshly
sorted non-CSCs were treated 24 hours after sorting with radiation and/or neutralizing antibodies
against CXCL1 and CCL5 (or isotype controls). ALDH* cells were analyzed by flow cytometry 5 days
after treatment. All data are represented by means + SEM. *p<0.05, **p<0.001, ***p<0.0001,
*#%p<0.00001, ¢ test, n > 3.
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We validated the increased secretion of CXCL1 and CCLS5 after IR by ELISA (Figure 2C and 2D).
CCL4 and CCL19 were not significantly modified when detected by ELISA (Figure S1C). These
results demonstrate that the secretion of (at least) 2 chemokines, CXCL1 and CCL5, is induced by IR.
Interestingly, CXCL1 and CCL5 secretions constantly increase, coinciding with the constant increase
of reprogramming in SUM159PT breast cancer cells, through the 5 days post-IR [7].

Several studies suggest the involvement of chemokines in CSC biology, but none of them has
mentioned the potential role of chemokines in reprogramming. CCL5 treatment in breast cancer cell
lines is notably responsible for the enrichment of CD44hish/CD24'w" cells [10]. In prostate cancer,
CXCL1 mediates cancer cell tumorigenicity [12]. In breast cancer, tumorigenicity seems also to be
regulated by CXCL12 and its receptor CXCR4 [26,27]. For these reasons, we investigated the direct
effects of chemokines on reprogramming. Sorted non-CSCs were treated with the recombinant
chemokines CXCL1 and CCL5 (100 ng/mL). As shown in Figure 2E (and Figures S2A and S2B), in
both SUM159PT and MDA-MB-231, treatment with CXCL1 or CCL5 increases induced ALDH* cell
frequency. Additionally, SFC was significantly increased by both chemokines, especially in
SUM159PT (Figure 2F). Only CXCL1 treatment was able to induce reprogramming in MDA-MB-231,
as shown by the SFC experiment (Figure 2F). Interestingly, almost all cytokines tested were able to
induce reprogramming of non-CSC into CSC (Figures S2C/D), while no enrichment could be
observed in unsorted bulk population (Figure S2E).

We next studied the effect of inhibiting CXCL1 and CCL5. Non-CSCs were irradiated and/or
treated with neutralizing antibodies directed against CXCL1 and CCL5. Their inhibitions led to a
significant decrease in the induction of ALDH* cells after IR compared with the isotype control
treatment (Figure 2G). We also investigated the effects of neutralizing CXCL1 and CCL5 in the
conditioned media (CM-8Gy).

Taken together, these data show, for the first time, the involvement of CXCL1 and CCL5 in
reprogramming in TNBC cell lines.

3.2. Cytokine receptor activity drives CSC plasticity prior to the activation of NOTCH signaling

3.2.1. CXCR2, CCR1, and CCR5 chemokine receptors participate in reprogramming

CXCL1 and CCLS5 exert their action by binding their receptors. While CXCL1 mostly binds to
CXCR2, CCL5 binds a larger array of receptors, including CCR1, CCR3, CCR4, and CCR5. We
evaluated the expression of several receptors in SUM159PT and MDA-MB-231 cells, by flow
cytometry (Figures 3A and S3). The expression of CCR3 and CCR4 was barely or not detectable,
whereas CCR1, CCR5, and CXCR2 showed higher expression levels. CCR5 has the highest expression
(up to 10%, Figure 3A, (Supplemental Table 5). Interestingly, CCR or CXCR expression and Aldefluor
activity are mainly exclusive (Figure S4). Cells expressing the receptors are negative for Aldefluor
and the other way around.

doi:10.20944/preprints202402.0403.v1
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Figure 3. Chemokine receptor expression and their role in reprogramming. (A) Immunostaining of
CCR1, CCR5, and CXCR2 was performed in SUM159PT and analyzed by flow cytometry, with or
without radiation. (B) Sorted ALDH- non-CSCs were treated with BX471 (CCR1-inhibitor), Maraviroc
(CCR5-inhibitor), or SB225002 (CXCR2-inhibitor), followed by radiation. Reprogramming (ALDH*
cells) was analyzed by flow cytometry. (C) CCR5* and CCR5- SUM159PT cells were sorted and plated
in low-adhesion plates to measure their sphere-forming capacity. (D) Co-staining of ALDH and CCR5
was performed and the percentage of CCR5* cells was determined in ALDH* and ALDH- SUM159PT
cells. (E) ALDH-, CCR5*, and CCR5 SUM159PT cells were sorted and treated with radiation 24 hours
later. The reprogramming capacity was assessed 5 days later by flow cytometry (ALDH* cells). All
data are represented by means + SEM. *p<0.05, **p<0.001, ***p<0.0001, ****p<0.00001, ¢ test, n > 3.

Based on this result, we decided to evaluate the reprogramming potential of cells expressing or
not the receptors. For this purpose, we used native SUM159PT cells and SUM159PT Stb* cells
constitutively expressing the fluorescent protein Strawberry, to track the behaviors of both
populations, positive or negative for the receptors. By cell sorting, we collected and then mixed, at 2
proportions (1:1 or 98:2 as an initial proportion Figure S5C). The reprogramming capacity of each
population was evaluated (Figure S5D). Only the population derived from SUM159PT ALDH-
CCR/CXCR * cells showed a significant increase in ALDH* cells. It's worth noticing that sorted
CCR/CXCR- ALDH- non-CSCs could still be reprogrammed by radiation which could be explained
by a rapid re-expression of CCR/CXCR within 24h (Figure S5B). Then, when we examined the
composition of the spheres over generations, we observed that the Stb- cells (CCR/CXCR*ALDH non-
CSCs) overcame the Stb* cells (CCR/CXCR- ALDH-non-CSCs) (Figure S5E-F). This finding indicated
that the population derived from CCR/CXCR* cells was more able to form spheres than the other
population. Interestingly, we observed the same phenomenon at the 98:2 ratio (Figure S5G-H). To
validate this effect, we compared both populations (SUM159PT native and SUM159PT Stb*), with no
sorting. We could not find any differences in proliferation or in SFC (Figure S6).
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We then investigated the role of these receptors (CXCR2, CCR1, and CCRS5) in radiation-induced
reprogramming via pharmacological inhibition (Maraviroc, BX471, and SB225002, respectively)
(Figure 3B). Among all decreases, CCR5 inhibition was particularly efficient in preventing
reprogramming, as its targeting drug prevented the induction of ALDH* cells after IR (Figure 3B).

Based on these results, we further investigated the role of CCR5 in CSC reprogramming. CCR5*
and CCR5- cells were sorted and tested for their SFC. Both populations had similar sphere-forming
capacity (Figure 3C). Moreover, when doing a co-staining for CCR5 and Aldefluor®, we noted that
the ALDH-, non-CSC population, was significantly enriched in CCR5* cells compared to the ALDH,
CSC population (Figure 3D). These two experiments point to the fact that CCR5 is not a CSC marker
in breast cancer cells. However, after sorting CCR5* ALDH- non-CSCs and CCR5- ALDH- non-CSCs,
we evaluated reprogramming in both populations after IR (Figure 3E). The results show that
reprogramming is significantly higher in cells that express CCR5 at the time of IR. While it is likely
that the membrane expression of these receptors is very labile (data not shown), these results indicate
that CCR5 is involved in radiation-induced reprogramming and that targeting its membrane
expression could partially prevent reprogramming.

3.2.2. NOTCH involvement in chemokines-induced reprogramming

It was previously described that the inhibition of the Notch pathway by y-secretase inhibitors
(GSI) induced a decrease of radiation-induced reprogramming in breast cancer [7]. Also, chemokines,
like CCL2/CCR2 [28] or CCL19/CCL21/CCR?7 [29], can also modulate the Notch pathway. We
wondered if the secretion of chemokines after IR was linked to ther Notch pathway activation.
Therefore, SUM159PT ALDH:- non-CSCs were seeded and treated with GSI (Compound E) or DMSO
1h before IR. We validated the significant decrease in radiation-induced reprogramming after
inhibition of the NOTCH pathway with GSI (Figure 4A). We collected conditioned media from GSI-
treated and control cells and performed ELISA to analyze the secretion of CXCL1 and CCLS5.
Interestingly, GSI did not modulate the chemokine secretion induced by radiation (Figure 4C-D). This
result suggests that Notch signaling is not responsible for the secretion of chemokines after
radiotherapy and cytokines activities might precede Notch activities.

doi:10.20944/preprints202402.0403.v1
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Figure 4. Notch pathway is involved in reprogramming. (A) Sorted ALDH- non-CSCs were treated
with Compound E (Notch-inhibitor), followed by radiation. Reprogramming (ALDH* cells) was
analyzed by flow cytometry. (B, C) Relative quantification of CXCL1 (B) and CCL5 (C) by ELISA for
5 days post-treatment. All data are represented by means + SEM. *p<0.05, **p<0.001, ***p<0.0001,
#*%+9<0.00001, t-test, n > 3.

3.3. Cytokines-induced reprogramming impact in in vivo survival

3.3.1. Reprogramming inhibition extends survival of xenografted mice

To understand how reprogramming affects radiation treatment and participates in tumor
resistance, we used xenografted mice and treated them with neutralizing antibodies in combination
with radiation (Figure 5A). Tumor size and mice survival were followed, and mice were sacrificed
after reaching a defined ethical limit. Tumor volumes were not affected by either neutralizing
treatment nor radiation but were decreased by double inhibition treatment (Figure 5C). Tumors
drastically shrunk after 20 days within the “5x3 Gy/anti-CXCL1/anti-CCL5” sub-group (Figure 5C).
Therefore, mouse survival was extended by 14.6% by radiation only (21 days with 0 Gy to 35 days
with the 5x3 Gy/isotypes) and by 152.4% with 5x3 Gy/anti-CXCL1/anti-CCL5 (53 days, p=0.0028)
(Figure 5D). Additionally, we analyzed the mRNA level of ALDHI1 and detected an increase in
tumors that received RT, while it was prevented (diminished) in tumors treated with anti-CCL5 or
the co-treatment, with or without RT (Figure 5B). This result suggests that radiation leads to a CSC
enrichment in vivo in breast cancer. Altogether, our results show that inhibition of CXCL1 and/or
CCL5 is a strategy to decrease in vivo CSC induction and increase mice survival in TNBC.
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Figure 5. Reprogramming inhibition increases xenografted mouse survival. (A) In vivo experiment
protocol: mice were injected with 10° SUM159PT-Luc cells in both flanks. When tumors were
detectable, the mice were either irradiated or not and then treated with either or both antiCXCL1 and
antiCCL5 neutralizing antibodies or isotypes controls. (B) RNA extraction from xenografted tumors
was performed, and ALDHI expression was evaluated by qPCR.Human 2-microglobulin
expression was used as a control. t-test, n=6 mice per group, *, p<0.05. (C) Kaplan-Meier survival
curves of xenografted SCID mice irradiated or not, treated with isotype controls, antiCXCLI,
antiCCL5 or both. Survival medians are 17 days, 29 days, 35 days, and 32.5 days at 0 Gy (Log-rank
(Mantel-Cox), p=0.0031), and 19.5 days, 31.5 days, 35 days, and 36 days at 5*3 Gy (Log-rank (Mantel-
Cox), p=0.0028) in “isotypes”, "antiCXCL1", "antiCCL5" and “antiCXCL1+antiCCL5" groups,
respectively, n=6 mice per group.

3.3.2. C(X)C expression correlates with poor outcomes in breast cancer patients treated with
radiotherapy

Finally, we investigated the importance of CXCL1/CXCR2, and CCL5/CCR1 or CCR5 expression
on breast cancer patient survival and the correlation with stem cell signatures. We analyzed the
mRNA expression of those six genes among 9236 characterized primary breast cancer samples
(Supplemental Table 2-3).

Hierarchical clustering of all samples based on the expression level of six genes is shown in
Figure 6A. There was a positive correlation between all genes (Pearson, minimum r=0.24); the
samples were split into two main groups: group I is associated with high gene expression and group
IT with low expression. These two groups were correlated with different molecular classifications.
Group I (high expression) samples were more frequently triple-negative and less frequently
HR+/HER2- when compared with group II samples (Fisher exact t-test, p=4.36E-148).
Within a univariate analysis, Group I showed more frequently CSC-associated expression profiles
than group II samples (Fisher exact t-test): claudin-low profile (p=7.60E-52), CD44+/CD24- profile
(p=1.56E-98), profile of mammary stem cells and progenitor luminal (p=2.80E-288), profile of
transition mammary stem cells-progenitor luminal (p=2.136E-188), and ALDH1* profile (p=6.45E-10)
(Supplementary Table 4). Multivariate analysis also showed a strong correlation between Group I
and CSC-associated expression profiles (p=7.95E-03, p=4.25E-20, p=5.26E-43, p=3.57E-19,
respectively), except for ALDH1* profile (p=0.959) (Supplementary Table 4). Thus we selected
Creighton’s CD44+/CD24- classification as an example of a CSC-associated profile and demonstrated
that the expression level of each individual ligand and each individual receptor strongly correlated
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with this profile (UV/MV: CXCL1 p=6.76E-25/8.71E-05, CXCR2 p=1.71E-29/7.67E-18, CCL5 p=1.31E-
145/1.45E-55, CCR1 p=1.87E-89/2.19E-45 and CCRS5 p=1.01E-89/3.46E-29, Figure 6B).
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Figure 6. Breast cancer patient analyses to determine the correlation of C(X)CR and C(X)CL
expression. (A) Hierarchical clustering of 9236 samples and 5 genes with the Cluster program (53)
using complete linkage and uncentered Pearson correlation as parameters. Results were displayed
using TreeView program. Below the dendrogram are indicated from top to bottom as colored bars
the molecular subtypes (blue: HR+/HER2-, magenta: HER2+, red: TN), Prat’s claudin-low (black:
claudin-low, white: non claudin-low), Creighton’s CD44hish/CD24-1ow (black: CD44hieh/CD24-/1ow-like,
white: non CD44high/CD24-ow-like), Prat’s subpopulation transition signature (black: mammary stem
cell to progenitor Luminal, white: progenitor Luminal to mature Luminal), Lim’s signature (orange:
mammary stem cell, red: progenitor Luminal, blue: mature Luminal) and Charafe’s ALDHI1 (black:
ALDH1-like positive, white: ALDH1-like negative). (B) Box plot of expression level of each ligand
and receptor according to the Creighton’s CD44hish/CD24-ov CSC profile. (C) Bar plot of Creighton’s
CD44high/CD24/ov CSC signature correlation with each ligand/receptor couple, where each bar
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represents the logistic regression coefficient of each expression modality. (D) Overall survival with or
without radiotherapy, in CXCL1/CXCR2, CCL5/CCR1 or CCL5/CCR5-expressing tumors.

By using logistic regression, we then analyzed the correlation between the co-expression of each
C(X)C-receptor and the associated ligand with the CSC profile. Thus, for each ligand/receptor couple,
four levels of expression were used: high/high, high/low, low/high, and low/low, this later being used
as the reference. The CSC classification was used as a variable to explain and aggregate of median
discretized expression of C(X)C gene pair as an explicative variable. Using an ANOV A statistical test,
and Tukey's range test to compare modalities, we showed that high expression of both ligand and
receptor for the CXCL1/CXCR2, CCL5/CCR1, and CCL5/CCR5 couples in tumors, were highly
correlated with the CSC profile (UV/MV: p=1.06E-48/7.87E-16, p=4.59E-139/2.31E-53, and p=1.29E-
127/1.18E-46, respectively; Figure 6C). Similar results were found when the analysis was repeated per
molecular subtype (HR+/HER2-, HER2+, and triple-negative; Figure S7).

We then analyzed the prognostic value of each C(X)C gene on the overall survival. We found
only CCR1 with a significant difference in the total samples (p=6.52E-06) (Figure S8). Still, after
stratification and selection of the patients receiving radiotherapy treatment, we observed that
CXCL1/CXCR2 and CCL5/CCR1 could be used as poor prognostic markers (log-rank test p=2.42E-02,
p=1.03E-04, respectively, Figures 6D and S9).

4. Discussion

In breast cancer, therapies resistance and recurrence drastically affect the long-term survival of
patients. While tremendous efforts have been made to target resistant populations, including the CSC
population, recent studies have disrupted the hierarchical dogma by demonstrating that non-CSCs
can reacquire a CSC phenotype. Those studies have shown that ionizing radiation significantly
induces expression of the embryonic transcription factors OCT3/4, SOX2 and NANOG, and enriches
for CSC [7,30,31]. Interestingly, considering the absolute number of CSCs post-treatment, these
increases are not easily explained by selective killing of non-CSCs and their proliferation activation.
Indeed, we have previously demonstrated that radiation, which induces the expression of these
factors, reprograms non-CSCs into CSCs with the acquisition of the in vivo functional CSC fate [7].
While phenotypic plasticity has also been demonstrated in other conditions such as hypoxia or
chemotherapies [5,6], only molecular mechanisms involved in pluripotency-associated signaling
pathways have been identified. Although these pathways are necessary for CSC maintenance, they
might not be involved in the process of regenerating them. Therefore, the underlying molecular
pathways remain to be elucidated. This plasticity is thought to be responsible for enriching much of
the CSC pool and increasing tumor resistance. In the current study, we used in vitro and in vivo
models combined with clinical data to investigate the molecular mechanisms of reprogramming. Our
findings demonstrate that irradiated non-CSCs secrete soluble factors that can activate NOTCH
pathway and induce reprogramming of non-CSCs into CSCs.

We next aimed to investigate what factors are secreted by irradiated non-CSCs. Interestingly,
cytokines, well-known secreted, chemotactic proteins have been associated with CSCs
chemoresistance and enrichment in breast cancer [11,52]. We demonstrated that non-CSCs express
basal levels of chemokine receptors, and that radiation can increase their expression, but most
importantly, ionizing radiation also induces the release of chemokines, such as CXCL1 and CCLS5,
confirming the pro-inflammatory effect of radiation [32]. As observed, CXCL1 expression seems to
occur earlier that CCL5 expression, which might indicate the sequential role of each other. Also, we
identified several other radiation-induced cytokines. Levels of induction can differ from cell types
but could drive to the same phenotype switch due to cytokine signaling redundancy [33]. While
CXCL1 has been associated with a poor patient outcome [34] and resistance through the recruitment
of CD11b+Gr1+ myeloid cells into the tumor [35], we demonstrated herein, for the first time, the direct
role of CXCL1 in generating CSCs from non-CSCs. Interestingly, some molecules, such as curcumin,
which is known to target CSC [36], can sensitize breast cancer therapies by reducing CXCL1
expression [37].

doi:10.20944/preprints202402.0403.v1
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Like CXCL1, CCL5 has been shown to be associated with high-grade breast cancer [38].
Moreover, Norton et al. recently demonstrated that breast cancer stem cells and CCR5+ cells affect
the overall growth and morphology of breast tumors [39]. Interestingly, similarly to our group,
Norton et al. only observed a slight reduction in tumor growth under CCR5 inhibition conditions.
Similar results, i.e., decreases in tumor growth and CSC frequency, have been observed using the
CXCR1 inhibitor reparixin conjugated to docetaxel [40]. However, these studies only focused on
global enrichment instead of reprogramming; Herein, we observed that CXCL1 and CCLS5 affected a
non-CSC population and not an unsorted population. In a xenograft tumor mouse model derived
from SUMI159PT cells, the cells are usually fast growing and relatively resistant to anti-cancer
treatments, as expected for a triple-negative breast cancer model. In this study, we demonstrated, for
the first time, that targeting CXCL1 and CCL5 prevents radiation-induced reprogramming of non-
CSCs into CSCs and CSC enrichment in vivo, leading to an increase of the radiosensitivity of the tumor
and mice survival.

Assuming that chemokines are involved in the reprogramming process, we wondered if we
could identify a “reprogrammable” population, i.e., a non-CSC subpopulation that responds to
chemokines and is preferentially able to re-acquire a CSC phenotype. According to this hypothesis,
this specific population could be the one expressing the receptors for the identified chemokines.
Chemokines and their receptors are connected in a complex network: chemokines can be ligands of
various receptors and receptors can link several chemokines [41]. Therefore, we studied several
receptors as a whole instead of individually. While isolated CCR+/CXCR+ cells were not able to
undergo reprogramming at a higher rate, we observed that sorted CCR-/CXCR- cells re-exposed CCR
and CXCR at the membrane within 24h, resulting in a new population of non-CSCs with
reprogramming potential. Surprisingly, individual receptor inhibition was not able to induce a
significant decrease in reprogramming, while CCR/CXCR combined inhibitions do. This might be
due to the CXCR/CCR signaling redundancy [42]. Indeed, chemokines and their receptors may
induce several common pathways that could be involved in the process, including JAK/STAT3 or
NEF-kB. As Notch was the first pathway demonstrated to be involved in reprogramming [7], we
studied the link between Notch signaling and CXCL1/CCL5 signaling. Using different inhibitors, we
demonstrated that CXCL1/CCL5 signaling activation occurs before Notch one, as Notch inhibition
fails to prevent CXCL1/CCL5 secretion and CXCL1/CCL5 treatment induces the expression of Notch
and activation of the Notch pathway. Hsu et al. recently demonstrated that IL6 could induce the
Notch pathway through the activation of the y-Secretase to regulate stemness [43]. Also, CCL2 has
been shown to induce NOTCH1 expression and the CSC features in breast cancer cells with crosstalk
between stromal cells and cancer cells [28].

By analyzing a database of 9236 breast cancer patients, we identified that expression of CXCL1,
CCL5, and their receptors as well as combined C(X)CL/R gene pairs were highly correlated with CSC-
associated profiles, indicating an implication of those C(X)C axes in CSC phenotype. It is worth
noting that Creighton’s CD44high/CD24-ov classification matches with the cytokine/receptor
expression profile, the lack of correlation with the ALDH1* profile could be explained by the
technique of detection (global mRNA) which can’t distinguish between expression in cancer cells and
stromal cells. Indeed, Bednarz-Knoll et al. recently demonstrated that stroma expression of ALDH1
indicates reduced tumor progression [44]. Their implication could be performed through direct
enrichment or as we investigated through a permissive environment allowing reprogramming of
non-CSC into CSC. As CXCL1 [35,36,45-47] and CCL5 [48-50] have been shown to be associated with
therapy resistance and poor prognosis, we confirmed these observations, adding that CXCL1 and
CCLS5 are especially valuable for prognosis in patients receiving radiation treatment. Moreover, we
evaluated the influence of the C(X)C paired gene, CXCL1/CXCR?2, and CCL5/CCR1 or CCR5 axes on
patient overall survival.

Interestingly, overexpression of the C(X)C gene pairs was only associated with poor prognosis
in the case of radiotherapy treatment. These results are in step with enrichment by reprogramming
of non-CSC into CSC during radiation treatment. While C(X)C axes could be involved in cancer
stromal cell recruitments [51,52], we highlighted the potential role of reprogramming in the process
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of tumor progression. Thus, while the activation of CCL5/CCR1/CCR5 axes in tumor cells could
promote tumor growth through the recruitment of immunosuppressive myeloid cells [53] or
angiogenesis [54], C(X)C axes could also directly generate, by reprogramming resistant CSC from
non-CSC within specific contexts and distant environments, and so affect patient prognosis (reduced
OS). This observation completes recent data demonstrating that the inflammatory cytokine CXCL8
can stimulate dormant disseminated tumor cells in the liver to induce metastasis [55].

5. Conclusions

In conclusion, we demonstrated that radiation treatment induces secretion of CXCL1 and CCL5
and over-expression of CXCR2, CCR1, and CCRS5. This paracrine loop in non-CSC could directly or
indirectly induce signal transduction to drive the re-expression of pluripotency transcription factors
and allow the reprogramming of non-CSCs into CSCs, which enriches for resistant cells, ready-to-
repopulate cells. Our data provide a rationale to consider CCL5/CCR1/CCRS5 axes as potential targets
and predictive biomarkers in breast cancer patients.
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